Last modified by Mengting Qiu on 2024/04/02 16:44

From version 15.4
edited by Xiaoling
on 2022/06/06 16:29
Change comment: There is no comment for this version
To version 62.1
edited by Xiaoling
on 2022/07/08 14:13
Change comment: Uploaded new attachment "image-20220708141352-7.jpeg", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="848" width="848"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
... ... @@ -8,742 +8,630 @@
8 8  
9 9  
10 10  
11 -= 1. Introduction =
12 12  
13 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 14  
15 -(((
16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
17 -)))
18 18  
19 -(((
20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
21 -)))
14 +**Table of Contents:**
22 22  
23 -(((
24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
25 -)))
26 26  
27 -(((
28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
29 -)))
30 30  
18 +
19 +
20 +
21 += 1.  Introduction =
22 +
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24 +
31 31  (((
32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
33 -)))
26 +
34 34  
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
35 35  
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 +
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 +
36 +
37 +)))
38 +
36 36  [[image:1654503236291-817.png]]
37 37  
38 38  
39 -[[image:1654503265560-120.png]]
42 +[[image:1657245163077-232.png]]
40 40  
41 41  
42 42  
43 43  == 1.2 ​Features ==
44 44  
45 -* LoRaWAN 1.0.3 Class A
46 -* Ultra low power consumption
48 +
49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
47 47  * Monitor Soil Moisture
48 48  * Monitor Soil Temperature
49 49  * Monitor Soil Conductivity
50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
51 51  * AT Commands to change parameters
52 52  * Uplink on periodically
53 53  * Downlink to change configure
54 54  * IP66 Waterproof Enclosure
55 -* 4000mAh or 8500mAh Battery for long term use
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
59 +* Micro SIM card slot for NB-IoT SIM
60 +* 8500mAh Battery for long term use
56 56  
62 +== 1.3  Specification ==
57 57  
58 -== 1.3 Specification ==
59 59  
60 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
65 +(% style="color:#037691" %)**Common DC Characteristics:**
61 61  
62 -[[image:image-20220606162220-5.png]]
67 +* Supply Voltage: 2.1v ~~ 3.6v
68 +* Operating Temperature: -40 ~~ 85°C
63 63  
70 +(% style="color:#037691" %)**NB-IoT Spec:**
64 64  
72 +* - B1 @H-FDD: 2100MHz
73 +* - B3 @H-FDD: 1800MHz
74 +* - B8 @H-FDD: 900MHz
75 +* - B5 @H-FDD: 850MHz
76 +* - B20 @H-FDD: 800MHz
77 +* - B28 @H-FDD: 700MHz
65 65  
66 -== 1.4 Applications ==
79 +(% style="color:#037691" %)**Probe Specification:**
67 67  
68 -* Smart Agriculture
81 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
69 69  
83 +[[image:image-20220708101224-1.png]]
70 70  
71 -== ​1.5 Firmware Change log ==
72 72  
73 73  
74 -**LSE01 v1.0 :**  Release
87 +== 1.4  Applications ==
75 75  
89 +* Smart Agriculture
76 76  
91 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
92 +​
77 77  
78 -= 2. Configure LSE01 to connect to LoRaWAN network =
94 +== 1. Pin Definitions ==
79 79  
80 -== 2.1 How it works ==
81 81  
82 -(((
83 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
84 -)))
97 +[[image:1657246476176-652.png]]
85 85  
86 -(((
87 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.​UsingtheATCommands"]].
