Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 37 added, 0 removed)
- 1654504596150-405.png
- 1654504683289-357.png
- 1654504778294-788.png
- 1654504881641-514.png
- 1654504907647-967.png
- 1654505570700-128.png
- 1654505857935-743.png
- 1654505874829-548.png
- 1654505905236-553.png
- 1654505925508-181.png
- 1654506634463-199.png
- 1654506665940-119.png
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- image-20220606163732-6.jpeg
- image-20220606163915-7.png
- image-20220606165544-8.png
- image-20220606171726-9.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220606151504-2.jpeg||height=" 848" width="848"]]2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]] 3 3 4 4 5 5 ... ... @@ -8,740 +8,630 @@ 8 8 9 9 10 10 11 -= 1. Introduction = 12 12 13 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 14 14 15 -((( 16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 17 -))) 18 18 19 -((( 20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 21 -))) 14 +**Table of Contents:** 22 22 23 -((( 24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 25 -))) 26 26 27 -((( 28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 29 -))) 30 30 18 + 19 + 20 + 21 += 1. Introduction = 22 + 23 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 24 + 31 31 ((( 32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 33 -))) 26 + 34 34 28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 35 35 30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 31 + 32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 33 + 34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 35 + 36 + 37 +))) 38 + 36 36 [[image:1654503236291-817.png]] 37 37 38 38 39 -[[image:16545 03265560-120.png]]42 +[[image:1657245163077-232.png]] 40 40 41 41 42 42 43 43 == 1.2 Features == 44 44 45 - * LoRaWAN 1.0.3 Class A46 -* Ultra lowpower consumption48 + 49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 47 47 * Monitor Soil Moisture 48 48 * Monitor Soil Temperature 49 49 * Monitor Soil Conductivity 50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 51 51 * AT Commands to change parameters 52 52 * Uplink on periodically 53 53 * Downlink to change configure 54 54 * IP66 Waterproof Enclosure 55 -* 4000mAh or 8500mAh Battery for long term use 57 +* Ultra-Low Power consumption 58 +* AT Commands to change parameters 59 +* Micro SIM card slot for NB-IoT SIM 60 +* 8500mAh Battery for long term use 56 56 57 -== 1.3 Specification == 62 +== 1.3 Specification == 58 58 59 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 60 60 61 - [[image:image-20220606162220-5.png]]65 +(% style="color:#037691" %)**Common DC Characteristics:** 62 62 67 +* Supply Voltage: 2.1v ~~ 3.6v 68 +* Operating Temperature: -40 ~~ 85°C 63 63 70 +(% style="color:#037691" %)**NB-IoT Spec:** 64 64 65 -== 1.4 Applications == 72 +* - B1 @H-FDD: 2100MHz 73 +* - B3 @H-FDD: 1800MHz 74 +* - B8 @H-FDD: 900MHz 75 +* - B5 @H-FDD: 850MHz 76 +* - B20 @H-FDD: 800MHz 77 +* - B28 @H-FDD: 700MHz 66 66 67 - *SmartAgriculture79 +(% style="color:#037691" %)**Probe Specification:** 68 68 69 - == 1.5 FirmwareChangelog==81 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 70 70 83 +[[image:image-20220708101224-1.png]] 71 71 72 -**LSE01 v1.0 :** Release 73 73 74 74 87 +== 1.4 Applications == 75 75 76 - =2. Configure LSE01toconnectto LoRaWAN network =89 +* Smart Agriculture 77 77 78 -== 2.1 How it works == 91 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 92 + 79 79 80 -((( 81 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 82 -))) 94 +== 1.5 Pin Definitions == 83 83 84 -((( 85 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.UsingtheATCommands"]]. 