Last modified by Mengting Qiu on 2024/04/02 16:44

From version 15.2
edited by Xiaoling
on 2022/06/06 16:26
Change comment: There is no comment for this version
To version 45.4
edited by Xiaoling
on 2022/07/08 10:36
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="848" width="848"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
... ... @@ -8,247 +8,428 @@
8 8  
9 9  
10 10  
11 -= 1. Introduction =
12 12  
13 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 14  
15 -(((
16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
17 -)))
18 18  
19 -(((
20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
21 -)))
14 +**Table of Contents:**
22 22  
23 -(((
24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
25 -)))
26 26  
27 -(((
28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
29 -)))
30 30  
18 +
19 +
20 +
21 += 1.  Introduction =
22 +
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24 +
31 31  (((
32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
33 -)))
26 +
34 34  
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
35 35  
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 +
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 +
36 +
37 +)))
38 +
36 36  [[image:1654503236291-817.png]]
37 37  
38 38  
39 -[[image:1654503265560-120.png]]
42 +[[image:1657245163077-232.png]]
40 40  
41 41  
42 42  
43 43  == 1.2 ​Features ==
44 44  
45 -* LoRaWAN 1.0.3 Class A
46 -* Ultra low power consumption
48 +
49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
47 47  * Monitor Soil Moisture
48 48  * Monitor Soil Temperature
49 49  * Monitor Soil Conductivity
50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
51 51  * AT Commands to change parameters
52 52  * Uplink on periodically
53 53  * Downlink to change configure
54 54  * IP66 Waterproof Enclosure
55 -* 4000mAh or 8500mAh Battery for long term use
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
59 +* Micro SIM card slot for NB-IoT SIM
60 +* 8500mAh Battery for long term use
56 56  
57 57  
58 -== 1.3 Specification ==
59 59  
64 +== 1.3  Specification ==
65 +
66 +
67 +(% style="color:#037691" %)**Common DC Characteristics:**
68 +
69 +* Supply Voltage: 2.1v ~~ 3.6v
70 +* Operating Temperature: -40 ~~ 85°C
71 +
72 +
73 +(% style="color:#037691" %)**NB-IoT Spec:**
74 +
75 +* - B1 @H-FDD: 2100MHz
76 +* - B3 @H-FDD: 1800MHz
77 +* - B8 @H-FDD: 900MHz
78 +* - B5 @H-FDD: 850MHz
79 +* - B20 @H-FDD: 800MHz
80 +* - B28 @H-FDD: 700MHz
81 +
82 +
83 +(% style="color:#037691" %)**Probe Specification:**
84 +
60 60  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
61 61  
62 -[[image:image-20220606162220-5.png]]
87 +[[image:image-20220708101224-1.png]]
63 63  
64 64  
65 65  
66 -== ​1.4 Applications ==
91 +== ​1.4  Applications ==
67 67  
68 68  * Smart Agriculture
69 69  
95 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
96 +​
70 70  
71 -== 1.5 Firmware Change log ==
98 +== 1.5  Pin Definitions ==
72 72  
73 73  
74 -**LSE01 v1.0 :**  Release
101 +[[image:1657246476176-652.png]]
75 75  
76 76  
77 77  
78 -= 2. Configure LSE01 to connect to LoRaWAN network =
105 += 2.  Use NSE01 to communicate with IoT Server =
79 79  
80 -== 2.1 How it works ==
107 +== 2.1  How it works ==
81 81  
82 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
83 83  
110 +(((
111 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
112 +)))
84 84  
85 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>path:#_​Using_the_AT]]to set the keys in the LSE01.
86 86  
115 +(((
116 +The diagram below shows the working flow in default firmware of NSE01:
117 +)))
87 87  
119 +[[image:image-20220708101605-2.png]]
88 88  
89 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
121 +(((
122 +
123 +)))
90 90  
91 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
92 92  
93 93  
94 -[[image:1654503992078-669.png]]
127 +== 2.2 ​ Configure the NSE01 ==
95 95  
129 +=== 2.2.1 Test Requirement ===
96 96  
97 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
98 98  
132 +To use NSE01 in your city, make sure meet below requirements:
99 99  
100 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
134 +* Your local operator has already distributed a NB-IoT Network there.
