Last modified by Mengting Qiu on 2024/04/02 16:44

From version 15.5
edited by Xiaoling
on 2022/06/06 16:29
Change comment: There is no comment for this version
To version 64.3
edited by Xiaoling
on 2022/07/08 14:37
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="848" width="848"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
... ... @@ -8,889 +8,774 @@
8 8  
9 9  
10 10  
11 -= 1. Introduction =
12 12  
13 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 14  
15 -(((
16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
17 -)))
18 18  
19 -(((
20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
21 -)))
14 +**Table of Contents:**
22 22  
23 -(((
24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
25 -)))
26 26  
27 -(((
28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
29 -)))
30 30  
18 +
19 +
20 +
21 += 1.  Introduction =
22 +
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24 +
31 31  (((
32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
33 -)))
26 +
34 34  
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
35 35  
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 +
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 +
36 +
37 +)))
38 +
36 36  [[image:1654503236291-817.png]]
37 37  
38 38  
39 -[[image:1654503265560-120.png]]
42 +[[image:1657245163077-232.png]]
40 40  
41 41  
42 42  
43 43  == 1.2 ​Features ==
44 44  
45 -* LoRaWAN 1.0.3 Class A
46 -* Ultra low power consumption
48 +
49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
47 47  * Monitor Soil Moisture
48 48  * Monitor Soil Temperature
49 49  * Monitor Soil Conductivity
50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
51 51  * AT Commands to change parameters
52 52  * Uplink on periodically
53 53  * Downlink to change configure
54 54  * IP66 Waterproof Enclosure
55 -* 4000mAh or 8500mAh Battery for long term use
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
59 +* Micro SIM card slot for NB-IoT SIM
60 +* 8500mAh Battery for long term use
56 56  
57 -== 1.3 Specification ==
62 +== 1.3  Specification ==
58 58  
59 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
60 60  
61 -[[image:image-20220606162220-5.png]]
65 +(% style="color:#037691" %)**Common DC Characteristics:**
62 62  
67 +* Supply Voltage: 2.1v ~~ 3.6v
68 +* Operating Temperature: -40 ~~ 85°C
63 63  
70 +(% style="color:#037691" %)**NB-IoT Spec:**
64 64  
65 -== ​1.4 Applications ==
72 +* - B1 @H-FDD: 2100MHz
73 +* - B3 @H-FDD: 1800MHz
74 +* - B8 @H-FDD: 900MHz
75 +* - B5 @H-FDD: 850MHz
76 +* - B20 @H-FDD: 800MHz
77 +* - B28 @H-FDD: 700MHz
66 66  
67 -* Smart Agriculture
79 +(% style="color:#037691" %)**Probe Specification:**
68 68  
69 -== ​1.5 Firmware Change log ==
81 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
70 70  
83 +[[image:image-20220708101224-1.png]]
71 71  
72 -**LSE01 v1.0 :**  Release
73 73  
74 74  
87 +== ​1.4  Applications ==
75 75  
76 -= 2. Configure LSE01 to connect to LoRaWAN network =
89 +* Smart Agriculture
77 77  
78 -== 2.1 How it works ==
91 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
92 +​
79 79  
80 -(((
81 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
82 -)))
94 +== 1.5  Pin Definitions ==
83 83  
84 -(((
85 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.​UsingtheATCommands"]].
86 -)))
87 87  
97 +[[image:1657246476176-652.png]]
88 88  
89 89  
90 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
91 91  
92 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
101 += 2.  Use NSE01 to communicate with IoT Server =
93 93  
103 +== 2.1  How it works ==
94 94  
95 -[[image:1654503992078-669.png]]
96 96  
106 +(((
107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
108 +)))
97 97  
98 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
99 99  
100 -
101 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
102 -
103 -Each LSE01 is shipped with a sticker with the default device EUI as below:
104 -
105 -
106 -
107 -
108 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
109 -
110 -
111 -**Add APP EUI in the application**
112 -
113 -
114 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]]
115 -
116 -
117 -
118 -**Add APP KEY and DEV EUI**
119 -
120 -
121 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image005.png]]
122 -
123 -|(((
124 -
111 +(((
112 +The diagram below shows the working flow in default firmware of NSE01:
125 125  )))
126 126  
127 -**Step 2**: Power on LSE01
115 +[[image:image-20220708101605-2.png]]
128 128  
129 -
130 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
131 -
132 -
133 -
134 -|(((
117 +(((
135 135  
136 136  )))
137 137  
138 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image006.png]]
139 139  
140 140  
123 +== 2.2 ​ Configure the NSE01 ==
141 141  
142 142  
126 +=== 2.2.1 Test Requirement ===
143 143  
144 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
145 145  
146 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]
129 +To use NSE01 in your city, make sure meet below requirements:
147 147  
131 +* Your local operator has already distributed a NB-IoT Network there.