86 -))) 87 87 97 +[[image:1657246476176-652.png]] 88 88 89 89 90 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 91 91 92 - Followingisanexamplefor how to join the [[TTNv3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Belowis the network structure;we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]]as a LoRaWANgateway in thisexample.101 += 2. Use NSE01 to communicate with IoT Server = 93 93 103 +== 2.1 How it works == 94 94 95 -[[image:1654503992078-669.png]] 96 96 106 +((( 107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 108 +))) 97 97 98 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 99 99 100 - 101 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 102 - 103 -Each LSE01 is shipped with a sticker with the default device EUI as below: 104 - 105 - 106 - 107 - 108 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 109 - 110 - 111 -**Add APP EUI in the application** 112 - 113 - 114 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]] 115 - 116 - 117 - 118 -**Add APP KEY and DEV EUI** 119 - 120 - 121 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image005.png]] 122 - 123 -|((( 124 - 111 +((( 112 +The diagram below shows the working flow in default firmware of NSE01: 125 125 ))) 126 126 127 - **Step 2**:Power on LSE01115 +[[image:image-20220708101605-2.png]] 128 128 129 - 130 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 131 - 132 - 133 - 134 -|((( 117 +((( 135 135 136 136 ))) 137 137 138 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image006.png]] 139 139 140 140 123 +== 2.2 Configure the NSE01 == 141 141 142 142 126 +=== 2.2.1 Test Requirement === 143 143 144 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 145 145 146 - [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]129 +To use NSE01 in your city, make sure meet below requirements: 147 147 131 +* Your local operator has already distributed a NB-IoT Network there. 132 +* The local NB-IoT network used the band that NSE01 supports. 133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 148 148 135 +((( 136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 137 +))) 149 149 150 150 151 -1. 152 -11. Uplink Payload 153 -111. MOD=0(Default Mode) 140 +[[image:1657249419225-449.png]] 154 154 155 -LSE01 will uplink payload via LoRaWAN with below payload format: 156 156 157 157 158 -Uplink payload includes in total 11 bytes. 159 - 144 +=== 2.2.2 Insert SIM card === 160 160 161 -|((( 162 -**Size** 146 +Insert the NB-IoT Card get from your provider. 163 163 164 -**(bytes)** 165 -)))|**2**|**2**|**2**|**2**|**2**|**1** 166 -|**Value**|[[BAT>>path:#bat]]|((( 167 -Temperature 148 +User need to take out the NB-IoT module and insert the SIM card like below: 168 168 169 -(Reserve, Ignore now) 170 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|((( 171 -MOD & Digital Interrupt 172 172 173 -(Optional) 174 -))) 151 +[[image:1657249468462-536.png]] 175 175 176 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]] 177 177 178 178 179 -1. 180 -11. 181 -111. MOD=1(Original value) 155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 182 182 183 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 184 - 185 -|((( 186 -**Size** 187 - 188 -**(bytes)** 189 -)))|**2**|**2**|**2**|**2**|**2**|**1** 190 -|**Value**|[[BAT>>path:#bat]]|((( 191 -Temperature 192 - 193 -(Reserve, Ignore now) 194 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|((( 195 -MOD & Digital Interrupt 196 - 197 -(Optional) 157 +((( 158 +((( 159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 198 198 ))) 161 +))) 199 199 200 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image008.png]] 201 201 202 -1. 203 -11. 204 -111. Battery Info 164 +**Connection:** 205 205 206 - Checkthettery voltage forLSE01.166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 207 207 208 - Ex1:0x0B45=2885mV168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 209 209 210 - Ex2:0x0B49=2889mV170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 211 211 212 212 173 +In the PC, use below serial tool settings: 213 213 214 -1. 215 -11. 216 -111. Soil Moisture 175 +* Baud: (% style="color:green" %)**9600** 176 +* Data bits:** (% style="color:green" %)8(%%)** 177 +* Stop bits: (% style="color:green" %)**1** 178 +* Parity: (% style="color:green" %)**None** 179 +* Flow Control: (% style="color:green" %)**None** 217 217 218 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 181 +((( 182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 183 +))) 219 219 220 - For example,if the data youget fromthe register is0x050xDC, the moisture content in the soil is185 +[[image:image-20220708110657-3.png]] 221 221 222 - **05DC(H)=1500(D)/100=15%.**187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 223 223 224 224 225 -1. 