Last modified by Mengting Qiu on 2024/04/02 16:44

From version 15.2
edited by Xiaoling
on 2022/06/06 16:26
Change comment: There is no comment for this version
To version 60.2
edited by Xiaoling
on 2022/07/08 14:12
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="848" width="848"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
... ... @@ -8,739 +8,630 @@
8 8  
9 9  
10 10  
11 -= 1. Introduction =
12 12  
13 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 14  
15 -(((
16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
17 -)))
18 18  
19 -(((
20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
21 -)))
14 +**Table of Contents:**
22 22  
23 -(((
24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
25 -)))
26 26  
27 -(((
28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
29 -)))
30 30  
18 +
19 +
20 +
21 += 1.  Introduction =
22 +
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24 +
31 31  (((
32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
33 -)))
26 +
34 34  
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
35 35  
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 +
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 +
36 +
37 +)))
38 +
36 36  [[image:1654503236291-817.png]]
37 37  
38 38  
39 -[[image:1654503265560-120.png]]
42 +[[image:1657245163077-232.png]]
40 40  
41 41  
42 42  
43 43  == 1.2 ​Features ==
44 44  
45 -* LoRaWAN 1.0.3 Class A
46 -* Ultra low power consumption
48 +
49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
47 47  * Monitor Soil Moisture
48 48  * Monitor Soil Temperature
49 49  * Monitor Soil Conductivity
50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
51 51  * AT Commands to change parameters
52 52  * Uplink on periodically
53 53  * Downlink to change configure
54 54  * IP66 Waterproof Enclosure
55 -* 4000mAh or 8500mAh Battery for long term use
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
59 +* Micro SIM card slot for NB-IoT SIM
60 +* 8500mAh Battery for long term use
56 56  
62 +== 1.3  Specification ==
57 57  
58 -== 1.3 Specification ==
59 59  
60 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
65 +(% style="color:#037691" %)**Common DC Characteristics:**
61 61  
62 -[[image:image-20220606162220-5.png]]
67 +* Supply Voltage: 2.1v ~~ 3.6v
68 +* Operating Temperature: -40 ~~ 85°C
63 63  
70 +(% style="color:#037691" %)**NB-IoT Spec:**
64 64  
72 +* - B1 @H-FDD: 2100MHz
73 +* - B3 @H-FDD: 1800MHz
74 +* - B8 @H-FDD: 900MHz
75 +* - B5 @H-FDD: 850MHz
76 +* - B20 @H-FDD: 800MHz
77 +* - B28 @H-FDD: 700MHz
65 65  
66 -== 1.4 Applications ==
79 +(% style="color:#037691" %)**Probe Specification:**
67 67  
68 -* Smart Agriculture
81 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
69 69  
83 +[[image:image-20220708101224-1.png]]
70 70  
71 -== ​1.5 Firmware Change log ==
72 72  
73 73  
74 -**LSE01 v1.0 :**  Release
87 +== 1.4  Applications ==
75 75  
89 +* Smart Agriculture
76 76  
91 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
92 +​
77 77  
78 -= 2. Configure LSE01 to connect to LoRaWAN network =
94 +== 1. Pin Definitions ==
79 79  
80 -== 2.1 How it works ==
81 81  
82 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
97 +[[image:1657246476176-652.png]]
83 83  
84 84  
85 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>path:#_​Using_the_AT]]to set the keys in the LSE01.
86 86  
101 += 2.  Use NSE01 to communicate with IoT Server =
87 87  
103 +== 2.1  How it works ==
88 88  
89 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
90 90  
91 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
106 +(((
107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
108 +)))
92 92  
93 93  
94 -[[image:1654503992078-669.png]]
95 -
96 -
97 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
98 -
99 -
100 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
101 -
102 -Each LSE01 is shipped with a sticker with the default device EUI as below:
103 -
104 -
105 -
106 -
107 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
108 -
109 -
110 -**Add APP EUI in the application**
111 -
112 -
113 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]]
114 -
115 -
116 -
117 -**Add APP KEY and DEV EUI**
118 -
119 -
120 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image005.png]]
121 -
122 -|(((
123 -
111 +(((
112 +The diagram below shows the working flow in default firmware of NSE01:
124 124  )))
125 125  
126 -**Step 2**: Power on LSE01
115 +[[image:image-20220708101605-2.png]]
127 127  
128 -
129 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
130 -
131 -
132 -
133 -|(((
117 +(((
134 134  
135 135  )))
136 136  
137 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image006.png]]
138 138  
139 139  
123 +== 2.2 ​ Configure the NSE01 ==
140 140  
141 141  
126 +=== 2.2.1 Test Requirement ===
142 142  
143 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
144 144  
145 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]
129 +To use NSE01 in your city, make sure meet below requirements:
146 146  
131 +* Your local operator has already distributed a NB-IoT Network there.