88 -)))
89 89  
90 90  
101 += 2.  Use NSE01 to communicate with IoT Server =
91 91  
92 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
103 +== 2. How it works ==
93 93  
94 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
95 95  
106 +(((
107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
108 +)))
96 96  
97 -[[image:1654503992078-669.png]]
98 98  
99 -
100 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
101 -
102 -
103 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
104 -
105 -Each LSE01 is shipped with a sticker with the default device EUI as below:
106 -
107 -
108 -
109 -
110 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
111 -
112 -
113 -**Add APP EUI in the application**
114 -
115 -
116 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]]
117 -
118 -
119 -
120 -**Add APP KEY and DEV EUI**
121 -
122 -
123 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image005.png]]
124 -
125 -|(((
126 -
111 +(((
112 +The diagram below shows the working flow in default firmware of NSE01:
127 127  )))
128 128  
129 -**Step 2**: Power on LSE01
115 +[[image:image-20220708101605-2.png]]
130 130  
131 -
132 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
133 -
134 -
135 -
136 -|(((
117 +(((
137 137  
138 138  )))
139 139  
140 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image006.png]]
141 141  
142 142  
123 +== 2.2 ​ Configure the NSE01 ==
143 143  
144 144  
126 +=== 2.2.1 Test Requirement ===
145 145  
146 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
147 147  
148 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]
129 +To use NSE01 in your city, make sure meet below requirements:
149 149  
131 +* Your local operator has already distributed a NB-IoT Network there.
132 +* The local NB-IoT network used the band that NSE01 supports.
133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
150 150  
135 +(((
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
137 +)))
151 151  
152 152  
153 -1.
154 -11. ​Uplink Payload
155 -111. MOD=0(Default Mode)
140 +[[image:1657249419225-449.png]]
156 156  
157 -LSE01 will uplink payload via LoRaWAN with below payload format: 
158 158  
159 159  
160 -Uplink payload includes in total 11 bytes.
161 -
144 +=== 2.2.2 Insert SIM card ===
162 162  
163 -|(((
164 -**Size**
146 +Insert the NB-IoT Card get from your provider.
165 165  
166 -**(bytes)**
167 -)))|**2**|**2**|**2**|**2**|**2**|**1**
168 -|**Value**|[[BAT>>path:#bat]]|(((
169 -Temperature
148 +User need to take out the NB-IoT module and insert the SIM card like below:
170 170  
171 -(Reserve, Ignore now)
172 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|(((
173 -MOD & Digital Interrupt
174 174  
175 -(Optional)
176 -)))
151 +[[image:1657249468462-536.png]]
177 177  
178 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]
179 179  
180 180  
181 -1.
182 -11.
183 -111. MOD=1(Original value)
155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
184 184  
185 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
186 -
187 -|(((
188 -**Size**
189 -
190 -**(bytes)**
191 -)))|**2**|**2**|**2**|**2**|**2**|**1**
192 -|**Value**|[[BAT>>path:#bat]]|(((
193 -Temperature
194 -
195 -(Reserve, Ignore now)
196 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|(((
197 -MOD & Digital Interrupt
198 -
199 -(Optional)
157 +(((
158 +(((
159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
200 200  )))
161 +)))
201 201  
202 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image008.png]]
203 203  
204 -1.
205 -11.
206 -111. Battery Info
164 +**Connection:**
207 207  
208 -Check the battery voltage for LSE01.
166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
209 209  
210 -Ex1: 0x0B45 = 2885mV
168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
211 211  
212 -Ex2: 0x0B49 = 2889mV
170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
213 213  
214 214  
173 +In the PC, use below serial tool settings:
215 215  
216 -1.
217 -11.
218 -111. Soil Moisture
175 +* Baud:  (% style="color:green" %)**9600**
176 +* Data bits:** (% style="color:green" %)8(%%)**
177 +* Stop bits: (% style="color:green" %)**1**
178 +* Parity:  (% style="color:green" %)**None**
179 +* Flow Control: (% style="color:green" %)**None**
219 219  
220 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
181 +(((
182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
183 +)))
221 221  
222 -For example, if the data you get from the register is 0x05 0xDC, the moisture content in the soil is
185 +[[image:image-20220708110657-3.png]]
223 223  
224 -**05DC(H) = 1500(D) /100 = 15%.**
187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
225 225  
226 226  
227 -1.
228 -11.
229 -111. Soil Temperature
230 230  
231 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
191 +=== 2.2.4 Use CoAP protocol to uplink data ===
232 232  
233 -**Example**:
193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
234 234  
235 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
236 236  
237 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
196 +**Use below commands:**
238 238  
198 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
239 239  
240 -1.
241 -11.