226 -11. 227 -111. Soil Temperature 228 228 229 - Get the temperature in the soil.The value range of the register is -4000-+800(Decimal), divide thisvalueby 100 toget the temperature in the soil.Forexample,ifthedatayou get from the register is 0x09 0xEC, the temperature content in the soil is191 +=== 2.2.4 Use CoAP protocol to uplink data === 230 230 231 - **Example**:193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 232 232 233 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 234 234 235 - IfpayloadisFF7EH:((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C196 +**Use below commands:** 236 236 198 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 237 237 238 -1. 239 -11. 240 -111. Soil Conductivity (EC) 202 +For parameter description, please refer to AT command set 241 241 242 - Obtain soluble salt concentration in soil or soluble ion concentration in liquid fertilizer or plantingmedium,. The value rangeof the register is 0 -20000(Decimal)( Canbegreater than 20000).204 +[[image:1657249793983-486.png]] 243 243 244 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 245 245 207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 246 246 247 - Generally, the EC value ofirrigation water is less than800uS / cm.209 +[[image:1657249831934-534.png]] 248 248 249 -1. 250 -11. 251 -111. MOD 252 252 253 -Firmware version at least v2.1 supports changing mode. 254 254 255 - Forexample,bytes[10]=90213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 256 256 257 - mod=(bytes[10]>>7)&0x01=1.215 +This feature is supported since firmware version v1.0.1 258 258 259 259 260 -Downlink Command: 218 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 220 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 261 261 262 - If payload = 0x0A00, workmode=0222 +[[image:1657249864775-321.png]] 263 263 264 -If** **payload =** **0x0A01, workmode=1 265 265 225 +[[image:1657249930215-289.png]] 266 266 267 -1. 268 -11. 269 -111. Decode payload in The Things Network 270 270 271 -While using TTN network, you can add the payload format to decode the payload. 272 272 229 +=== 2.2.6 Use MQTT protocol to uplink data === 273 273 274 - [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.png]]231 +This feature is supported since firmware version v110 275 275 276 -The payload decoder function for TTN is here: 277 277 278 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 234 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 237 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 238 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 279 279 242 +[[image:1657249978444-674.png]] 280 280 281 -1. 282 -11. Uplink Interval 283 283 284 - The LSE01 by default uplink the sensor dataevery20minutes.User canchange this interval by AT Command or LoRaWAN Downlink Command. See this link:245 +[[image:1657249990869-686.png]] 285 285 286 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]] 287 287 288 -1. 289 -11. Downlink Payload 248 +((( 249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 250 +))) 290 290 291 -By default, LSE50 prints the downlink payload to console port. 292 292 293 -|**Downlink Control Type**|**FPort**|**Type Code**|**Downlink payload size(bytes)** 294 -|TDC (Transmit Time Interval)|Any|01|4 295 -|RESET|Any|04|2 296 -|AT+CFM|Any|05|4 297 -|INTMOD|Any|06|4 298 -|MOD|Any|0A|2 299 299 300 - **Examples**254 +=== 2.2.7 Use TCP protocol to uplink data === 301 301 256 +This feature is supported since firmware version v110 302 302 303 -**Set TDC** 304 304 305 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 259 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 306 306 307 - Payload:010 001E TDC=30S262 +[[image:1657250217799-140.png]] 308 308 309 -Payload: 01 00 00 3C TDC=60S 310 310 265 +[[image:1657250255956-604.png]] 311 311 312 -**Reset** 313 313 314 -If payload = 0x04FF, it will reset the LSE01 315 315 269 +=== 2.2.8 Change Update Interval === 316 316 317 -** CFM**271 +User can use below command to change the (% style="color:green" %)**uplink interval**. 318 318 319 - DownlinkPayload:05000001, SetAT+CFM=1 or05000000,setAT+CFM=0273 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 320 320 321 -1. 