132 +* The local NB-IoT network used the band that NSE01 supports.
133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
147 147  
135 +(((
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
137 +)))
148 148  
149 149  
150 -1.
151 -11. ​Uplink Payload
152 -111. MOD=0(Default Mode)
140 +[[image:1657249419225-449.png]]
153 153  
154 -LSE01 will uplink payload via LoRaWAN with below payload format: 
155 155  
156 156  
157 -Uplink payload includes in total 11 bytes.
158 -
144 +=== 2.2.2 Insert SIM card ===
159 159  
160 -|(((
161 -**Size**
146 +Insert the NB-IoT Card get from your provider.
162 162  
163 -**(bytes)**
164 -)))|**2**|**2**|**2**|**2**|**2**|**1**
165 -|**Value**|[[BAT>>path:#bat]]|(((
166 -Temperature
148 +User need to take out the NB-IoT module and insert the SIM card like below:
167 167  
168 -(Reserve, Ignore now)
169 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|(((
170 -MOD & Digital Interrupt
171 171  
172 -(Optional)
173 -)))
151 +[[image:1657249468462-536.png]]
174 174  
175 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]
176 176  
177 177  
178 -1.
179 -11.
180 -111. MOD=1(Original value)
155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
181 181  
182 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
183 -
184 -|(((
185 -**Size**
186 -
187 -**(bytes)**
188 -)))|**2**|**2**|**2**|**2**|**2**|**1**
189 -|**Value**|[[BAT>>path:#bat]]|(((
190 -Temperature
191 -
192 -(Reserve, Ignore now)
193 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|(((
194 -MOD & Digital Interrupt
195 -
196 -(Optional)
157 +(((
158 +(((
159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
197 197  )))
161 +)))
198 198  
199 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image008.png]]
200 200  
201 -1.
202 -11.
203 -111. Battery Info
164 +**Connection:**
204 204  
205 -Check the battery voltage for LSE01.
166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
206 206  
207 -Ex1: 0x0B45 = 2885mV
168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
208 208  
209 -Ex2: 0x0B49 = 2889mV
170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
210 210  
211 211  
173 +In the PC, use below serial tool settings:
212 212  
213 -1.
214 -11.
215 -111. Soil Moisture
175 +* Baud:  (% style="color:green" %)**9600**
176 +* Data bits:** (% style="color:green" %)8(%%)**
177 +* Stop bits: (% style="color:green" %)**1**
178 +* Parity:  (% style="color:green" %)**None**
179 +* Flow Control: (% style="color:green" %)**None**
216 216  
217 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
181 +(((
182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
183 +)))
218 218  
219 -For example, if the data you get from the register is 0x05 0xDC, the moisture content in the soil is
185 +[[image:image-20220708110657-3.png]]
220 220  
221 -**05DC(H) = 1500(D) /100 = 15%.**
187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
222 222  
223 223  
224 -1.
225 -11.
226 -111. Soil Temperature
227 227  
228 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
191 +=== 2.2.4 Use CoAP protocol to uplink data ===
229 229  
230 -**Example**:
193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
231 231  
232 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
233 233  
234 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
196 +**Use below commands:**
235 235  
198 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
236 236  
237 -1.
238 -11.
239 -111. Soil Conductivity (EC)
202 +For parameter description, please refer to AT command set
240 240  
241 -Obtain soluble salt concentration in soil or soluble ion concentration in liquid fertilizer or planting medium,. The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
204 +[[image:1657249793983-486.png]]
242 242  
243 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
244 244  
207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
245 245  
246 -Generally, the EC value of irrigation water is less than 800uS / cm.