135 +* The local NB-IoT network used the band that NSE01 supports.
136 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
101 101  
102 -Each LSE01 is shipped with a sticker with the default device EUI as below:
103 103  
139 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
104 104  
105 105  
142 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.gif]]
106 106  
107 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
108 108  
109 109  
110 -**Add APP EUI in the application**
146 +1.
147 +11.
148 +111. Insert SIM card
111 111  
150 +Insert the NB-IoT Card get from your provider.
112 112  
113 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]]
114 114  
153 +User need to take out the NB-IoT module and insert the SIM card like below:
115 115  
116 116  
117 -**Add APP KEY and DEV EUI**
156 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.gif]]
118 118  
119 119  
120 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image005.png]]
159 +1.
160 +11.
161 +111. Connect USB – TTL to NSE01 to configure it
121 121  
122 -|(((
123 -
124 -)))
125 125  
126 -**Step 2**: Power on LSE01
164 +User need to configure NSE01 via serial port to set the **Server Address** / **Uplink Topic** to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
127 127  
128 128  
129 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
130 130  
131 131  
169 +Connection:
132 132  
133 -|(((
134 -
135 -)))
171 +USB TTL GND <~-~-~-~-> GND
136 136  
137 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image006.png]]
173 +USB TTL TXD <~-~-~-~-> UART_RXD
138 138  
175 +USB TTL RXD <~-~-~-~-> UART_TXD
139 139  
140 140  
141 141  
179 +In the PC, use below serial tool settings:
142 142  
143 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
181 +* Baud: **9600**
182 +* Data bits:** 8**
183 +* Stop bits: **1**
184 +* Parity: **None**
185 +* Flow Control: **None**
144 144  
145 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]
146 146  
188 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the **password: 12345678** to access AT Command input.
147 147  
190 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.jpg]]
148 148  
192 +Note: the valid AT Commands can be found at:
149 149  
150 -1.
151 -11. ​Uplink Payload
152 -111. MOD=0(Default Mode)
194 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
153 153  
154 -LSE01 will uplink payload via LoRaWAN with below payload format: 
155 155  
197 +1.
198 +11.
199 +111. Use CoAP protocol to uplink data 
156 156  
201 +
202 +Note: if you don’t have CoAP server, you can refer this link to set up one:
203 +
204 +[[http:~~/~~/wiki.dragino.com/index.php?title=Set_up_CoAP_Server>>url:http://wiki.dragino.com/index.php?title=Set_up_CoAP_Server]]
205 +
206 +
207 +Use below commands:
208 +
209 +* **AT+PRO=1**    ~/~/ Set to use CoAP protocol to uplink
210 +* **AT+SERVADDR=120.24.4.116,5683   **~/~/ to set CoAP server address and port
211 +* **AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0"       **~/~/Set COAP resource path
212 +
213 +
214 +For parameter description, please refer to AT command set
215 +
216 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.jpg]]
217 +
218 +
219 +After configure the server address and **reset the device** (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
220 +
221 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.jpg]]
222 +
223 +1.
224 +11.
225 +111. Use UDP protocol to uplink data(Default protocol)
226 +
227 +
228 +This feature is supported since firmware version v1.0.1
229 +
230 +
231 +* **AT+PRO=2   ** ~/~/ Set to use UDP protocol to uplink
232 +* **AT+SERVADDR=120.24.4.116,5601   **~/~/ to set UDP server address and port
233 +* **AT+CFM=1       **~/~/If the server does not respond, this command is unnecessary
234 +
235 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.jpg]]
236 +
237 +
238 +
239 +
240 +
241 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.jpg]]
242 +
243 +
244 +1.
245 +11.