132 +* The local NB-IoT network used the band that NSE01 supports.
133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
148 148  
135 +(((
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
137 +)))
149 149  
150 150  
151 -1.
152 -11. ​Uplink Payload
153 -111. MOD=0(Default Mode)
140 +[[image:1657249419225-449.png]]
154 154  
155 -LSE01 will uplink payload via LoRaWAN with below payload format: 
156 156  
157 157  
158 -Uplink payload includes in total 11 bytes.
159 -
144 +=== 2.2.2 Insert SIM card ===
160 160  
161 -|(((
162 -**Size**
146 +Insert the NB-IoT Card get from your provider.
163 163  
164 -**(bytes)**
165 -)))|**2**|**2**|**2**|**2**|**2**|**1**
166 -|**Value**|[[BAT>>path:#bat]]|(((
167 -Temperature
148 +User need to take out the NB-IoT module and insert the SIM card like below:
168 168  
169 -(Reserve, Ignore now)
170 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|(((
171 -MOD & Digital Interrupt
172 172  
173 -(Optional)
174 -)))
151 +[[image:1657249468462-536.png]]
175 175  
176 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]
177 177  
178 178  
179 -1.
180 -11.
181 -111. MOD=1(Original value)
155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
182 182  
183 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
184 -
185 -|(((
186 -**Size**
187 -
188 -**(bytes)**
189 -)))|**2**|**2**|**2**|**2**|**2**|**1**
190 -|**Value**|[[BAT>>path:#bat]]|(((
191 -Temperature
192 -
193 -(Reserve, Ignore now)
194 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|(((
195 -MOD & Digital Interrupt
196 -
197 -(Optional)
157 +(((
158 +(((
159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
198 198  )))
161 +)))
199 199  
200 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image008.png]]
201 201  
202 -1.
203 -11.
204 -111. Battery Info
164 +**Connection:**
205 205  
206 -Check the battery voltage for LSE01.
166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
207 207  
208 -Ex1: 0x0B45 = 2885mV
168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
209 209  
210 -Ex2: 0x0B49 = 2889mV
170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
211 211  
212 212  
173 +In the PC, use below serial tool settings:
213 213  
214 -1.
215 -11.
216 -111. Soil Moisture
175 +* Baud:  (% style="color:green" %)**9600**
176 +* Data bits:** (% style="color:green" %)8(%%)**
177 +* Stop bits: (% style="color:green" %)**1**
178 +* Parity:  (% style="color:green" %)**None**
179 +* Flow Control: (% style="color:green" %)**None**
217 217  
218 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
181 +(((
182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
183 +)))
219 219  
220 -For example, if the data you get from the register is 0x05 0xDC, the moisture content in the soil is
185 +[[image:image-20220708110657-3.png]]
221 221  
222 -**05DC(H) = 1500(D) /100 = 15%.**
187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
223 223  
224 224  
225 -1.
226 -11.
227 -111. Soil Temperature
228 228  
229 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
191 +=== 2.2.4 Use CoAP protocol to uplink data ===
230 230  
231 -**Example**:
193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
232 232  
233 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
234 234  
235 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
196 +**Use below commands:**
236 236  
198 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
237 237  
238 -1.
239 -11.
240 -111. Soil Conductivity (EC)
202 +For parameter description, please refer to AT command set
241 241  
242 -Obtain soluble salt concentration in soil or soluble ion concentration in liquid fertilizer or planting medium,. The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
204 +[[image:1657249793983-486.png]]
243 243  
244 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
245 245  
207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
246 246  
247 -Generally, the EC value of irrigation water is less than 800uS / cm.
209 +[[image:1657249831934-534.png]]
248 248  
249 -1.
250 -11.
251 -111. MOD
252 252  
253 -Firmware version at least v2.1 supports changing mode.
254 254  
255 -For example, bytes[10]=90
213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
256 256  
257 -mod=(bytes[10]>>7)&0x01=1.
215 +This feature is supported since firmware version v1.0.1
258 258  
259 259  
260 -Downlink Command:
218 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
220 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
261 261  
262 -If payload = 0x0A00, workmode=0
222 +[[image:1657249864775-321.png]]
263 263  
264 -If** **payload =** **0x0A01, workmode=1
265 265  
225 +[[image:1657249930215-289.png]]
266 266  
267 -1.