242 -111. Soil Conductivity (EC)
202 +For parameter description, please refer to AT command set
243 243  
244 -Obtain soluble salt concentration in soil or soluble ion concentration in liquid fertilizer or planting medium,. The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
204 +[[image:1657249793983-486.png]]
245 245  
246 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
247 247  
207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
248 248  
249 -Generally, the EC value of irrigation water is less than 800uS / cm.
209 +[[image:1657249831934-534.png]]
250 250  
251 -1.
252 -11.
253 -111. MOD
254 254  
255 -Firmware version at least v2.1 supports changing mode.
256 256  
257 -For example, bytes[10]=90
213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
258 258  
259 -mod=(bytes[10]>>7)&0x01=1.
215 +This feature is supported since firmware version v1.0.1
260 260  
261 261  
262 -Downlink Command:
218 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
220 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
263 263  
264 -If payload = 0x0A00, workmode=0
222 +[[image:1657249864775-321.png]]
265 265  
266 -If** **payload =** **0x0A01, workmode=1
267 267  
225 +[[image:1657249930215-289.png]]
268 268  
269 -1.
270 -11.
271 -111. ​Decode payload in The Things Network
272 272  
273 -While using TTN network, you can add the payload format to decode the payload.
274 274  
229 +=== 2.2.6 Use MQTT protocol to uplink data ===
275 275  
276 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.png]]
231 +This feature is supported since firmware version v110
277 277  
278 -The payload decoder function for TTN is here:
279 279  
280 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
234 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
237 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
238 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
281 281  
242 +[[image:1657249978444-674.png]]
282 282  
283 -1.
284 -11. Uplink Interval
285 285  
286 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
245 +[[image:1657249990869-686.png]]
287 287  
288 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
289 289  
290 -1.
291 -11. ​Downlink Payload
248 +(((
249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
250 +)))
292 292  
293 -By default, LSE50 prints the downlink payload to console port.
294 294  
295 -|**Downlink Control Type**|**FPort**|**Type Code**|**Downlink payload size(bytes)**
296 -|TDC (Transmit Time Interval)|Any|01|4
297 -|RESET|Any|04|2
298 -|AT+CFM|Any|05|4
299 -|INTMOD|Any|06|4
300 -|MOD|Any|0A|2
301 301  
302 -**Examples**
254 +=== 2.2.7 Use TCP protocol to uplink data ===
303 303  
256 +This feature is supported since firmware version v110
304 304  
305 -**Set TDC**
306 306  
307 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
259 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
308 308  
309 -Payload:    01 00 00 1E    TDC=30S
262 +[[image:1657250217799-140.png]]
310 310  
311 -Payload:    01 00 00 3C    TDC=60S
312 312  
265 +[[image:1657250255956-604.png]]
313 313  
314 -**Reset**
315 315  
316 -If payload = 0x04FF, it will reset the LSE01
317 317  
269 +=== 2.2.8 Change Update Interval ===
318 318  
319 -**CFM**
271 +User can use below command to change the (% style="color:green" %)**uplink interval**.
320 320  
321 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
273 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
322 322  
323 -1.
324 -11. ​Show Data in DataCake IoT Server
275 +(((
276 +(% style="color:red" %)**NOTE:**
277 +)))
325 325  
326 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
279 +(((
280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
281 +)))
327 327  
328 328  
329 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
330 330  
331 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
285 +== 2.3  Uplink Payload ==
332 332  
287 +In this mode, uplink payload includes in total 18 bytes
333 333  
334 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]]
289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
290 +|=(% style="width: 50px;" %)(((
291 +**Size(bytes)**
292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
335 335  
295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
336 336  
337 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]]
338 338  
298 +[[image:image-20220708111918-4.png]]
339 339  
340 340  
301 +The payload is ASCII string, representative same HEX:
341 341  
303 +0x72403155615900640c7817075e0a8c02f900 where:
342 342  
343 -Step 3: Create an account or log in Datacake.
305 +* Device ID: 0x 724031556159 = 724031556159
306 +* Version: 0x0064=100=1.0.0
344 344  
345 -Step 4: Search the LSE01 and add DevEUI.