246 +111. Use MQTT protocol to uplink data
247 +
248 +
249 +This feature is supported since firmware version v110
250 +
251 +
252 +* **AT+PRO=3   ** ~/~/Set to use MQTT protocol to uplink
253 +* **AT+SERVADDR=120.24.4.116,1883   **~/~/Set MQTT server address and port
254 +* **AT+CLIENT=CLIENT **~/~/Set up the CLIENT of MQTT
255 +* **AT+UNAME=UNAME                           **~/~/Set the username of MQTT
256 +* **AT+PWD=PWD                                      **~/~/Set the password of MQTT
257 +* **AT+PUBTOPIC=NSE01_PUB   **~/~/Set the sending topic of MQTT
258 +* **AT+SUBTOPIC=NSE01_SUB    **~/~/Set the subscription topic of MQTT
259 +
260 +
261 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.gif]]
262 +
263 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.jpg]]
264 +
265 +
266 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
267 +
268 +
269 +1.
270 +11.
271 +111. Use TCP protocol to uplink data
272 +
273 +
274 +This feature is supported since firmware version v110
275 +
276 +
277 +* **AT+PRO=4   ** ~/~/ Set to use TCP protocol to uplink
278 +* **AT+SERVADDR=120.24.4.116,5600   **~/~/ to set TCP server address and port
279 +
280 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.jpg]]
281 +
282 +
283 +
284 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]]
285 +
286 +
287 +1.
288 +11.
289 +111. Change Update Interval
290 +
291 +User can use below command to change the **uplink interval**.
292 +
293 +**~ AT+TDC=600      **~/~/ Set Update Interval to 600s
294 +
295 +
296 +**NOTE:**
297 +
298 +1. By default, the device will send an uplink message every 1 hour.
299 +
300 +
301 +
302 +
303 +
304 +
305 +
306 +== 2.3 Uplink Payload ==
307 +
308 +
309 +=== 2.3.1 MOD~=0(Default Mode) ===
310 +
311 +LSE01 will uplink payload via LoRaWAN with below payload format: 
312 +
313 +(((
157 157  Uplink payload includes in total 11 bytes.
158 -
315 +)))
159 159  
317 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
160 160  |(((
161 161  **Size**
162 162  
163 163  **(bytes)**
164 164  )))|**2**|**2**|**2**|**2**|**2**|**1**
165 -|**Value**|[[BAT>>path:#bat]]|(((
323 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
166 166  Temperature
167 167  
168 168  (Reserve, Ignore now)
169 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|(((
327 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
170 170  MOD & Digital Interrupt
171 171  
172 172  (Optional)
173 173  )))
174 174  
175 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]
333 +=== 2.3.2 MOD~=1(Original value) ===
176 176  
177 -
178 -1.
179 -11.
180 -111. MOD=1(Original value)
181 -
182 182  This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
183 183  
337 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
184 184  |(((
185 185  **Size**
186 186  
187 187  **(bytes)**
188 188  )))|**2**|**2**|**2**|**2**|**2**|**1**
189 -|**Value**|[[BAT>>path:#bat]]|(((
343 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
190 190  Temperature
191 191  
192 192  (Reserve, Ignore now)
193 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|(((
347 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
194 194  MOD & Digital Interrupt
195 195  
196 196  (Optional)
197 197  )))
198 198  
199 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image008.png]]
353 +=== 2.3.3 Battery Info ===
200 200  
201 -1.
202 -11.
203 -111. Battery Info
204 -
355 +(((
205 205  Check the battery voltage for LSE01.
357 +)))
206 206  
359 +(((
207 207  Ex1: 0x0B45 = 2885mV
361 +)))
208 208  
363 +(((
209 209  Ex2: 0x0B49 = 2889mV
365 +)))
210 210  
211 211  
212 212  
213 -1.
214 -11.
215 -111. Soil Moisture
369 +=== 2.3.4 Soil Moisture ===
216 216  
371 +(((
217 217  Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
373 +)))
218 218  
219 -For example, if the data you get from the register is 0x05 0xDC, the moisture content in the soil is
375 +(((
376 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
377 +)))
220 220  
221 -**05DC(H) = 1500(D) /100 = 15%.**
379 +(((
380 +
381 +)))
222 222  
383 +(((
384 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
385 +)))
223 223  
224 -1.