268 -11.
269 -111. ​Decode payload in The Things Network
270 270  
271 -While using TTN network, you can add the payload format to decode the payload.
272 272  
229 +=== 2.2.6 Use MQTT protocol to uplink data ===
273 273  
274 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.png]]
231 +This feature is supported since firmware version v110
275 275  
276 -The payload decoder function for TTN is here:
277 277  
278 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
234 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
237 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
238 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
279 279  
242 +[[image:1657249978444-674.png]]
280 280  
281 -1.
282 -11. Uplink Interval
283 283  
284 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
245 +[[image:1657249990869-686.png]]
285 285  
286 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
287 287  
288 -1.
289 -11. ​Downlink Payload
248 +(((
249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
250 +)))
290 290  
291 -By default, LSE50 prints the downlink payload to console port.
292 292  
293 -|**Downlink Control Type**|**FPort**|**Type Code**|**Downlink payload size(bytes)**
294 -|TDC (Transmit Time Interval)|Any|01|4
295 -|RESET|Any|04|2
296 -|AT+CFM|Any|05|4
297 -|INTMOD|Any|06|4
298 -|MOD|Any|0A|2
299 299  
300 -**Examples**
254 +=== 2.2.7 Use TCP protocol to uplink data ===
301 301  
256 +This feature is supported since firmware version v110
302 302  
303 -**Set TDC**
304 304  
305 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
259 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
306 306  
307 -Payload:    01 00 00 1E    TDC=30S
262 +[[image:1657250217799-140.png]]
308 308  
309 -Payload:    01 00 00 3C    TDC=60S
310 310  
265 +[[image:1657250255956-604.png]]
311 311  
312 -**Reset**
313 313  
314 -If payload = 0x04FF, it will reset the LSE01
315 315  
269 +=== 2.2.8 Change Update Interval ===
316 316  
317 -**CFM**
271 +User can use below command to change the (% style="color:green" %)**uplink interval**.
318 318  
319 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
273 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
320 320  
321 -1.
322 -11. ​Show Data in DataCake IoT Server
275 +(((
276 +(% style="color:red" %)**NOTE:**
277 +)))
323 323  
324 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
279 +(((
280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
281 +)))
325 325  
326 326  
327 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
328 328  
329 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
285 +== 2.3  Uplink Payload ==
330 330  
287 +In this mode, uplink payload includes in total 18 bytes
331 331  
332 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]]
289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
290 +|=(% style="width: 50px;" %)(((
291 +**Size(bytes)**
292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
333 333  
295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
334 334  
335 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]]
336 336  
298 +[[image:image-20220708111918-4.png]]
337 337  
338 338  
301 +The payload is ASCII string, representative same HEX:
339 339  
303 +0x72403155615900640c7817075e0a8c02f900 where:
340 340  
341 -Step 3: Create an account or log in Datacake.
305 +* Device ID: 0x 724031556159 = 724031556159
306 +* Version: 0x0064=100=1.0.0
342 342  
343 -Step 4: Search the LSE01 and add DevEUI.
308 +* BAT: 0x0c78 = 3192 mV = 3.192V
309 +* Singal: 0x17 = 23
310 +* Soil Moisture: 0x075e= 1886 = 18.86  %
311 +* Soil Temperature:0x0a8c =2700=27 °C
312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
313 +* Interrupt: 0x00 = 0
344 344  
315 +== 2.4  Payload Explanation and Sensor Interface ==
345 345  
346 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]]
347 347  
318 +=== 2.4.1  Device ID ===
348 348  
320 +By default, the Device ID equal to the last 6 bytes of IMEI.
349 349  
350 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
351 351  
324 +**Example:**
352 352  
353 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]
326 +AT+DEUI=A84041F15612
354 354  
328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
355 355  
356 356  
357 -1.
358 -11. Frequency Plans
359 359  
360 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
332 +=== 2.4.2  Version Info ===
361 361  
362 -1.
363 -11.
364 -111. EU863-870 (EU868)
334 +Specify the software version: 0x64=100, means firmware version 1.00.
365 365  
366 -Uplink:
336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
367 367  
368 -868.1 - SF7BW125 to SF12BW125
369 369  
370 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
371 371  
372 -868.5 - SF7BW125 to SF12BW125
340 +=== 2.4.3  Battery Info ===
373 373  
374 -867.1 - SF7BW125 to SF12BW125
342 +(((
343 +Check the battery voltage for LSE01.