322 -11. Show Data in DataCake IoT Server 275 +((( 276 +(% style="color:red" %)**NOTE:** 277 +))) 323 323 324 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 279 +((( 280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 281 +))) 325 325 326 326 327 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 328 328 329 - **Step2**:To configure the Applicationto forward data to DATACAKEyou will need todintegration. To add the DATACAKE integration, perform the following steps:285 +== 2.3 Uplink Payload == 330 330 287 +In this mode, uplink payload includes in total 18 bytes 331 331 332 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]] 289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 290 +|=(% style="width: 50px;" %)((( 291 +**Size(bytes)** 292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]] 333 333 295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 334 334 335 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]] 336 336 298 +[[image:image-20220708111918-4.png]] 337 337 338 338 301 +The payload is ASCII string, representative same HEX: 339 339 303 +0x72403155615900640c7817075e0a8c02f900 where: 340 340 341 -Step 3: Create an account or log in Datacake. 305 +* Device ID: 0x 724031556159 = 724031556159 306 +* Version: 0x0064=100=1.0.0 342 342 343 -Step 4: Search the LSE01 and add DevEUI. 308 +* BAT: 0x0c78 = 3192 mV = 3.192V 309 +* Singal: 0x17 = 23 310 +* Soil Moisture: 0x075e= 1886 = 18.86 % 311 +* Soil Temperature:0x0a8c =2700=27 °C 312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 313 +* Interrupt: 0x00 = 0 344 344 315 +== 2.4 Payload Explanation and Sensor Interface == 345 345 346 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]] 347 347 318 +=== 2.4.1 Device ID === 348 348 320 +By default, the Device ID equal to the last 6 bytes of IMEI. 349 349 350 - After added,the sensordata arrive TTN,itwill alsoarriveand show in Mydevices.322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 351 351 324 +**Example:** 352 352 353 - [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]326 +AT+DEUI=A84041F15612 354 354 328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 355 355 356 356 357 -1. 358 -11. Frequency Plans 359 359 360 - TheLSE01 uses OTAA mode and below frequency plans by default.If userwant to useit with differentfrequency plan, please refer the AT commandsets.332 +=== 2.4.2 Version Info === 361 361 362 -1. 363 -11. 364 -111. EU863-870 (EU868) 334 +Specify the software version: 0x64=100, means firmware version 1.00. 365 365 366 - Uplink:336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 367 367 368 -868.1 - SF7BW125 to SF12BW125 369 369 370 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 371 371 372 - 868.5- SF7BW125toSF12BW125340 +=== 2.4.3 Battery Info === 373 373 374 -867.1 - SF7BW125 to SF12BW125 342 +((( 343 +Check the battery voltage for LSE01. 344 +))) 375 375 376 -867.3 - SF7BW125 to SF12BW125 346 +((( 347 +Ex1: 0x0B45 = 2885mV 348 +))) 377 377 378 -867.5 - SF7BW125 to SF12BW125 350 +((( 351 +Ex2: 0x0B49 = 2889mV 352 +))) 379 379 380 -867.7 - SF7BW125 to SF12BW125 381 381 382 -867.9 - SF7BW125 to SF12BW125 383 383 384 - 868.8-FSK356 +=== 2.4.4 Signal Strength === 385 385 358 +NB-IoT Network signal Strength. 386 386 387 - Downlink:360 +**Ex1: 0x1d = 29** 388 388 389 - Uplinkchannels1-9(RX1)362 +(% style="color:blue" %)**0**(%%) -113dBm or less 390 390 391 - 869.525 - SF9BW125(RX2downlinkonly)364 +(% style="color:blue" %)**1**(%%) -111dBm 392 392 366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 393 393 394 -1. 395 -11. 396 -111. US902-928(US915) 368 +(% style="color:blue" %)**31** (%%) -51dBm or greater 397 397 398 - UsedinUSA,CanadaandSouthAmerica. Default useCHE=2370 +(% style="color:blue" %)**99** (%%) Not known or not detectable 399 399 400 -Uplink: 401 401 402 -903.9 - SF7BW125 to SF10BW125 403 403 404 - 904.1-SF7BW125toSF10BW125374 +=== 2.4.5 Soil Moisture === 405 405 406 -904.3 - SF7BW125 to SF10BW125 376 +((( 377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 378 +))) 407 407 408 -904.5 - SF7BW125 to SF10BW125 380 +((( 381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 382 +))) 409 409 410 -904.7 - SF7BW125 to SF10BW125 384 +((( 385 + 386 +))) 411 411 412 -904.9 - SF7BW125 to SF10BW125 388 +((( 389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 390 +))) 413 413 414 -905.1 - SF7BW125 to SF10BW125 415 415 416 -905.3 - SF7BW125 to SF10BW125 417 417 394 +=== 2.4.6 Soil Temperature === 418 418 419 -Downlink: 396 +((( 397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 398 +))) 420 420 421 -923.3 - SF7BW500 to SF12BW500 400 +((( 401 +**Example**: 402 +))) 422 422 423 -923.9 - SF7BW500 to SF12BW500 404 +((( 405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 406 +))) 424 424 425 -924.5 - SF7BW500 to SF12BW500 408 +((( 409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 410 +))) 426 426 427 -925.1 - SF7BW500 to SF12BW500 428 428 429 -925.7 - SF7BW500 to SF12BW500 430 430 431 - 926.3-SF7BW500toSF12BW500414 +=== 2.4.7 Soil Conductivity (EC) === 432 432 433 -926.9 - SF7BW500 to SF12BW500 416 +((( 417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 418 +))) 434 434 435 -927.5 - SF7BW500 to SF12BW500 420 +((( 421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 422 +))) 436 436 437 -923.3 - SF12BW500(RX2 downlink only) 424 +((( 425 +Generally, the EC value of irrigation water is less than 800uS / cm. 426 +))) 438 438 428 +((( 429 + 430 +))) 439 439 440 - 1.441 - 11.442 - 111. CN470-510 (CN470)432 +((( 433 + 434 +))) 443 443 444 - UsedinChina,Defaultuse CHE=1436 +=== 2.4.8 Digital Interrupt === 445 445 446 - Uplink:438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 447 447 448 - 486.3- SF7BW125 toSF12BW125440 +The command is: 449 449 450 - 486.5-SF7BW125to SF12BW125442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 451 451 452 -486.7 - SF7BW125 to SF12BW125 453 453 454 - 486.9-SF7BW125toSF12BW125445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up. 455 455 456 -487.1 - SF7BW125 to SF12BW125 457 457 458 - 487.3 - SF7BW125 to SF12BW125448 +Example: 459 459 460 - 487.5-SF7BW125to SF12BW125450 +0x(00): Normal uplink packet. 461 461 462 - 487.7 - SF7BW125toSF12BW125452 +0x(01): Interrupt Uplink Packet. 463 463 464 464 465 -Downlink: 466 466 467 - 506.7- SF7BW125 toSF12BW125456 +=== 2.4.9 +5V Output === 468 468 469 - 506.9-SF7BW125 toSF12BW125458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 470 470 471 -507.1 - SF7BW125 to SF12BW125 472 472 473 -5 07.3-SF7BW125toSF12BW125461 +The 5V output time can be controlled by AT Command. 474 474 475 - 507.5- SF7BW125toSF12BW125463 +(% style="color:blue" %)**AT+5VT=1000** 476 476 477 -50 7.7-SF7BW125toSF12BW125465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 478 478 479 -507.9 - SF7BW125 to SF12BW125 480 480 481 -508.1 - SF7BW125 to SF12BW125 482 482 483 - 505.3- SF12BW125(RX2 downlinkonly)469 +== 2.5 Downlink Payload == 484 484 471 +By default, NSE01 prints the downlink payload to console port. 485 485 486 -1. 487 -11. 488 -111. AU915-928(AU915) 473 +[[image:image-20220708133731-5.png]] 489 489 490 -Default use CHE=2 491 491 492 -Uplink: 493 493 494 -916.8 - SF7BW125 to SF12BW125 477 +((( 478 +(% style="color:blue" %)**Examples:** 479 +))) 495 495 496 -917.0 - SF7BW125 to SF12BW125 481 +((( 482 + 483 +))) 497 497 498 -917.2 - SF7BW125 to SF12BW125 485 +* ((( 486 +(% style="color:blue" %)**Set TDC** 487 +))) 499 499 500 -917.4 - SF7BW125 to SF12BW125 489 +((( 490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 491 +))) 501 501 502 -917.6 - SF7BW125 to SF12BW125 493 +((( 494 +Payload: 01 00 00 1E TDC=30S 495 +))) 503 503 504 -917.8 - SF7BW125 to SF12BW125 497 +((( 498 +Payload: 01 00 00 3C TDC=60S 499 +))) 505 505 506 -918.0 - SF7BW125 to SF12BW125 501 +((( 502 + 503 +))) 507 507 508 -918.2 - SF7BW125 to SF12BW125 505 +* ((( 506 +(% style="color:blue" %)**Reset** 507 +))) 509 509 509 +((( 510 +If payload = 0x04FF, it will reset the NSE01 511 +))) 510 510 511 -Downlink: 512 512 513 - 923.3-SF7BW500toSF12BW500514 +* (% style="color:blue" %)**INTMOD** 514 514 515 - 923.9-SF7BW500 toSF12BW500516 +Downlink Payload: 06000003, Set AT+INTMOD=3 516 516 517 -924.5 - SF7BW500 to SF12BW500 518 518 519 -925.1 - SF7BW500 to SF12BW500 520 520 521 - 925.7-SF7BW500toSF12BW500520 +== 2.6 LED Indicator == 522 522 523 -926.3 - SF7BW500 to SF12BW500 522 +((( 523 +The NSE01 has an internal LED which is to show the status of different state. 