308 +* BAT: 0x0c78 = 3192 mV = 3.192V
309 +* Singal: 0x17 = 23
310 +* Soil Moisture: 0x075e= 1886 = 18.86  %
311 +* Soil Temperature:0x0a8c =2700=27 °C
312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
313 +* Interrupt: 0x00 = 0
346 346  
315 +== 2.4  Payload Explanation and Sensor Interface ==
347 347  
348 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]]
349 349  
318 +=== 2.4.1  Device ID ===
350 350  
320 +By default, the Device ID equal to the last 6 bytes of IMEI.
351 351  
352 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
353 353  
324 +**Example:**
354 354  
355 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]
326 +AT+DEUI=A84041F15612
356 356  
328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
357 357  
358 358  
359 -1.
360 -11. Frequency Plans
361 361  
362 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
332 +=== 2.4.2  Version Info ===
363 363  
364 -1.
365 -11.
366 -111. EU863-870 (EU868)
334 +Specify the software version: 0x64=100, means firmware version 1.00.
367 367  
368 -Uplink:
336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
369 369  
370 -868.1 - SF7BW125 to SF12BW125
371 371  
372 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
373 373  
374 -868.5 - SF7BW125 to SF12BW125
340 +=== 2.4.3  Battery Info ===
375 375  
376 -867.1 - SF7BW125 to SF12BW125
342 +(((
343 +Check the battery voltage for LSE01.
344 +)))
377 377  
378 -867.3 - SF7BW125 to SF12BW125
346 +(((
347 +Ex1: 0x0B45 = 2885mV
348 +)))
379 379  
380 -867.5 - SF7BW125 to SF12BW125
350 +(((
351 +Ex2: 0x0B49 = 2889mV
352 +)))
381 381  
382 -867.7 - SF7BW125 to SF12BW125
383 383  
384 -867.9 - SF7BW125 to SF12BW125
385 385  
386 -868.8 - FSK
356 +=== 2.4.4  Signal Strength ===
387 387  
358 +NB-IoT Network signal Strength.
388 388  
389 -Downlink:
360 +**Ex1: 0x1d = 29**
390 390  
391 -Uplink channels 1-9 (RX1)
362 +(% style="color:blue" %)**0**(%%)  -113dBm or less
392 392  
393 -869.525 - SF9BW125 (RX2 downlink only)
364 +(% style="color:blue" %)**1**(%%)  -111dBm
394 394  
366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
395 395  
396 -1.
397 -11.
398 -111. US902-928(US915)
368 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
399 399  
400 -Used in USA, Canada and South America. Default use CHE=2
370 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
401 401  
402 -Uplink:
403 403  
404 -903.9 - SF7BW125 to SF10BW125
405 405  
406 -904.1 - SF7BW125 to SF10BW125
374 +=== 2.4. Soil Moisture ===
407 407  
408 -904.3 - SF7BW125 to SF10BW125
376 +(((
377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
378 +)))
409 409  
410 -904.5 - SF7BW125 to SF10BW125
380 +(((
381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
382 +)))
411 411  
412 -904.7 - SF7BW125 to SF10BW125
384 +(((
385 +
386 +)))
413 413  
414 -904.9 - SF7BW125 to SF10BW125
388 +(((
389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
390 +)))
415 415  
416 -905.1 - SF7BW125 to SF10BW125
417 417  
418 -905.3 - SF7BW125 to SF10BW125
419 419  
394 +=== 2.4.6  Soil Temperature ===
420 420  
421 -Downlink:
396 +(((
397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
398 +)))
422 422  
423 -923.3 - SF7BW500 to SF12BW500
400 +(((
401 +**Example**:
402 +)))
424 424  
425 -923.9 - SF7BW500 to SF12BW500
404 +(((
405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
406 +)))
426 426  
427 -924.5 - SF7BW500 to SF12BW500
408 +(((
409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
410 +)))
428 428  
429 -925.1 - SF7BW500 to SF12BW500
430 430  
431 -925.7 - SF7BW500 to SF12BW500
432 432  
433 -926.3 - SF7BW500 to SF12BW500
414 +=== 2.4.7  Soil Conductivity (EC) ===
434 434  
435 -926.9 - SF7BW500 to SF12BW500
416 +(((
417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
418 +)))
436 436  
437 -927.5 - SF7BW500 to SF12BW500
420 +(((
421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
422 +)))
438 438  
439 -923.3 - SF12BW500(RX2 downlink only)
424 +(((
425 +Generally, the EC value of irrigation water is less than 800uS / cm.