209 +[[image:1657249831934-534.png]]
247 247  
248 -1.
249 -11.
250 -111. MOD
251 251  
252 -Firmware version at least v2.1 supports changing mode.
253 253  
254 -For example, bytes[10]=90
213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
255 255  
256 -mod=(bytes[10]>>7)&0x01=1.
215 +This feature is supported since firmware version v1.0.1
257 257  
258 258  
259 -Downlink Command:
218 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
220 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
260 260  
261 -If payload = 0x0A00, workmode=0
222 +[[image:1657249864775-321.png]]
262 262  
263 -If** **payload =** **0x0A01, workmode=1
264 264  
225 +[[image:1657249930215-289.png]]
265 265  
266 -1.
267 -11.
268 -111. ​Decode payload in The Things Network
269 269  
270 -While using TTN network, you can add the payload format to decode the payload.
271 271  
229 +=== 2.2.6 Use MQTT protocol to uplink data ===
272 272  
273 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.png]]
231 +This feature is supported since firmware version v110
274 274  
275 -The payload decoder function for TTN is here:
276 276  
277 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
234 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
237 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
238 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
278 278  
242 +[[image:1657249978444-674.png]]
279 279  
280 -1.
281 -11. Uplink Interval
282 282  
283 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
245 +[[image:1657249990869-686.png]]
284 284  
285 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
286 286  
287 -1.
288 -11. ​Downlink Payload
248 +(((
249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
250 +)))
289 289  
290 -By default, LSE50 prints the downlink payload to console port.
291 291  
292 -|**Downlink Control Type**|**FPort**|**Type Code**|**Downlink payload size(bytes)**
293 -|TDC (Transmit Time Interval)|Any|01|4
294 -|RESET|Any|04|2
295 -|AT+CFM|Any|05|4
296 -|INTMOD|Any|06|4
297 -|MOD|Any|0A|2
298 298  
299 -**Examples**
254 +=== 2.2.7 Use TCP protocol to uplink data ===
300 300  
256 +This feature is supported since firmware version v110
301 301  
302 -**Set TDC**
303 303  
304 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
259 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
305 305  
306 -Payload:    01 00 00 1E    TDC=30S
262 +[[image:1657250217799-140.png]]
307 307  
308 -Payload:    01 00 00 3C    TDC=60S
309 309  
265 +[[image:1657250255956-604.png]]
310 310  
311 -**Reset**
312 312  
313 -If payload = 0x04FF, it will reset the LSE01
314 314  
269 +=== 2.2.8 Change Update Interval ===
315 315  
316 -**CFM**
271 +User can use below command to change the (% style="color:green" %)**uplink interval**.
317 317  
318 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
273 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
319 319  
320 -1.
321 -11. ​Show Data in DataCake IoT Server
275 +(((
276 +(% style="color:red" %)**NOTE:**
277 +)))
322 322  
323 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
279 +(((
280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
281 +)))
324 324  
325 325  
326 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
327 327  
328 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
285 +== 2.3  Uplink Payload ==
329 329  
287 +In this mode, uplink payload includes in total 18 bytes
330 330  
331 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]]
289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
290 +|=(% style="width: 50px;" %)(((
291 +**Size(bytes)**
292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
332 332  
295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
333 333  
334 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]]
335 335  
298 +[[image:image-20220708111918-4.png]]
336 336  
337 337  
301 +The payload is ASCII string, representative same HEX:
338 338  
303 +0x72403155615900640c7817075e0a8c02f900 where:
339 339  
340 -Step 3: Create an account or log in Datacake.
305 +* Device ID: 0x 724031556159 = 724031556159
306 +* Version: 0x0064=100=1.0.0
341 341  
342 -Step 4: Search the LSE01 and add DevEUI.