225 -11.
226 -111. Soil Temperature
227 227  
388 +
389 +=== 2.3.5 Soil Temperature ===
390 +
391 +(((
228 228   Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
393 +)))
229 229  
395 +(((
230 230  **Example**:
397 +)))
231 231  
399 +(((
232 232  If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
401 +)))
233 233  
403 +(((
234 234  If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
405 +)))
235 235  
236 236  
237 -1.
238 -11.
239 -111. Soil Conductivity (EC)
240 240  
241 -Obtain soluble salt concentration in soil or soluble ion concentration in liquid fertilizer or planting medium,. The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
409 +=== 2.3.6 Soil Conductivity (EC) ===
242 242  
411 +(((
412 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
413 +)))
414 +
415 +(((
243 243  For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
417 +)))
244 244  
245 -
419 +(((
246 246  Generally, the EC value of irrigation water is less than 800uS / cm.
421 +)))
247 247  
248 -1.
249 -11.
250 -111. MOD
423 +(((
424 +
425 +)))
251 251  
427 +(((
428 +
429 +)))
430 +
431 +=== 2.3.7 MOD ===
432 +
252 252  Firmware version at least v2.1 supports changing mode.
253 253  
254 254  For example, bytes[10]=90
... ... @@ -256,7 +256,7 @@
256 256  mod=(bytes[10]>>7)&0x01=1.
257 257  
258 258  
259 -Downlink Command:
440 +**Downlink Command:**
260 260  
261 261  If payload = 0x0A00, workmode=0
262 262  
... ... @@ -263,107 +263,127 @@
263 263  If** **payload =** **0x0A01, workmode=1
264 264  
265 265  
266 -1.
267 -11.
268 -111. ​Decode payload in The Things Network
269 269  
448 +=== 2.3.8 ​Decode payload in The Things Network ===
449 +
270 270  While using TTN network, you can add the payload format to decode the payload.
271 271  
272 272  
273 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.png]]
453 +[[image:1654505570700-128.png]]
274 274  
455 +(((
275 275  The payload decoder function for TTN is here:
457 +)))
276 276  
277 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
459 +(((
460 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
461 +)))
278 278  
279 279  
280 -1.
281 -11. Uplink Interval
464 +== 2.4 Uplink Interval ==
282 282  
283 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
466 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
284 284  
285 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
286 286  
287 -1.
288 -11. ​Downlink Payload
289 289  
470 +== 2.5 Downlink Payload ==
471 +
290 290  By default, LSE50 prints the downlink payload to console port.
291 291  
292 -|**Downlink Control Type**|**FPort**|**Type Code**|**Downlink payload size(bytes)**
293 -|TDC (Transmit Time Interval)|Any|01|4
294 -|RESET|Any|04|2
295 -|AT+CFM|Any|05|4
296 -|INTMOD|Any|06|4
297 -|MOD|Any|0A|2
474 +[[image:image-20220606165544-8.png]]
298 298  
299 -**Examples**
300 300  
477 +(((
478 +(% style="color:blue" %)**Examples:**
479 +)))
301 301  
302 -**Set TDC**
481 +(((
482 +
483 +)))
303 303  
485 +* (((
486 +(% style="color:blue" %)**Set TDC**
487 +)))
488 +
489 +(((
304 304  If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
491 +)))
305 305  
493 +(((
306 306  Payload:    01 00 00 1E    TDC=30S
495 +)))
307 307  
497 +(((
308 308  Payload:    01 00 00 3C    TDC=60S
499 +)))
309 309  
501 +(((
502 +
503 +)))
310 310  
311 -**Reset**
505 +* (((
506 +(% style="color:blue" %)**Reset**
507 +)))
312 312  
509 +(((
313 313  If payload = 0x04FF, it will reset the LSE01
511 +)))
314 314  
315 315  
316 -**CFM**
514 +* (% style="color:blue" %)**CFM**
317 317  
318 318  Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
319 319  
320 -1.