426 +)))
440 440  
428 +(((
429 +
430 +)))
441 441  
442 -1.
443 -11.
444 -111. CN470-510 (CN470)
432 +(((
433 +
434 +)))
445 445  
446 -Used in China, Default use CHE=1
436 +=== 2.4.8  Digital Interrupt ===
447 447  
448 -Uplink:
438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
449 449  
450 -486.3 - SF7BW125 to SF12BW125
440 +The command is:
451 451  
452 -486.5 - SF7BW125 to SF12BW125
442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
453 453  
454 -486.7 - SF7BW125 to SF12BW125
455 455  
456 -486.9 - SF7BW125 to SF12BW125
445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
457 457  
458 -487.1 - SF7BW125 to SF12BW125
459 459  
460 -487.3 - SF7BW125 to SF12BW125
448 +Example:
461 461  
462 -487.5 - SF7BW125 to SF12BW125
450 +0x(00): Normal uplink packet.
463 463  
464 -487.7 - SF7BW125 to SF12BW125
452 +0x(01): Interrupt Uplink Packet.
465 465  
466 466  
467 -Downlink:
468 468  
469 -506.7 - SF7BW125 to SF12BW125
456 +=== 2.4.9  ​+5V Output ===
470 470  
471 -506.9 - SF7BW125 to SF12BW125
458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
472 472  
473 -507.1 - SF7BW125 to SF12BW125
474 474  
475 -507.3 - SF7BW125 to SF12BW125
461 +The 5V output time can be controlled by AT Command.
476 476  
477 -507.5 - SF7BW125 to SF12BW125
463 +(% style="color:blue" %)**AT+5VT=1000**
478 478  
479 -507.7 - SF7BW125 to SF12BW125
465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
480 480  
481 -507.9 - SF7BW125 to SF12BW125
482 482  
483 -508.1 - SF7BW125 to SF12BW125
484 484  
485 -505.3 - SF12BW125 (RX2 downlink only)
469 +== 2.5  Downlink Payload ==
486 486  
471 +By default, NSE01 prints the downlink payload to console port.
487 487  
488 -1.
489 -11.
490 -111. AU915-928(AU915)
473 +[[image:image-20220708133731-5.png]]
491 491  
492 -Default use CHE=2
493 493  
494 -Uplink:
495 495  
496 -916.8 - SF7BW125 to SF12BW125
477 +(((
478 +(% style="color:blue" %)**Examples:**
479 +)))
497 497  
498 -917.0 - SF7BW125 to SF12BW125
481 +(((
482 +
483 +)))
499 499  
500 -917.2 - SF7BW125 to SF12BW125
485 +* (((
486 +(% style="color:blue" %)**Set TDC**
487 +)))
501 501  
502 -917.4 - SF7BW125 to SF12BW125
489 +(((
490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
491 +)))
503 503  
504 -917.6 - SF7BW125 to SF12BW125
493 +(((
494 +Payload:    01 00 00 1E    TDC=30S
495 +)))
505 505  
506 -917.8 - SF7BW125 to SF12BW125
497 +(((
498 +Payload:    01 00 00 3C    TDC=60S
499 +)))
507 507  
508 -918.0 - SF7BW125 to SF12BW125
501 +(((
502 +
503 +)))
509 509  
510 -918.2 - SF7BW125 to SF12BW125
505 +* (((
506 +(% style="color:blue" %)**Reset**
507 +)))
511 511  
509 +(((
510 +If payload = 0x04FF, it will reset the NSE01
511 +)))
512 512  
513 -Downlink:
514 514  
515 -923.3 - SF7BW500 to SF12BW500
514 +* (% style="color:blue" %)**INTMOD**
516 516  
517 -923.9 - SF7BW500 to SF12BW500
516 +Downlink Payload: 06000003, Set AT+INTMOD=3
518 518  
519 -924.5 - SF7BW500 to SF12BW500
520 520  
521 -925.1 - SF7BW500 to SF12BW500
522 522  
523 -925.7 - SF7BW500 to SF12BW500
520 +== 2. ​LED Indicator ==
524 524  
525 -926.3 - SF7BW500 to SF12BW500
522 +(((
523 +The NSE01 has an internal LED which is to show the status of different state.