308 +* BAT: 0x0c78 = 3192 mV = 3.192V
309 +* Singal: 0x17 = 23
310 +* Soil Moisture: 0x075e= 1886 = 18.86  %
311 +* Soil Temperature:0x0a8c =2700=27 °C
312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
313 +* Interrupt: 0x00 = 0
343 343  
315 +== 2.4  Payload Explanation and Sensor Interface ==
344 344  
345 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]]
346 346  
318 +=== 2.4.1  Device ID ===
347 347  
320 +By default, the Device ID equal to the last 6 bytes of IMEI.
348 348  
349 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
350 350  
324 +**Example:**
351 351  
352 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]
326 +AT+DEUI=A84041F15612
353 353  
328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
354 354  
355 355  
356 -1.
357 -11. Frequency Plans
358 358  
359 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
332 +=== 2.4.2  Version Info ===
360 360  
361 -1.
362 -11.
363 -111. EU863-870 (EU868)
334 +Specify the software version: 0x64=100, means firmware version 1.00.
364 364  
365 -Uplink:
336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
366 366  
367 -868.1 - SF7BW125 to SF12BW125
368 368  
369 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
370 370  
371 -868.5 - SF7BW125 to SF12BW125
340 +=== 2.4.3  Battery Info ===
372 372  
373 -867.1 - SF7BW125 to SF12BW125
342 +(((
343 +Check the battery voltage for LSE01.
344 +)))
374 374  
375 -867.3 - SF7BW125 to SF12BW125
346 +(((
347 +Ex1: 0x0B45 = 2885mV
348 +)))
376 376  
377 -867.5 - SF7BW125 to SF12BW125
350 +(((
351 +Ex2: 0x0B49 = 2889mV
352 +)))
378 378  
379 -867.7 - SF7BW125 to SF12BW125
380 380  
381 -867.9 - SF7BW125 to SF12BW125
382 382  
383 -868.8 - FSK
356 +=== 2.4.4  Signal Strength ===
384 384  
358 +NB-IoT Network signal Strength.
385 385  
386 -Downlink:
360 +**Ex1: 0x1d = 29**
387 387  
388 -Uplink channels 1-9 (RX1)
362 +(% style="color:blue" %)**0**(%%)  -113dBm or less
389 389  
390 -869.525 - SF9BW125 (RX2 downlink only)
364 +(% style="color:blue" %)**1**(%%)  -111dBm
391 391  
366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
392 392  
393 -1.
394 -11.
395 -111. US902-928(US915)
368 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
396 396  
397 -Used in USA, Canada and South America. Default use CHE=2
370 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
398 398  
399 -Uplink:
400 400  
401 -903.9 - SF7BW125 to SF10BW125
402 402  
403 -904.1 - SF7BW125 to SF10BW125
374 +=== 2.4. Soil Moisture ===
404 404  
405 -904.3 - SF7BW125 to SF10BW125
376 +(((
377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
378 +)))
406 406  
407 -904.5 - SF7BW125 to SF10BW125
380 +(((
381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
382 +)))
408 408  
409 -904.7 - SF7BW125 to SF10BW125
384 +(((
385 +
386 +)))
410 410  
411 -904.9 - SF7BW125 to SF10BW125
388 +(((
389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
390 +)))
412 412  
413 -905.1 - SF7BW125 to SF10BW125
414 414  
415 -905.3 - SF7BW125 to SF10BW125
416 416  
394 +=== 2.4.6  Soil Temperature ===
417 417  
418 -Downlink:
396 +(((
397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
398 +)))
419 419  
420 -923.3 - SF7BW500 to SF12BW500
400 +(((
401 +**Example**:
402 +)))
421 421  
422 -923.9 - SF7BW500 to SF12BW500
404 +(((
405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
406 +)))
423 423  
424 -924.5 - SF7BW500 to SF12BW500
408 +(((
409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
410 +)))
425 425  
426 -925.1 - SF7BW500 to SF12BW500
427 427  
428 -925.7 - SF7BW500 to SF12BW500
429 429  
430 -926.3 - SF7BW500 to SF12BW500
414 +=== 2.4.7  Soil Conductivity (EC) ===
431 431  
432 -926.9 - SF7BW500 to SF12BW500
416 +(((
417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
418 +)))
433 433  
434 -927.5 - SF7BW500 to SF12BW500
420 +(((
421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
422 +)))
435 435  
436 -923.3 - SF12BW500(RX2 downlink only)
424 +(((
425 +Generally, the EC value of irrigation water is less than 800uS / cm.