524 524 525 -926.9 - SF7BW500 to SF12BW500 526 526 527 -927.5 - SF7BW500 to SF12BW500 526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 527 +* Then the LED will be on for 1 second means device is boot normally. 528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 529 +* For each uplink probe, LED will be on for 500ms. 530 +))) 528 528 529 -923.3 - SF12BW500(RX2 downlink only) 530 530 531 -1. 532 -11. 533 -111. AS920-923 & AS923-925 (AS923) 534 534 535 -**Default Uplink channel:** 536 536 537 - 923.2 - SF7BW125to SF10BW125535 +== 2.7 Installation in Soil == 538 538 539 - 923.4- SF7BW125toSF10BW125537 +__**Measurement the soil surface**__ 540 540 539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 541 541 542 - **Additional UplinkChannel**:541 +[[image:1657259653666-883.png]] 543 543 544 -(OTAA mode, channel added by JoinAccept message) 545 545 546 -**AS920~~AS923 for Japan, Malaysia, Singapore**: 544 +((( 545 + 547 547 548 -922.2 - SF7BW125 to SF10BW125 547 +((( 548 +Dig a hole with diameter > 20CM. 549 +))) 549 549 550 -922.4 - SF7BW125 to SF10BW125 551 +((( 552 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 553 +))) 554 +))) 551 551 552 - 922.6 - SF7BW125to SF10BW125556 +[[image:1654506665940-119.png]] 553 553 554 -922.8 - SF7BW125 to SF10BW125 558 +((( 559 + 560 +))) 555 555 556 -923.0 - SF7BW125 to SF10BW125 557 557 558 - 922.0- SF7BW125toSF10BW125563 +== 2.8 Firmware Change Log == 559 559 560 560 561 - **AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia,Laos,Taiwan,Thailand, Vietnam**:566 +Download URL & Firmware Change log 562 562 563 - 923.6-F7BW125toSF10BW125568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 564 564 565 -923.8 - SF7BW125 to SF10BW125 566 566 567 - 924.0- SF7BW125toSF10BW125571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]] 568 568 569 -924.2 - SF7BW125 to SF10BW125 570 570 571 -924.4 - SF7BW125 to SF10BW125 572 572 573 - 924.6- SF7BW125toSF10BW125575 +== 2.9 Battery Analysis == 574 574 577 +=== 2.9.1 Battery Type === 575 575 576 576 577 - **Downlink:**580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 578 578 579 -Uplink channels 1-8 (RX1) 580 580 581 - 923.2-SF10BW125(RX2)583 +The battery is designed to last for several years depends on the actually use environment and update interval. 582 582 583 583 584 -1. 585 -11. 586 -111. KR920-923 (KR920) 586 +The battery related documents as below: 587 587 588 -Default channel: 588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 589 589 590 -922.1 - SF7BW125 to SF12BW125 592 +((( 593 +[[image:image-20220708140453-6.png]] 594 +))) 591 591 592 -922.3 - SF7BW125 to SF12BW125 593 593 594 -922.5 - SF7BW125 to SF12BW125 595 595 598 +2.9.2 596 596 597 - Uplink:(OTAAmode,channeladdedbyJoinAcceptmessage)600 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 598 598 599 -922.1 - SF7BW125 to SF12BW125 600 600 601 - 922.3- SF7BW125toSF12BW125603 +Instruction to use as below: 602 602 603 -922.5 - SF7BW125 to SF12BW125 604 604 605 - 922.7 -SF7BW125toSF12BW125606 +Step 1: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: 606 606 607 - 922.9 - SF7BW125toSF12BW125608 +[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 608 608 609 -923.1 - SF7BW125 to SF12BW125 610 610 611 - 923.3 -SF7BW125toSF12BW125611 +Step 2: Open it and choose 612 612 613 +* Product Model 614 +* Uplink Interval 615 +* Working Mode 613 613 614 - Downlink:617 +And the Life expectation in difference case will be shown on the right. 615 615 616 -Uplink channels 1-7(RX1) 617 617 618 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 619 619 621 +=== 2.9.3 Battery Note === 620 620 621 -1. 622 -11. 623 -111. IN865-867 (IN865) 624 - 625 -Uplink: 626 - 627 -865.0625 - SF7BW125 to SF12BW125 628 - 629 -865.4025 - SF7BW125 to SF12BW125 630 - 631 -865.9850 - SF7BW125 to SF12BW125 632 - 633 - 634 -Downlink: 635 - 636 -Uplink channels 1-3 (RX1) 637 - 638 -866.550 - SF10BW125 (RX2) 639 - 640 - 641 -1. 642 -11. LED Indicator 643 - 644 -The LSE01 has an internal LED which is to show the status of different state. 645 - 646 - 647 -* Blink once when device power on. 648 -* Solid ON for 5 seconds once device successful Join the network. 649 -* Blink once when device transmit a packet. 