526 526  
527 -926.9 - SF7BW500 to SF12BW500
528 528  
529 -927.5 - SF7BW500 to SF12BW500
526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
527 +* Then the LED will be on for 1 second means device is boot normally.
528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
529 +* For each uplink probe, LED will be on for 500ms.
530 +)))
530 530  
531 -923.3 - SF12BW500(RX2 downlink only)
532 532  
533 -1.
534 -11.
535 -111. AS920-923 & AS923-925 (AS923)
536 536  
537 -**Default Uplink channel:**
538 538  
539 -923.2 - SF7BW125 to SF10BW125
535 +== 2.7  Installation in Soil ==
540 540  
541 -923.4 - SF7BW125 to SF10BW125
537 +__**Measurement the soil surface**__
542 542  
539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
543 543  
544 -**Additional Uplink Channel**:
541 +[[image:1657259653666-883.png]]
545 545  
546 -(OTAA mode, channel added by JoinAccept message)
547 547  
548 -**AS920~~AS923 for Japan, Malaysia, Singapore**:
544 +(((
545 +
549 549  
550 -922.2 - SF7BW125 to SF10BW125
547 +(((
548 +Dig a hole with diameter > 20CM.
549 +)))
551 551  
552 -922.4 - SF7BW125 to SF10BW125
551 +(((
552 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
553 +)))
554 +)))
553 553  
554 -922.6 - SF7BW125 to SF10BW125
556 +[[image:1654506665940-119.png]]
555 555  
556 -922.8 - SF7BW125 to SF10BW125
558 +(((
559 +
560 +)))
557 557  
558 -923.0 - SF7BW125 to SF10BW125
559 559  
560 -922.0 - SF7BW125 to SF10BW125
563 +== 2. Firmware Change Log ==
561 561  
562 562  
563 -**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
566 +Download URL & Firmware Change log
564 564  
565 -923.6 - SF7BW125 to SF10BW125
568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
566 566  
567 -923.8 - SF7BW125 to SF10BW125
568 568  
569 -924.0 - SF7BW125 to SF10BW125
571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
570 570  
571 -924.2 - SF7BW125 to SF10BW125
572 572  
573 -924.4 - SF7BW125 to SF10BW125
574 574  
575 -924.6 - SF7BW125 to SF10BW125
575 +== 2. Battery Analysis ==
576 576  
577 +=== 2.9.1  ​Battery Type ===
577 577  
578 578  
579 -**Downlink:**
580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
580 580  
581 -Uplink channels 1-8 (RX1)
582 582  
583 -923.2 - SF10BW125 (RX2)
583 +The battery is designed to last for several years depends on the actually use environment and update interval.
584 584  
585 585  
586 -1.
587 -11.
588 -111. KR920-923 (KR920)
586 +The battery related documents as below:
589 589  
590 -Default channel:
588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
591 591  
592 -922.1 - SF7BW125 to SF12BW125
592 +(((
593 +[[image:image-20220708140453-6.png]]
594 +)))
593 593  
594 -922.3 - SF7BW125 to SF12BW125
595 595  
596 -922.5 - SF7BW125 to SF12BW125
597 597  
598 +2.9.2 
598 598  
599 -Uplink: (OTAA mode, channel added by JoinAccept message)
600 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
600 600  
601 -922.1 - SF7BW125 to SF12BW125
602 602  
603 -922.3 - SF7BW125 to SF12BW125
603 +Instruction to use as below:
604 604  
605 -922.5 - SF7BW125 to SF12BW125
606 606  
607 -922.7 - SF7BW125 to SF12BW125
606 +Step 1: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
608 608  
609 -922.9 - SF7BW125 to SF12BW125
608 +[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
610 610  
611 -923.1 - SF7BW125 to SF12BW125
612 612  
613 -923.3 - SF7BW125 to SF12BW125
611 +Step 2: Open it and choose
614 614  
613 +* Product Model
614 +* Uplink Interval
615 +* Working Mode
615 615  
616 -Downlink:
617 +And the Life expectation in difference case will be shown on the right.