426 +)))
437 437  
428 +(((
429 +
430 +)))
438 438  
439 -1.
440 -11.
441 -111. CN470-510 (CN470)
432 +(((
433 +
434 +)))
442 442  
443 -Used in China, Default use CHE=1
436 +=== 2.4.8  Digital Interrupt ===
444 444  
445 -Uplink:
438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
446 446  
447 -486.3 - SF7BW125 to SF12BW125
440 +The command is:
448 448  
449 -486.5 - SF7BW125 to SF12BW125
442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
450 450  
451 -486.7 - SF7BW125 to SF12BW125
452 452  
453 -486.9 - SF7BW125 to SF12BW125
445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
454 454  
455 -487.1 - SF7BW125 to SF12BW125
456 456  
457 -487.3 - SF7BW125 to SF12BW125
448 +Example:
458 458  
459 -487.5 - SF7BW125 to SF12BW125
450 +0x(00): Normal uplink packet.
460 460  
461 -487.7 - SF7BW125 to SF12BW125
452 +0x(01): Interrupt Uplink Packet.
462 462  
463 463  
464 -Downlink:
465 465  
466 -506.7 - SF7BW125 to SF12BW125
456 +=== 2.4.9  ​+5V Output ===
467 467  
468 -506.9 - SF7BW125 to SF12BW125
458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
469 469  
470 -507.1 - SF7BW125 to SF12BW125
471 471  
472 -507.3 - SF7BW125 to SF12BW125
461 +The 5V output time can be controlled by AT Command.
473 473  
474 -507.5 - SF7BW125 to SF12BW125
463 +(% style="color:blue" %)**AT+5VT=1000**
475 475  
476 -507.7 - SF7BW125 to SF12BW125
465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
477 477  
478 -507.9 - SF7BW125 to SF12BW125
479 479  
480 -508.1 - SF7BW125 to SF12BW125
481 481  
482 -505.3 - SF12BW125 (RX2 downlink only)
469 +== 2.5  Downlink Payload ==
483 483  
471 +By default, NSE01 prints the downlink payload to console port.
484 484  
485 -1.
486 -11.
487 -111. AU915-928(AU915)
473 +[[image:image-20220708133731-5.png]]
488 488  
489 -Default use CHE=2
490 490  
491 -Uplink:
492 492  
493 -916.8 - SF7BW125 to SF12BW125
477 +(((
478 +(% style="color:blue" %)**Examples:**
479 +)))
494 494  
495 -917.0 - SF7BW125 to SF12BW125
481 +(((
482 +
483 +)))
496 496  
497 -917.2 - SF7BW125 to SF12BW125
485 +* (((
486 +(% style="color:blue" %)**Set TDC**
487 +)))
498 498  
499 -917.4 - SF7BW125 to SF12BW125
489 +(((
490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
491 +)))
500 500  
501 -917.6 - SF7BW125 to SF12BW125
493 +(((
494 +Payload:    01 00 00 1E    TDC=30S
495 +)))
502 502  
503 -917.8 - SF7BW125 to SF12BW125
497 +(((
498 +Payload:    01 00 00 3C    TDC=60S
499 +)))
504 504  
505 -918.0 - SF7BW125 to SF12BW125
501 +(((
502 +
503 +)))
506 506  
507 -918.2 - SF7BW125 to SF12BW125
505 +* (((
506 +(% style="color:blue" %)**Reset**
507 +)))
508 508  
509 +(((
510 +If payload = 0x04FF, it will reset the NSE01
511 +)))
509 509  
510 -Downlink:
511 511  
512 -923.3 - SF7BW500 to SF12BW500
514 +* (% style="color:blue" %)**INTMOD**
513 513  
514 -923.9 - SF7BW500 to SF12BW500
516 +Downlink Payload: 06000003, Set AT+INTMOD=3
515 515  
516 -924.5 - SF7BW500 to SF12BW500
517 517  
518 -925.1 - SF7BW500 to SF12BW500
519 519  
520 -925.7 - SF7BW500 to SF12BW500
520 +== 2. ​LED Indicator ==
521 521  
522 -926.3 - SF7BW500 to SF12BW500
522 +(((
523 +The NSE01 has an internal LED which is to show the status of different state.