344 +)))
375 375  
376 -867.3 - SF7BW125 to SF12BW125
346 +(((
347 +Ex1: 0x0B45 = 2885mV
348 +)))
377 377  
378 -867.5 - SF7BW125 to SF12BW125
350 +(((
351 +Ex2: 0x0B49 = 2889mV
352 +)))
379 379  
380 -867.7 - SF7BW125 to SF12BW125
381 381  
382 -867.9 - SF7BW125 to SF12BW125
383 383  
384 -868.8 - FSK
356 +=== 2.4.4  Signal Strength ===
385 385  
358 +NB-IoT Network signal Strength.
386 386  
387 -Downlink:
360 +**Ex1: 0x1d = 29**
388 388  
389 -Uplink channels 1-9 (RX1)
362 +(% style="color:blue" %)**0**(%%)  -113dBm or less
390 390  
391 -869.525 - SF9BW125 (RX2 downlink only)
364 +(% style="color:blue" %)**1**(%%)  -111dBm
392 392  
366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
393 393  
394 -1.
395 -11.
396 -111. US902-928(US915)
368 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
397 397  
398 -Used in USA, Canada and South America. Default use CHE=2
370 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
399 399  
400 -Uplink:
401 401  
402 -903.9 - SF7BW125 to SF10BW125
403 403  
404 -904.1 - SF7BW125 to SF10BW125
374 +=== 2.4. Soil Moisture ===
405 405  
406 -904.3 - SF7BW125 to SF10BW125
376 +(((
377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
378 +)))
407 407  
408 -904.5 - SF7BW125 to SF10BW125
380 +(((
381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
382 +)))
409 409  
410 -904.7 - SF7BW125 to SF10BW125
384 +(((
385 +
386 +)))
411 411  
412 -904.9 - SF7BW125 to SF10BW125
388 +(((
389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
390 +)))
413 413  
414 -905.1 - SF7BW125 to SF10BW125
415 415  
416 -905.3 - SF7BW125 to SF10BW125
417 417  
394 +=== 2.4.6  Soil Temperature ===
418 418  
419 -Downlink:
396 +(((
397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
398 +)))
420 420  
421 -923.3 - SF7BW500 to SF12BW500
400 +(((
401 +**Example**:
402 +)))
422 422  
423 -923.9 - SF7BW500 to SF12BW500
404 +(((
405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
406 +)))
424 424  
425 -924.5 - SF7BW500 to SF12BW500
408 +(((
409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
410 +)))
426 426  
427 -925.1 - SF7BW500 to SF12BW500
428 428  
429 -925.7 - SF7BW500 to SF12BW500
430 430  
431 -926.3 - SF7BW500 to SF12BW500
414 +=== 2.4.7  Soil Conductivity (EC) ===
432 432  
433 -926.9 - SF7BW500 to SF12BW500
416 +(((
417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
418 +)))
434 434  
435 -927.5 - SF7BW500 to SF12BW500
420 +(((
421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
422 +)))
436 436  
437 -923.3 - SF12BW500(RX2 downlink only)
424 +(((
425 +Generally, the EC value of irrigation water is less than 800uS / cm.
426 +)))
438 438  
428 +(((
429 +
430 +)))
439 439  
440 -1.
441 -11.
442 -111. CN470-510 (CN470)
432 +(((
433 +
434 +)))
443 443  
444 -Used in China, Default use CHE=1
436 +=== 2.4.8  Digital Interrupt ===
445 445  
446 -Uplink:
438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
447 447  
448 -486.3 - SF7BW125 to SF12BW125
440 +The command is:
449 449  
450 -486.5 - SF7BW125 to SF12BW125
442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
451 451  
452 -486.7 - SF7BW125 to SF12BW125
453 453  
454 -486.9 - SF7BW125 to SF12BW125
445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
455 455  
456 -487.1 - SF7BW125 to SF12BW125
457 457  
458 -487.3 - SF7BW125 to SF12BW125
448 +Example:
459 459  
460 -487.5 - SF7BW125 to SF12BW125
450 +0x(00): Normal uplink packet.
461 461  
462 -487.7 - SF7BW125 to SF12BW125
452 +0x(01): Interrupt Uplink Packet.
463 463  
464 464  
465 -Downlink:
466 466  
467 -506.7 - SF7BW125 to SF12BW125
456 +=== 2.4.9  ​+5V Output ===
468 468  
469 -506.9 - SF7BW125 to SF12BW125
458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
470 470  
471 -507.1 - SF7BW125 to SF12BW125
472 472  
473 -507.3 - SF7BW125 to SF12BW125
461 +The 5V output time can be controlled by AT Command.