617 617  
618 -Uplink channels 1-7(RX1)
619 619  
620 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
621 621  
621 +=== 2.9.3  ​Battery Note ===
622 622  
623 -1.
624 -11.
625 -111. IN865-867 (IN865)
626 -
627 -Uplink:
628 -
629 -865.0625 - SF7BW125 to SF12BW125
630 -
631 -865.4025 - SF7BW125 to SF12BW125
632 -
633 -865.9850 - SF7BW125 to SF12BW125
634 -
635 -
636 -Downlink:
637 -
638 -Uplink channels 1-3 (RX1)
639 -
640 -866.550 - SF10BW125 (RX2)
641 -
642 -
643 -1.
644 -11. LED Indicator
645 -
646 -The LSE01 has an internal LED which is to show the status of different state.
647 -
648 -
649 -* Blink once when device power on.
650 -* Solid ON for 5 seconds once device successful Join the network.
651 -* Blink once when device transmit a packet.
652 -
653 -1.
654 -11. Installation in Soil
655 -
656 -**Measurement the soil surface**
657 -
658 -
659 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] ​
660 -
661 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
662 -
663 -
664 -
665 -
666 -
667 -
668 -
669 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
670 -
671 -
672 -
673 -Dig a hole with diameter > 20CM.
674 -
675 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
676 -
677 -
678 -
679 -
680 -1.
681 -11. ​Firmware Change Log
682 -
683 -**Firmware download link:**
684 -
685 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
686 -
687 -
688 -**Firmware Upgrade Method:**
689 -
690 -[[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]]
691 -
692 -
693 -**V1.0.**
694 -
695 -Release
696 -
697 -
698 -
699 -1.
700 -11. ​Battery Analysis
701 -111. ​Battery Type
702 -
703 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
704 -
705 -
706 -The battery is designed to last for more than 5 years for the LSN50.
707 -
708 -
709 -The battery related documents as below:
710 -
711 -* [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
712 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]]
713 -* [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
714 -
715 -|(((
716 -JST-XH-2P connector
623 +(((
624 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
717 717  )))
718 718  
719 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
720 720  
721 721  
629 +=== 2.9.4  Replace the battery ===
722 722  
723 -1.
724 -11.
725 -111. ​Battery Note
631 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
726 726  
727 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
728 728  
729 729  
730 -1.
731 -11.
732 -111. ​Replace the battery
733 -
734 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
735 -
736 -
737 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
738 -
739 -
740 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
741 -
742 -
743 -
744 -
745 -
746 -
747 747  = 3. ​Using the AT Commands =
748 748  
749 749  == 3.1 Access AT Commands ==
... ... @@ -751,13 +751,13 @@
751 751  
752 752  LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
753 753  
754 -[[image:1654501986557-872.png]]
642 +[[image:1654501986557-872.png||height="391" width="800"]]
755 755  
756 756  
757 757  Or if you have below board, use below connection:
758 758  
759 759  
760 -[[image:1654502005655-729.png]]
648 +[[image:1654502005655-729.png||height="503" width="801"]]
761 761  
762 762  
763 763  
... ... @@ -764,10 +764,10 @@
764 764  In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
765 765  
766 766  
767 - [[image:1654502050864-459.png]]
655 + [[image:1654502050864-459.png||height="564" width="806"]]
768 768  
769 769  
770 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
658 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
771 771  
772 772  
773 773  (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
... ... @@ -879,20 +879,38 @@
879 879  
880 880  == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
881 881  
882 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]].