321 -11. ​Show Data in DataCake IoT Server
322 322  
323 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
324 324  
520 +== 2.6 ​Show Data in DataCake IoT Server ==
325 325  
326 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
522 +(((
523 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
524 +)))
327 327  
328 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
526 +(((
527 +
528 +)))
329 329  
530 +(((
531 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
532 +)))
330 330  
331 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]]
534 +(((
535 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
536 +)))
332 332  
333 333  
334 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]]
539 +[[image:1654505857935-743.png]]
335 335  
336 336  
542 +[[image:1654505874829-548.png]]
337 337  
338 338  
545 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
339 339  
340 -Step 3: Create an account or log in Datacake.
547 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
341 341  
342 -Step 4: Search the LSE01 and add DevEUI.
343 343  
550 +[[image:1654505905236-553.png]]
344 344  
345 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]]
346 346  
347 -
348 -
349 349  After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
350 350  
555 +[[image:1654505925508-181.png]]
351 351  
352 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]
353 353  
354 354  
559 +== 2.7 Frequency Plans ==
355 355  
356 -1.
357 -11. Frequency Plans
358 -
359 359  The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
360 360  
361 -1.
362 -11.
363 -111. EU863-870 (EU868)
364 364  
365 -Uplink:
564 +=== 2.7.1 EU863-870 (EU868) ===
366 366  
566 +(% style="color:#037691" %)** Uplink:**
567 +
367 367  868.1 - SF7BW125 to SF12BW125
368 368  
369 369  868.3 - SF7BW125 to SF12BW125 and SF7BW250
... ... @@ -383,7 +383,7 @@
383 383  868.8 - FSK
384 384  
385 385  
386 -Downlink:
587 +(% style="color:#037691" %)** Downlink:**
387 387  
388 388  Uplink channels 1-9 (RX1)
389 389  
... ... @@ -390,13 +390,12 @@
390 390  869.525 - SF9BW125 (RX2 downlink only)
391 391  
392 392  
393 -1.
394 -11.
395 -111. US902-928(US915)
396 396  
595 +=== 2.7.2 US902-928(US915) ===
596 +
397 397  Used in USA, Canada and South America. Default use CHE=2
398 398  
399 -Uplink:
599 +(% style="color:#037691" %)**Uplink:**
400 400  
401 401  903.9 - SF7BW125 to SF10BW125
402 402  
... ... @@ -415,7 +415,7 @@
415 415  905.3 - SF7BW125 to SF10BW125
416 416  
417 417  
418 -Downlink:
618 +(% style="color:#037691" %)**Downlink:**
419 419  
420 420  923.3 - SF7BW500 to SF12BW500
421 421  
... ... @@ -436,13 +436,12 @@
436 436  923.3 - SF12BW500(RX2 downlink only)
437 437  
438 438  
439 -1.
440 -11.
441 -111. CN470-510 (CN470)
442 442  
640 +=== 2.7.3 CN470-510 (CN470) ===
641 +
443 443  Used in China, Default use CHE=1
444 444  
445 -Uplink:
644 +(% style="color:#037691" %)**Uplink:**
446 446  
447 447  486.3 - SF7BW125 to SF12BW125
448 448  
... ... @@ -461,7 +461,7 @@
461 461  487.7 - SF7BW125 to SF12BW125
462 462  
463 463  
464 -Downlink:
663 +(% style="color:#037691" %)**Downlink:**
465 465  
466 466  506.7 - SF7BW125 to SF12BW125
467 467  
... ... @@ -482,13 +482,12 @@
482 482  505.3 - SF12BW125 (RX2 downlink only)
483 483  
484 484  
485 -1.
486 -11.