474 474  
475 -507.5 - SF7BW125 to SF12BW125
463 +(% style="color:blue" %)**AT+5VT=1000**
476 476  
477 -507.7 - SF7BW125 to SF12BW125
465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
478 478  
479 -507.9 - SF7BW125 to SF12BW125
480 480  
481 -508.1 - SF7BW125 to SF12BW125
482 482  
483 -505.3 - SF12BW125 (RX2 downlink only)
469 +== 2.5  Downlink Payload ==
484 484  
471 +By default, NSE01 prints the downlink payload to console port.
485 485  
486 -1.
487 -11.
488 -111. AU915-928(AU915)
473 +[[image:image-20220708133731-5.png]]
489 489  
490 -Default use CHE=2
491 491  
492 -Uplink:
476 +(((
477 +(% style="color:blue" %)**Examples:**
478 +)))
493 493  
494 -916.8 - SF7BW125 to SF12BW125
480 +(((
481 +
482 +)))
495 495  
496 -917.0 - SF7BW125 to SF12BW125
484 +* (((
485 +(% style="color:blue" %)**Set TDC**
486 +)))
497 497  
498 -917.2 - SF7BW125 to SF12BW125
488 +(((
489 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
490 +)))
499 499  
500 -917.4 - SF7BW125 to SF12BW125
492 +(((
493 +Payload:    01 00 00 1E    TDC=30S
494 +)))
501 501  
502 -917.6 - SF7BW125 to SF12BW125
496 +(((
497 +Payload:    01 00 00 3C    TDC=60S
498 +)))
503 503  
504 -917.8 - SF7BW125 to SF12BW125
500 +(((
501 +
502 +)))
505 505  
506 -918.0 - SF7BW125 to SF12BW125
504 +* (((
505 +(% style="color:blue" %)**Reset**
506 +)))
507 507  
508 -918.2 - SF7BW125 to SF12BW125
508 +(((
509 +If payload = 0x04FF, it will reset the NSE01
510 +)))
509 509  
510 510  
511 -Downlink:
513 +* (% style="color:blue" %)**INTMOD**
512 512  
513 -923.3 - SF7BW500 to SF12BW500
515 +Downlink Payload: 06000003, Set AT+INTMOD=3
514 514  
515 -923.9 - SF7BW500 to SF12BW500
516 516  
517 -924.5 - SF7BW500 to SF12BW500
518 518  
519 -925.1 - SF7BW500 to SF12BW500
519 +== 2. ​LED Indicator ==
520 520  
521 -925.7 - SF7BW500 to SF12BW500
521 +(((
522 +The NSE01 has an internal LED which is to show the status of different state.
522 522  
523 -926.3 - SF7BW500 to SF12BW500
524 524  
525 -926.9 - SF7BW500 to SF12BW500
525 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
526 +* Then the LED will be on for 1 second means device is boot normally.
527 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
528 +* For each uplink probe, LED will be on for 500ms.
529 +)))
526 526  
527 -927.5 - SF7BW500 to SF12BW500
528 528  
529 -923.3 - SF12BW500(RX2 downlink only)
530 530  
531 -1.
532 -11.
533 -111. AS920-923 & AS923-925 (AS923)
534 534  
535 -**Default Uplink channel:**
534 +== 2.7  Installation in Soil ==
536 536  
537 -923.2 - SF7BW125 to SF10BW125
536 +__**Measurement the soil surface**__
538 538  
539 -923.4 - SF7BW125 to SF10BW125
538 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
540 540  
540 +[[image:1657259653666-883.png]] ​
541 541  
542 -**Additional Uplink Channel**:
543 543  
544 -(OTAA mode, channel added by JoinAccept message)
543 +(((
544 +
545 545  
546 -**AS920~~AS923 for Japan, Malaysia, Singapore**:
547 -
548 -922.2 - SF7BW125 to SF10BW125
549 -
550 -922.4 - SF7BW125 to SF10BW125
551 -
552 -922.6 - SF7BW125 to SF10BW125
553 -
554 -922.8 - SF7BW125 to SF10BW125
555 -
556 -923.0 - SF7BW125 to SF10BW125
557 -
558 -922.0 - SF7BW125 to SF10BW125
559 -
560 -
561 -**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
562 -
563 -923.6 - SF7BW125 to SF10BW125
564 -
565 -923.8 - SF7BW125 to SF10BW125
566 -
567 -924.0 - SF7BW125 to SF10BW125
568 -
569 -924.2 - SF7BW125 to SF10BW125
570 -
571 -924.4 - SF7BW125 to SF10BW125
572 -
573 -924.6 - SF7BW125 to SF10BW125
574 -
575 -
576 -
577 -**Downlink:**
578 -
579 -Uplink channels 1-8 (RX1)
580 -
581 -923.2 - SF10BW125 (RX2)
582 -
583 -
584 -1.