523 523  
524 -926.9 - SF7BW500 to SF12BW500
525 525  
526 -927.5 - SF7BW500 to SF12BW500
526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
527 +* Then the LED will be on for 1 second means device is boot normally.
528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
529 +* For each uplink probe, LED will be on for 500ms.
530 +)))
527 527  
528 -923.3 - SF12BW500(RX2 downlink only)
529 529  
530 -1.
531 -11.
532 -111. AS920-923 & AS923-925 (AS923)
533 533  
534 -**Default Uplink channel:**
535 535  
536 -923.2 - SF7BW125 to SF10BW125
535 +== 2.7  Installation in Soil ==
537 537  
538 -923.4 - SF7BW125 to SF10BW125
537 +__**Measurement the soil surface**__
539 539  
539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
540 540  
541 -**Additional Uplink Channel**:
541 +[[image:1657259653666-883.png]]
542 542  
543 -(OTAA mode, channel added by JoinAccept message)
544 544  
545 -**AS920~~AS923 for Japan, Malaysia, Singapore**:
544 +(((
545 +
546 546  
547 -922.2 - SF7BW125 to SF10BW125
547 +(((
548 +Dig a hole with diameter > 20CM.
549 +)))
548 548  
549 -922.4 - SF7BW125 to SF10BW125
551 +(((
552 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
553 +)))
554 +)))
550 550  
551 -922.6 - SF7BW125 to SF10BW125
556 +[[image:1654506665940-119.png]]
552 552  
553 -922.8 - SF7BW125 to SF10BW125
558 +(((
559 +
560 +)))
554 554  
555 -923.0 - SF7BW125 to SF10BW125
556 556  
557 -922.0 - SF7BW125 to SF10BW125
563 +== 2. Firmware Change Log ==
558 558  
559 559  
560 -**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
566 +Download URL & Firmware Change log
561 561  
562 -923.6 - SF7BW125 to SF10BW125
568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
563 563  
564 -923.8 - SF7BW125 to SF10BW125
565 565  
566 -924.0 - SF7BW125 to SF10BW125
571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
567 567  
568 -924.2 - SF7BW125 to SF10BW125
569 569  
570 -924.4 - SF7BW125 to SF10BW125
571 571  
572 -924.6 - SF7BW125 to SF10BW125
575 +== 2. Battery Analysis ==
573 573  
577 +=== 2.9.1  ​Battery Type ===
574 574  
575 575  
576 -**Downlink:**
580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
577 577  
578 -Uplink channels 1-8 (RX1)
579 579  
580 -923.2 - SF10BW125 (RX2)
583 +The battery is designed to last for several years depends on the actually use environment and update interval.
581 581  
582 582  
583 -1.
584 -11.
585 -111. KR920-923 (KR920)
586 +The battery related documents as below:
586 586  
587 -Default channel:
588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
588 588  
589 -922.1 - SF7BW125 to SF12BW125
592 +(((
593 +[[image:image-20220708140453-6.png]]
594 +)))
590 590  
591 -922.3 - SF7BW125 to SF12BW125
592 592  
593 -922.5 - SF7BW125 to SF12BW125
594 594  
598 +2.9.2 
595 595  
596 -Uplink: (OTAA mode, channel added by JoinAccept message)
600 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
597 597  
598 -922.1 - SF7BW125 to SF12BW125
599 599  
600 -922.3 - SF7BW125 to SF12BW125
603 +Instruction to use as below:
601 601  
602 -922.5 - SF7BW125 to SF12BW125
603 603  
604 -922.7 - SF7BW125 to SF12BW125
606 +Step 1: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
605 605  
606 -922.9 - SF7BW125 to SF12BW125
608 +[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
607 607  
608 -923.1 - SF7BW125 to SF12BW125
609 609  
610 -923.3 - SF7BW125 to SF12BW125
611 +Step 2: Open it and choose
611 611  
613 +* Product Model
614 +* Uplink Interval
615 +* Working Mode
612 612  
613 -Downlink:
617 +And the Life expectation in difference case will be shown on the right.