487 -111. AU915-928(AU915)
488 488  
685 +=== 2.7.4 AU915-928(AU915) ===
686 +
489 489  Default use CHE=2
490 490  
491 -Uplink:
689 +(% style="color:#037691" %)**Uplink:**
492 492  
493 493  916.8 - SF7BW125 to SF12BW125
494 494  
... ... @@ -507,7 +507,7 @@
507 507  918.2 - SF7BW125 to SF12BW125
508 508  
509 509  
510 -Downlink:
708 +(% style="color:#037691" %)**Downlink:**
511 511  
512 512  923.3 - SF7BW500 to SF12BW500
513 513  
... ... @@ -527,22 +527,22 @@
527 527  
528 528  923.3 - SF12BW500(RX2 downlink only)
529 529  
530 -1.
531 -11.
532 -111. AS920-923 & AS923-925 (AS923)
533 533  
534 -**Default Uplink channel:**
535 535  
730 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
731 +
732 +(% style="color:#037691" %)**Default Uplink channel:**
733 +
536 536  923.2 - SF7BW125 to SF10BW125
537 537  
538 538  923.4 - SF7BW125 to SF10BW125
539 539  
540 540  
541 -**Additional Uplink Channel**:
739 +(% style="color:#037691" %)**Additional Uplink Channel**:
542 542  
543 543  (OTAA mode, channel added by JoinAccept message)
544 544  
545 -**AS920~~AS923 for Japan, Malaysia, Singapore**:
743 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
546 546  
547 547  922.2 - SF7BW125 to SF10BW125
548 548  
... ... @@ -557,7 +557,7 @@
557 557  922.0 - SF7BW125 to SF10BW125
558 558  
559 559  
560 -**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
758 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
561 561  
562 562  923.6 - SF7BW125 to SF10BW125
563 563  
... ... @@ -572,18 +572,16 @@
572 572  924.6 - SF7BW125 to SF10BW125
573 573  
574 574  
773 +(% style="color:#037691" %)** Downlink:**
575 575  
576 -**Downlink:**
577 -
578 578  Uplink channels 1-8 (RX1)
579 579  
580 580  923.2 - SF10BW125 (RX2)
581 581  
582 582  
583 -1.
584 -11.
585 -111. KR920-923 (KR920)
586 586  
781 +=== 2.7.6 KR920-923 (KR920) ===
782 +
587 587  Default channel:
588 588  
589 589  922.1 - SF7BW125 to SF12BW125
... ... @@ -593,7 +593,7 @@
593 593  922.5 - SF7BW125 to SF12BW125
594 594  
595 595  
596 -Uplink: (OTAA mode, channel added by JoinAccept message)
792 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
597 597  
598 598  922.1 - SF7BW125 to SF12BW125
599 599  
... ... @@ -610,7 +610,7 @@
610 610  923.3 - SF7BW125 to SF12BW125
611 611  
612 612  
613 -Downlink:
809 +(% style="color:#037691" %)**Downlink:**
614 614  
615 615  Uplink channels 1-7(RX1)
616 616  
... ... @@ -617,12 +617,11 @@
617 617  921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
618 618  
619 619  
620 -1.
621 -11.
622 -111. IN865-867 (IN865)
623 623  
624 -Uplink:
817 +=== 2.7.7 IN865-867 (IN865) ===
625 625  
819 +(% style="color:#037691" %)** Uplink:**
820 +
626 626  865.0625 - SF7BW125 to SF12BW125
627 627  
628 628  865.4025 - SF7BW125 to SF12BW125
... ... @@ -630,7 +630,7 @@
630 630  865.9850 - SF7BW125 to SF12BW125
631 631  
632 632  
633 -Downlink:
828 +(% style="color:#037691" %) **Downlink:**
634 634  
635 635  Uplink channels 1-3 (RX1)
636 636  
... ... @@ -637,110 +637,129 @@
637 637  866.550 - SF10BW125 (RX2)
638 638  
639 639  
640 -1.
641 -11. LED Indicator
642 642  
643 -The LSE01 has an internal LED which is to show the status of different state.