585 -11.
586 -111. KR920-923 (KR920)
587 -
588 -Default channel:
589 -
590 -922.1 - SF7BW125 to SF12BW125
591 -
592 -922.3 - SF7BW125 to SF12BW125
593 -
594 -922.5 - SF7BW125 to SF12BW125
595 -
596 -
597 -Uplink: (OTAA mode, channel added by JoinAccept message)
598 -
599 -922.1 - SF7BW125 to SF12BW125
600 -
601 -922.3 - SF7BW125 to SF12BW125
602 -
603 -922.5 - SF7BW125 to SF12BW125
604 -
605 -922.7 - SF7BW125 to SF12BW125
606 -
607 -922.9 - SF7BW125 to SF12BW125
608 -
609 -923.1 - SF7BW125 to SF12BW125
610 -
611 -923.3 - SF7BW125 to SF12BW125
612 -
613 -
614 -Downlink:
615 -
616 -Uplink channels 1-7(RX1)
617 -
618 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
619 -
620 -
621 -1.
622 -11.
623 -111. IN865-867 (IN865)
624 -
625 -Uplink:
626 -
627 -865.0625 - SF7BW125 to SF12BW125
628 -
629 -865.4025 - SF7BW125 to SF12BW125
630 -
631 -865.9850 - SF7BW125 to SF12BW125
632 -
633 -
634 -Downlink:
635 -
636 -Uplink channels 1-3 (RX1)
637 -
638 -866.550 - SF10BW125 (RX2)
639 -
640 -
641 -1.
642 -11. LED Indicator
643 -
644 -The LSE01 has an internal LED which is to show the status of different state.
645 -
646 -
647 -* Blink once when device power on.
648 -* Solid ON for 5 seconds once device successful Join the network.
649 -* Blink once when device transmit a packet.
650 -
651 -1.
652 -11. Installation in Soil
653 -
654 -**Measurement the soil surface**
655 -
656 -
657 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] ​
658 -
659 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
660 -
661 -
662 -
663 -
664 -
665 -
666 -
667 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
668 -
669 -
670 -
546 +(((
671 671  Dig a hole with diameter > 20CM.
548 +)))
672 672  
550 +(((
673 673  Horizontal insert the probe to the soil and fill the hole for long term measurement.
552 +)))
553 +)))
674 674  
555 +[[image:1654506665940-119.png]]
675 675  
557 +(((
558 +
559 +)))
676 676  
677 677  
678 -1.
679 -11. ​Firmware Change Log
562 +== 2.8  ​Firmware Change Log ==
680 680  
681 -**Firmware download link:**
682 682  
683 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
565 +Download URL & Firmware Change log
684 684  
567 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
685 685  
686 -**Firmware Upgrade Method:**
687 687  
688 -[[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]]
570 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
689 689  
690 690  
691 -**V1.0.**
692 692  
693 -Release
574 +== 2.9  ​Battery Analysis ==
694 694  
576 +=== 2.9.1  ​Battery Type ===
695 695  
696 696  
697 -1.
698 -11. ​Battery Analysis
699 -111. ​Battery Type
579 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
700 700  
701 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
702 702  
582 +The battery is designed to last for several years depends on the actually use environment and update interval. 
703 703  
704 -The battery is designed to last for more than 5 years for the LSN50.
705 705  
706 -
707 707  The battery related documents as below:
708 708  
709 -* [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
710 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]]
711 -* [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
587 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
588 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
589 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
712 712  
713 -|(((
714 -JST-XH-2P connector
591 +(((
592 +[[image:image-20220708140453-6.png]]
715 715  )))
716 716  
717 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
718 718  
719 719  
597 +=== 2.9.2  Power consumption Analyze ===
720 720  
721 -1.
722 -11.
723 -111. ​Battery Note
599 +(((
600 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
601 +)))
724 724  
725 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
726 726  
604 +(((
605 +Instruction to use as below:
606 +)))
727 727  
728 -1.
729 -11.
730 -111. ​Replace the battery
608 +(((
609 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
610 +)))
731 731  
732 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
733 733  
613 +(((
614 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
615 +)))
734 734  
735 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
617 +* (((
618 +Product Model
619 +)))
620 +* (((
621 +Uplink Interval
622 +)))
623 +* (((
624 +Working Mode
625 +)))
736 736  
627 +(((
628 +And the Life expectation in difference case will be shown on the right.