614 614  
615 -Uplink channels 1-7(RX1)
616 616  
617 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
618 618  
621 +=== 2.9.3  ​Battery Note ===
619 619  
620 -1.
621 -11.
622 -111. IN865-867 (IN865)
623 -
624 -Uplink:
625 -
626 -865.0625 - SF7BW125 to SF12BW125
627 -
628 -865.4025 - SF7BW125 to SF12BW125
629 -
630 -865.9850 - SF7BW125 to SF12BW125
631 -
632 -
633 -Downlink:
634 -
635 -Uplink channels 1-3 (RX1)
636 -
637 -866.550 - SF10BW125 (RX2)
638 -
639 -
640 -1.
641 -11. LED Indicator
642 -
643 -The LSE01 has an internal LED which is to show the status of different state.
644 -
645 -
646 -* Blink once when device power on.
647 -* Solid ON for 5 seconds once device successful Join the network.
648 -* Blink once when device transmit a packet.
649 -
650 -1.
651 -11. Installation in Soil
652 -
653 -**Measurement the soil surface**
654 -
655 -
656 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] ​
657 -
658 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
659 -
660 -
661 -
662 -
663 -
664 -
665 -
666 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
667 -
668 -
669 -
670 -Dig a hole with diameter > 20CM.
671 -
672 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
673 -
674 -
675 -
676 -
677 -1.
678 -11. ​Firmware Change Log
679 -
680 -**Firmware download link:**
681 -
682 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
683 -
684 -
685 -**Firmware Upgrade Method:**
686 -
687 -[[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]]
688 -
689 -
690 -**V1.0.**
691 -
692 -Release
693 -
694 -
695 -
696 -1.
697 -11. ​Battery Analysis
698 -111. ​Battery Type
699 -
700 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
701 -
702 -
703 -The battery is designed to last for more than 5 years for the LSN50.
704 -
705 -
706 -The battery related documents as below:
707 -
708 -* [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
709 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]]
710 -* [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
711 -
712 -|(((
713 -JST-XH-2P connector
623 +(((
624 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
714 714  )))
715 715  
716 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
717 717  
718 718  
629 +=== 2.9.4  Replace the battery ===
719 719  
720 -1.
721 -11.
722 -111. ​Battery Note
631 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
723 723  
724 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
725 725  
726 726  
727 -1.
728 -11.
729 -111. ​Replace the battery
730 -
731 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
732 -
733 -
734 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
735 -
736 -
737 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
738 -
739 -
740 -
741 -
742 -
743 -
744 744  = 3. ​Using the AT Commands =
745 745  
746 746  == 3.1 Access AT Commands ==
... ... @@ -748,13 +748,13 @@
748 748  
749 749  LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
750 750  
751 -[[image:1654501986557-872.png]]
642 +[[image:1654501986557-872.png||height="391" width="800"]]
752 752  
753 753  
754 754  Or if you have below board, use below connection:
755 755  
756 756  
757 -[[image:1654502005655-729.png]]
648 +[[image:1654502005655-729.png||height="503" width="801"]]
758 758  
759 759  
760 760  
... ... @@ -761,10 +761,10 @@
761 761  In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
762 762  
763 763  
764 - [[image:1654502050864-459.png]]
655 + [[image:1654502050864-459.png||height="564" width="806"]]
765 765  
766 766  
767 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
658 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
768 768  
769 769  
770 770  (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
... ... @@ -876,20 +876,38 @@
876 876  
877 877  == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
878 878  
879 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]].