644 644  
837 +== 2.8 LED Indicator ==
645 645  
839 +The LSE01 has an internal LED which is to show the status of different state.
840 +
646 646  * Blink once when device power on.
647 647  * Solid ON for 5 seconds once device successful Join the network.
648 648  * Blink once when device transmit a packet.
649 649  
650 -1.
651 -11. Installation in Soil
845 +== 2.9 Installation in Soil ==
652 652  
653 653  **Measurement the soil surface**
654 654  
655 655  
656 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] ​
850 +[[image:1654506634463-199.png]] ​
657 657  
852 +(((
853 +(((
658 658  Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
855 +)))
856 +)))
659 659  
660 660  
661 661  
860 +[[image:1654506665940-119.png]]
662 662  
663 -
664 -
665 -
666 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
667 -
668 -
669 -
862 +(((
670 670  Dig a hole with diameter > 20CM.
864 +)))
671 671  
866 +(((
672 672  Horizontal insert the probe to the soil and fill the hole for long term measurement.
868 +)))
673 673  
674 674  
871 +== 2.10 ​Firmware Change Log ==
675 675  
676 -
677 -1.
678 -11. ​Firmware Change Log
679 -
873 +(((
680 680  **Firmware download link:**
875 +)))
681 681  
877 +(((
682 682  [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
879 +)))
683 683  
881 +(((
882 +
883 +)))
684 684  
685 -**Firmware Upgrade Method:**
885 +(((
886 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
887 +)))
686 686  
687 -[[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]]
889 +(((
890 +
891 +)))
688 688  
689 -
893 +(((
690 690  **V1.0.**
895 +)))
691 691  
897 +(((
692 692  Release
899 +)))
693 693  
694 694  
902 +== 2.11 ​Battery Analysis ==
695 695  
696 -1.
697 -11. ​Battery Analysis
698 -111. ​Battery Type
904 +=== 2.11.1 ​Battery Type ===
699 699  
906 +(((
700 700  The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
908 +)))
701 701  
702 -
910 +(((
703 703  The battery is designed to last for more than 5 years for the LSN50.
912 +)))
704 704  
914 +(((
915 +(((
916 +The battery-related documents are as below:
917 +)))
918 +)))
705 705  
706 -The battery related documents as below:
707 -
708 -* [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
709 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]]
710 -* [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
711 -
712 -|(((
713 -JST-XH-2P connector
920 +* (((
921 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
714 714  )))
923 +* (((
924 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
925 +)))
926 +* (((
927 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
928 +)))
715 715  
716 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
930 + [[image:image-20220610172436-1.png]]
717 717  
718 718  
719 719  
720 -1.
721 -11.
722 -111. ​Battery Note
934 +=== 2.11.2 ​Battery Note ===
723 723  
936 +(((
724 724  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
938 +)))
725 725  
726 726  
727 -1.
728 -11.
729 -111. ​Replace the battery
730 730  
942 +=== 2.11.3 Replace the battery ===
943 +
944 +(((
731 731  If Battery is lower than 2.7v, user should replace the battery of LSE01.
946 +)))
732 732  
733 -
948 +(((
734 734  You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
950 +)))
735 735  
736 -
952 +(((
737 737  The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
954 +)))
738 738  
739 739  
740 740  
741 -
742 -
743 -
744 744  = 3. ​Using the AT Commands =
745 745  
746 746  == 3.1 Access AT Commands ==
... ... @@ -748,13 +748,13 @@
748 748  
749 749  LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
750 750  
751 -[[image:1654501986557-872.png]]
965 +[[image:1654501986557-872.png||height="391" width="800"]]
752 752  
753 753  
754 754  Or if you have below board, use below connection:
755 755  
756 756  
757 -[[image:1654502005655-729.png]]
971 +[[image:1654502005655-729.png||height="503" width="801"]]
758 758  
759 759  
760 760  
... ... @@ -761,10 +761,10 @@
761 761  In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
762 762  
763 763  
764 - [[image:1654502050864-459.png]]
978 + [[image:1654502050864-459.png||height="564" width="806"]]
765 765  
766 766  
767 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
981 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
768 768  
769 769  
770 770  (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
... ... @@ -876,20 +876,38 @@
876 876  
877 877  == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
878 878  
879 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]].