629 +)))
737 737  
738 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
631 +[[image:image-20220708141352-7.jpeg]]
739 739  
740 740  
741 741  
635 +=== 2.9.3  ​Battery Note ===
742 742  
637 +(((
638 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
639 +)))
743 743  
744 744  
745 -= 3. ​Using the AT Commands =
746 746  
747 -== 3.1 Access AT Commands ==
643 +=== 2.9.4  Replace the battery ===
748 748  
645 +(((
646 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
647 +)))
749 749  
750 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
751 751  
752 -[[image:1654501986557-872.png]]
753 753  
651 += 3. ​ Access NB-IoT Module =
754 754  
755 -Or if you have below board, use below connection:
653 +(((
654 +Users can directly access the AT command set of the NB-IoT module.
655 +)))
756 756  
657 +(((
658 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
659 +)))
757 757  
758 -[[image:1654502005655-729.png]]
661 +[[image:1657261278785-153.png]]
759 759  
760 760  
761 761  
762 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
665 += 4.  Using the AT Commands =
763 763  
667 +== 4.1  Access AT Commands ==
764 764  
765 - [[image:1654502050864-459.png]]
669 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
766 766  
767 767  
768 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
672 +AT+<CMD>?  : Help on <CMD>
769 769  
674 +AT+<CMD>         : Run <CMD>
770 770  
771 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
676 +AT+<CMD>=<value> : Set the value
772 772  
773 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
678 +AT+<CMD>=?  : Get the value
774 774  
775 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
776 776  
777 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
778 -
779 -
780 780  (% style="color:#037691" %)**General Commands**(%%)      
781 781  
782 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
683 +AT  : Attention       
783 783  
784 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
685 +AT?  : Short Help     
785 785  
786 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
687 +ATZ  : MCU Reset    
787 787  
788 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
689 +AT+TDC  : Application Data Transmission Interval
789 789  
691 +AT+CFG  : Print all configurations
790 790  
791 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
693 +AT+CFGMOD           : Working mode selection
792 792  
793 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
695 +AT+INTMOD            : Set the trigger interrupt mode
794 794  
795 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
697 +AT+5VT  : Set extend the time of 5V power  
796 796  
797 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
699 +AT+PRO  : Choose agreement
798 798  
799 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
701 +AT+WEIGRE  : Get weight or set weight to 0
800 800  
801 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
703 +AT+WEIGAP  : Get or Set the GapValue of weight
802 802  
803 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
705 +AT+RXDL  : Extend the sending and receiving time
804 804  
805 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
707 +AT+CNTFAC  : Get or set counting parameters
806 806  
807 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
709 +AT+SERVADDR  : Server Address
808 808  
809 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
810 810  
811 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
712 +(% style="color:#037691" %)**COAP Management**      
812 812  
813 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
714 +AT+URI            : Resource parameters
814 814  
815 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
816 816  
817 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
717 +(% style="color:#037691" %)**UDP Management**
818 818  
819 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
719 +AT+CFM          : Upload confirmation mode (only valid for UDP)
820 820  
821 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
822 822  
823 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
722 +(% style="color:#037691" %)**MQTT Management**
824 824  
724 +AT+CLIENT               : Get or Set MQTT client
825 825  
826 -(% style="color:#037691" %)**LoRa Network Management**
726 +AT+UNAME  : Get or Set MQTT Username
827 827  
828 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
728 +AT+PWD                  : Get or Set MQTT password
829 829  
830 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
730 +AT+PUBTOPI : Get or Set MQTT publish topic
831 831  
832 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
732 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
833 833  
834 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
835 835  
836 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
735 +(% style="color:#037691" %)**Information**          
837 837  
838 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
737 +AT+FDR  : Factory Data Reset
839 839  
840 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
739 +AT+PWOR : Serial Access Password
841 841  
842 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
843 843  
844 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
845 845  
846 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
847 -
848 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
849 -
850 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
851 -
852 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
853 -
854 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
855 -
856 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
857 -
858 -
859 -(% style="color:#037691" %)**Information** 
860 -
861 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
862 -
863 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
864 -
865 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
866 -
867 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
868 -
869 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
870 -
871 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
872 -
873 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
874 -
875 -
876 876  = ​4. FAQ =
877 877  
878 878  == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
879 879  
880 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]].