770 +(((
771 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
880 880  When downloading the images, choose the required image file for download. ​
773 +)))
881 881  
775 +(((
776 +
777 +)))
882 882  
779 +(((
883 883  How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
781 +)))
884 884  
783 +(((
784 +
785 +)))
885 885  
787 +(((
886 886  You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
789 +)))
887 887  
791 +(((
792 +
793 +)))
888 888  
795 +(((
889 889  For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
797 +)))
890 890  
891 891  [[image:image-20220606154726-3.png]]
892 892  
801 +
893 893  When you use the TTN network, the US915 frequency bands use are:
894 894  
895 895  * 903.9 - SF7BW125 to SF10BW125
... ... @@ -902,37 +902,47 @@
902 902  * 905.3 - SF7BW125 to SF10BW125
903 903  * 904.6 - SF8BW500
904 904  
814 +(((
905 905  Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
906 906  
907 -(% class="box infomessage" %)
908 -(((
909 -**AT+CHE=2**
817 +* (% style="color:#037691" %)**AT+CHE=2**
818 +* (% style="color:#037691" %)**ATZ**
910 910  )))
911 911  
912 -(% class="box infomessage" %)
913 913  (((
914 -**ATZ**
915 -)))
822 +
916 916  
917 917  to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
825 +)))
918 918  
827 +(((
828 +
829 +)))
919 919  
831 +(((
920 920  The **AU915** band is similar. Below are the AU915 Uplink Channels.
833 +)))
921 921  
922 922  [[image:image-20220606154825-4.png]]
923 923  
924 924  
838 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
925 925  
840 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
841 +
842 +
926 926  = 5. Trouble Shooting =
927 927  
928 -== 5.1 ​Why I cant join TTN in US915 / AU915 bands? ==
845 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
929 929  
930 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
847 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
931 931  
932 932  
933 -== 5.2 AT Command input doesnt work ==
850 +== 5.2 AT Command input doesn't work ==
934 934  
935 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
852 +(((
853 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
854 +)))
936 936  
937 937  
938 938  == 5.3 Device rejoin in at the second uplink packet ==
... ... @@ -944,7 +944,9 @@
944 944  
945 945  (% style="color:#4f81bd" %)**Cause for this issue:**
946 946  
866 +(((
947 947  The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
868 +)))
948 948  
949 949  
950 950  (% style="color:#4f81bd" %)**Solution: **
... ... @@ -951,7 +951,7 @@
951 951  
952 952  All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
953 953  
954 -[[image:1654500929571-736.png]]
875 +[[image:1654500929571-736.png||height="458" width="832"]]
955 955  
956 956  
957 957  = 6. ​Order Info =
... ... @@ -976,10 +976,17 @@
976 976  * (% style="color:red" %)**4**(%%): 4000mAh battery
977 977  * (% style="color:red" %)**8**(%%): 8500mAh battery
978 978  
900 +(% class="wikigeneratedid" %)
901 +(((
902 +
903 +)))
904 +
979 979  = 7. Packing Info =
980 980  
981 981  (((
982 -**Package Includes**:
908 +
909 +
910 +(% style="color:#037691" %)**Package Includes**:
983 983  )))
984 984  
985 985  * (((
... ... @@ -988,10 +988,8 @@
988 988  
989 989  (((
990 990  
991 -)))
992 992  
993 -(((
994 -**Dimension and weight**:
920 +(% style="color:#037691" %)**Dimension and weight**:
995 995  )))
996 996  
997 997  * (((
... ... @@ -1005,6 +1005,8 @@
1005 1005  )))
1006 1006  * (((
1007 1007  Weight / pcs : g
934 +
935 +
1008 1008  )))
1009 1009  
1010 1010  = 8. Support =
... ... @@ -1011,4 +1011,3 @@
1011 1011  
1012 1012  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1013 1013  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1014 -
1654504596150-405.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +66.7 KB
Content
1654504683289-357.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +94.0 KB
Content
1654504778294-788.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +119.4 KB
Content
1654504881641-514.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +119.4 KB
Content
1654504907647-967.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +54.7 KB
Content
1654505570700-128.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +59.2 KB
Content
1654505857935-743.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +86.0 KB
Content
1654505874829-548.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +129.9 KB
Content
1654505905236-553.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +92.0 KB
Content
1654505925508-181.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +69.5 KB
Content
1654506634463-199.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1654506665940-119.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +423.3 KB
Content
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
image-20220606163732-6.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +16.5 KB
Content
image-20220606163915-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +94.8 KB
Content
image-20220606165544-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +11.6 KB
Content
image-20220606171726-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +171.0 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content