650 - 651 -1. 652 -11. Installation in Soil 653 - 654 -**Measurement the soil surface** 655 - 656 - 657 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] 658 - 659 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 660 - 661 - 662 - 663 - 664 - 665 - 666 - 667 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]] 668 - 669 - 670 - 671 -Dig a hole with diameter > 20CM. 672 - 673 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 674 - 675 - 676 - 677 - 678 -1. 679 -11. Firmware Change Log 680 - 681 -**Firmware download link:** 682 - 683 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 684 - 685 - 686 -**Firmware Upgrade Method:** 687 - 688 -[[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]] 689 - 690 - 691 -**V1.0.** 692 - 693 -Release 694 - 695 - 696 - 697 -1. 698 -11. Battery Analysis 699 -111. Battery Type 700 - 701 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 702 - 703 - 704 -The battery is designed to last for more than 5 years for the LSN50. 705 - 706 - 707 -The battery related documents as below: 708 - 709 -* [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 710 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]] 711 -* [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 712 - 713 -|((( 714 -JST-XH-2P connector 623 +((( 624 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 715 715 ))) 716 716 717 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]] 718 718 719 719 629 +=== 2.9.4 Replace the battery === 720 720 721 -1. 722 -11. 723 -111. Battery Note 631 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 724 724 725 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 726 726 727 727 728 -1. 729 -11. 730 -111. Replace the battery 731 - 732 -If Battery is lower than 2.7v, user should replace the battery of LSE01. 733 - 734 - 735 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 736 - 737 - 738 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 739 - 740 - 741 - 742 - 743 - 744 - 745 745 = 3. Using the AT Commands = 746 746 747 747 == 3.1 Access AT Commands == ... ... @@ -749,13 +749,13 @@ 749 749 750 750 LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 751 751 752 -[[image:1654501986557-872.png]] 642 +[[image:1654501986557-872.png||height="391" width="800"]] 753 753 754 754 755 755 Or if you have below board, use below connection: 756 756 757 757 758 -[[image:1654502005655-729.png]] 648 +[[image:1654502005655-729.png||height="503" width="801"]] 759 759 760 760 761 761 ... ... @@ -762,10 +762,10 @@ 762 762 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 763 763 764 764 765 - [[image:1654502050864-459.png]] 655 + [[image:1654502050864-459.png||height="564" width="806"]] 766 766 767 767 768 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>> url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]658 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 769 769 770 770 771 771 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> ... ... @@ -877,20 +877,38 @@ 877 877 878 878 == 4.1 How to change the LoRa Frequency Bands/Region? == 879 879 880 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]]. 770 +((( 771 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 881 881 When downloading the images, choose the required image file for download. 773 +))) 882 882 775 +((( 776 + 777 +))) 883 883 779 +((( 884 884 How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 781 +))) 885 885 783 +((( 784 + 785 +))) 886 886 787 +((( 887 887 You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 789 +))) 888 888 791 +((( 792 + 793 +))) 889 889 795 +((( 890 890 For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 797 +))) 891 891 892 892 [[image:image-20220606154726-3.png]] 893 893 801 + 894 894 When you use the TTN network, the US915 frequency bands use are: 895 895 896 896 * 903.9 - SF7BW125 to SF10BW125 ... ... @@ -903,37 +903,47 @@ 903 903 * 905.3 - SF7BW125 to SF10BW125 904 904 * 904.6 - SF8BW500 905 905 814 +((( 906 906 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 907 907 908 -(% class="box infomessage" %) 909 -((( 910 -**AT+CHE=2** 817 +* (% style="color:#037691" %)**AT+CHE=2** 818 +* (% style="color:#037691" %)**ATZ** 911 911 ))) 912 912 913 -(% class="box infomessage" %) 914 914 ((( 915 -**ATZ** 916 -))) 822 + 917 917 918 918 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 825 +))) 919 919 827 +((( 828 + 829 +))) 920 920 831 +((( 921 921 The **AU915** band is similar. Below are the AU915 Uplink Channels. 