747 +(((
748 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
881 881  When downloading the images, choose the required image file for download. ​
750 +)))
882 882  
752 +(((
753 +
754 +)))
883 883  
756 +(((
884 884  How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
758 +)))
885 885  
760 +(((
761 +
762 +)))
886 886  
764 +(((
887 887  You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
766 +)))
888 888  
768 +(((
769 +
770 +)))
889 889  
772 +(((
890 890  For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
774 +)))
891 891  
892 892  [[image:image-20220606154726-3.png]]
893 893  
778 +
894 894  When you use the TTN network, the US915 frequency bands use are:
895 895  
896 896  * 903.9 - SF7BW125 to SF10BW125
... ... @@ -903,37 +903,47 @@
903 903  * 905.3 - SF7BW125 to SF10BW125
904 904  * 904.6 - SF8BW500
905 905  
791 +(((
906 906  Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
907 907  
908 -(% class="box infomessage" %)
909 -(((
910 -**AT+CHE=2**
794 +* (% style="color:#037691" %)**AT+CHE=2**
795 +* (% style="color:#037691" %)**ATZ**
911 911  )))
912 912  
913 -(% class="box infomessage" %)
914 914  (((
915 -**ATZ**
916 -)))
799 +
917 917  
918 918  to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
802 +)))
919 919  
804 +(((
805 +
806 +)))
920 920  
808 +(((
921 921  The **AU915** band is similar. Below are the AU915 Uplink Channels.
810 +)))
922 922  
923 923  [[image:image-20220606154825-4.png]]
924 924  
925 925  
815 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
926 926  
817 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
818 +
819 +
927 927  = 5. Trouble Shooting =
928 928  
929 -== 5.1 ​Why I cant join TTN in US915 / AU915 bands? ==
822 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
930 930  
931 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
824 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
932 932  
933 933  
934 -== 5.2 AT Command input doesnt work ==
827 +== 5.2 AT Command input doesn't work ==
935 935  
936 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
829 +(((
830 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
831 +)))
937 937  
938 938  
939 939  == 5.3 Device rejoin in at the second uplink packet ==
... ... @@ -945,7 +945,9 @@
945 945  
946 946  (% style="color:#4f81bd" %)**Cause for this issue:**
947 947  
843 +(((
948 948  The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
845 +)))
949 949  
950 950  
951 951  (% style="color:#4f81bd" %)**Solution: **
... ... @@ -952,7 +952,7 @@
952 952  
953 953  All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
954 954  
955 -[[image:1654500929571-736.png]]
852 +[[image:1654500929571-736.png||height="458" width="832"]]
956 956  
957 957  
958 958  = 6. ​Order Info =
... ... @@ -977,10 +977,17 @@
977 977  * (% style="color:red" %)**4**(%%): 4000mAh battery
978 978  * (% style="color:red" %)**8**(%%): 8500mAh battery
979 979  
877 +(% class="wikigeneratedid" %)
878 +(((
879 +
880 +)))
881 +
980 980  = 7. Packing Info =
981 981  
982 982  (((
983 -**Package Includes**:
885 +
886 +
887 +(% style="color:#037691" %)**Package Includes**:
984 984  )))
985 985  
986 986  * (((
... ... @@ -989,10 +989,8 @@
989 989  
990 990  (((
991 991  
992 -)))
993 993  
994 -(((
995 -**Dimension and weight**:
897 +(% style="color:#037691" %)**Dimension and weight**:
996 996  )))
997 997  
998 998  * (((
... ... @@ -1006,6 +1006,8 @@
1006 1006  )))
1007 1007  * (((
1008 1008  Weight / pcs : g
911 +
912 +
1009 1009  )))
1010 1010  
1011 1011  = 8. Support =
... ... @@ -1012,5 +1012,3 @@
1012 1012  
1013 1013  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1014 1014  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1015 -
1016 -
1654504596150-405.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +66.7 KB
Content
1654504683289-357.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +94.0 KB
Content
1654504778294-788.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +119.4 KB
Content
1654504881641-514.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +119.4 KB
Content
1654504907647-967.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +54.7 KB
Content
1654505570700-128.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +59.2 KB
Content
1654505857935-743.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +86.0 KB
Content
1654505874829-548.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +129.9 KB
Content
1654505905236-553.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +92.0 KB
Content
1654505925508-181.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +69.5 KB
Content
1654506634463-199.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1654506665940-119.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +423.3 KB
Content
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
image-20220606163732-6.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +16.5 KB
Content
image-20220606163915-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +94.8 KB
Content
image-20220606165544-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +11.6 KB
Content
image-20220606171726-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +171.0 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content