770 +(((
771 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
883 883  When downloading the images, choose the required image file for download. ​
773 +)))
884 884  
775 +(((
776 +
777 +)))
885 885  
779 +(((
886 886  How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
781 +)))
887 887  
783 +(((
784 +
785 +)))
888 888  
787 +(((
889 889  You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
789 +)))
890 890  
791 +(((
792 +
793 +)))
891 891  
795 +(((
892 892  For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
797 +)))
893 893  
894 894  [[image:image-20220606154726-3.png]]
895 895  
801 +
896 896  When you use the TTN network, the US915 frequency bands use are:
897 897  
898 898  * 903.9 - SF7BW125 to SF10BW125
... ... @@ -905,37 +905,47 @@
905 905  * 905.3 - SF7BW125 to SF10BW125
906 906  * 904.6 - SF8BW500
907 907  
814 +(((
908 908  Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
909 909  
910 -(% class="box infomessage" %)
911 -(((
912 -**AT+CHE=2**
817 +* (% style="color:#037691" %)**AT+CHE=2**
818 +* (% style="color:#037691" %)**ATZ**
913 913  )))
914 914  
915 -(% class="box infomessage" %)
916 916  (((
917 -**ATZ**
918 -)))
822 +
919 919  
920 920  to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
825 +)))
921 921  
827 +(((
828 +
829 +)))
922 922  
831 +(((
923 923  The **AU915** band is similar. Below are the AU915 Uplink Channels.
833 +)))
924 924  
925 925  [[image:image-20220606154825-4.png]]
926 926  
927 927  
838 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
928 928  
840 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
841 +
842 +
929 929  = 5. Trouble Shooting =
930 930  
931 -== 5.1 ​Why I cant join TTN in US915 / AU915 bands? ==
845 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
932 932  
933 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
847 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
934 934  
935 935  
936 -== 5.2 AT Command input doesnt work ==
850 +== 5.2 AT Command input doesn't work ==
937 937  
938 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
852 +(((
853 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
854 +)))
939 939  
940 940  
941 941  == 5.3 Device rejoin in at the second uplink packet ==
... ... @@ -947,7 +947,9 @@
947 947  
948 948  (% style="color:#4f81bd" %)**Cause for this issue:**
949 949  
866 +(((
950 950  The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
868 +)))
951 951  
952 952  
953 953  (% style="color:#4f81bd" %)**Solution: **
... ... @@ -954,7 +954,7 @@
954 954  
955 955  All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
956 956  
957 -[[image:1654500929571-736.png]]
875 +[[image:1654500929571-736.png||height="458" width="832"]]
958 958  
959 959  
960 960  = 6. ​Order Info =
... ... @@ -979,10 +979,17 @@
979 979  * (% style="color:red" %)**4**(%%): 4000mAh battery
980 980  * (% style="color:red" %)**8**(%%): 8500mAh battery
981 981  
900 +(% class="wikigeneratedid" %)
901 +(((
902 +
903 +)))
904 +
982 982  = 7. Packing Info =
983 983  
984 984  (((
985 -**Package Includes**:
908 +
909 +
910 +(% style="color:#037691" %)**Package Includes**:
986 986  )))
987 987  
988 988  * (((
... ... @@ -991,10 +991,8 @@
991 991  
992 992  (((
993 993  
994 -)))
995 995  
996 -(((
997 -**Dimension and weight**:
920 +(% style="color:#037691" %)**Dimension and weight**:
998 998  )))
999 999  
1000 1000  * (((
... ... @@ -1008,6 +1008,8 @@
1008 1008  )))
1009 1009  * (((
1010 1010  Weight / pcs : g
934 +
935 +
1011 1011  )))
1012 1012  
1013 1013  = 8. Support =
... ... @@ -1014,5 +1014,3 @@
1014 1014  
1015 1015  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1016 1016  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1017 -
1018 -
1654504596150-405.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +66.7 KB
Content
1654504683289-357.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +94.0 KB
Content
1654504778294-788.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +119.4 KB
Content
1654504881641-514.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +119.4 KB
Content
1654504907647-967.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +54.7 KB
Content
1654505570700-128.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +59.2 KB
Content
1654505857935-743.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +86.0 KB
Content
1654505874829-548.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +129.9 KB
Content
1654505905236-553.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +92.0 KB
Content
1654505925508-181.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +69.5 KB
Content
1654506634463-199.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1654506665940-119.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +423.3 KB
Content
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
image-20220606163732-6.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +16.5 KB
Content
image-20220606163915-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +94.8 KB
Content
image-20220606165544-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +11.6 KB
Content
image-20220606171726-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +171.0 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content