833 +))) 922 922 923 923 [[image:image-20220606154825-4.png]] 924 924 925 925 838 +== 4.2 Can I calibrate LSE01 to different soil types? == 926 926 840 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 841 + 842 + 927 927 = 5. Trouble Shooting = 928 928 929 -== 5.1 Why I can ’t join TTN in US915 / AU915 bands? ==845 +== 5.1 Why I can't join TTN in US915 / AU915 bands? == 930 930 931 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main. LoRaWANCommunication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.847 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details. 932 932 933 933 934 -== 5.2 AT Command input doesn ’t work ==850 +== 5.2 AT Command input doesn't work == 935 935 936 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 852 +((( 853 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 854 +))) 937 937 938 938 939 939 == 5.3 Device rejoin in at the second uplink packet == ... ... @@ -945,7 +945,9 @@ 945 945 946 946 (% style="color:#4f81bd" %)**Cause for this issue:** 947 947 866 +((( 948 948 The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 868 +))) 949 949 950 950 951 951 (% style="color:#4f81bd" %)**Solution: ** ... ... @@ -952,7 +952,7 @@ 952 952 953 953 All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 954 954 955 -[[image:1654500929571-736.png]] 875 +[[image:1654500929571-736.png||height="458" width="832"]] 956 956 957 957 958 958 = 6. Order Info = ... ... @@ -977,10 +977,17 @@ 977 977 * (% style="color:red" %)**4**(%%): 4000mAh battery 978 978 * (% style="color:red" %)**8**(%%): 8500mAh battery 979 979 900 +(% class="wikigeneratedid" %) 901 +((( 902 + 903 +))) 904 + 980 980 = 7. Packing Info = 981 981 982 982 ((( 983 -**Package Includes**: 908 + 909 + 910 +(% style="color:#037691" %)**Package Includes**: 984 984 ))) 985 985 986 986 * ((( ... ... @@ -989,10 +989,8 @@ 989 989 990 990 ((( 991 991 992 -))) 993 993 994 -((( 995 -**Dimension and weight**: 920 +(% style="color:#037691" %)**Dimension and weight**: 996 996 ))) 997 997 998 998 * ((( ... ... @@ -1006,6 +1006,8 @@ 1006 1006 ))) 1007 1007 * ((( 1008 1008 Weight / pcs : g 934 + 935 + 1009 1009 ))) 1010 1010 1011 1011 = 8. Support = ... ... @@ -1012,5 +1012,3 @@ 1012 1012 1013 1013 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1014 1014 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1015 - 1016 -
- 1654504596150-405.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +66.7 KB - Content
- 1654504683289-357.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +94.0 KB - Content
- 1654504778294-788.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +119.4 KB - Content
- 1654504881641-514.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +119.4 KB - Content
- 1654504907647-967.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +54.7 KB - Content
- 1654505570700-128.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +59.2 KB - Content
- 1654505857935-743.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +86.0 KB - Content
- 1654505874829-548.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +129.9 KB - Content
- 1654505905236-553.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +92.0 KB - Content
- 1654505925508-181.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +69.5 KB - Content
- 1654506634463-199.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1654506665940-119.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +423.3 KB - Content
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- image-20220606163732-6.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +16.5 KB - Content
- image-20220606163915-7.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +94.8 KB - Content
- image-20220606165544-8.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +11.6 KB - Content
- image-20220606171726-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +171.0 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content