1093 +(((
1094 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
880 880  When downloading the images, choose the required image file for download. ​
1096 +)))
881 881  
1098 +(((
1099 +
1100 +)))
882 882  
1102 +(((
883 883  How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
1104 +)))
884 884  
1106 +(((
1107 +
1108 +)))
885 885  
1110 +(((
886 886  You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
1112 +)))
887 887  
1114 +(((
1115 +
1116 +)))
888 888  
1118 +(((
889 889  For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
1120 +)))
890 890  
891 891  [[image:image-20220606154726-3.png]]
892 892  
1124 +
893 893  When you use the TTN network, the US915 frequency bands use are:
894 894  
895 895  * 903.9 - SF7BW125 to SF10BW125
... ... @@ -902,37 +902,47 @@
902 902  * 905.3 - SF7BW125 to SF10BW125
903 903  * 904.6 - SF8BW500
904 904  
1137 +(((
905 905  Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
906 906  
907 -(% class="box infomessage" %)
908 -(((
909 -**AT+CHE=2**
1140 +* (% style="color:#037691" %)**AT+CHE=2**
1141 +* (% style="color:#037691" %)**ATZ**
910 910  )))
911 911  
912 -(% class="box infomessage" %)
913 913  (((
914 -**ATZ**
915 -)))
1145 +
916 916  
917 917  to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1148 +)))
918 918  
1150 +(((
1151 +
1152 +)))
919 919  
1154 +(((
920 920  The **AU915** band is similar. Below are the AU915 Uplink Channels.
1156 +)))
921 921  
922 922  [[image:image-20220606154825-4.png]]
923 923  
924 924  
1161 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
925 925  
1163 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1164 +
1165 +
926 926  = 5. Trouble Shooting =
927 927  
928 -== 5.1 ​Why I cant join TTN in US915 / AU915 bands? ==
1168 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
929 929  
930 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1170 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
931 931  
932 932  
933 -== 5.2 AT Command input doesnt work ==
1173 +== 5.2 AT Command input doesn't work ==
934 934  
935 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1175 +(((
1176 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1177 +)))
936 936  
937 937  
938 938  == 5.3 Device rejoin in at the second uplink packet ==
... ... @@ -944,7 +944,9 @@
944 944  
945 945  (% style="color:#4f81bd" %)**Cause for this issue:**
946 946  
1189 +(((
947 947  The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1191 +)))
948 948  
949 949  
950 950  (% style="color:#4f81bd" %)**Solution: **
... ... @@ -951,7 +951,7 @@
951 951  
952 952  All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
953 953  
954 -[[image:1654500929571-736.png]]
1198 +[[image:1654500929571-736.png||height="458" width="832"]]
955 955  
956 956  
957 957  = 6. ​Order Info =
... ... @@ -976,10 +976,17 @@
976 976  * (% style="color:red" %)**4**(%%): 4000mAh battery
977 977  * (% style="color:red" %)**8**(%%): 8500mAh battery
978 978  
1223 +(% class="wikigeneratedid" %)
1224 +(((
1225 +
1226 +)))
1227 +
979 979  = 7. Packing Info =
980 980  
981 981  (((
982 -**Package Includes**:
1231 +
1232 +
1233 +(% style="color:#037691" %)**Package Includes**:
983 983  )))
984 984  
985 985  * (((
... ... @@ -988,10 +988,8 @@
988 988  
989 989  (((
990 990  
991 -)))
992 992  
993 -(((
994 -**Dimension and weight**:
1243 +(% style="color:#037691" %)**Dimension and weight**:
995 995  )))
996 996  
997 997  * (((
... ... @@ -1005,6 +1005,8 @@
1005 1005  )))
1006 1006  * (((
1007 1007  Weight / pcs : g
1257 +
1258 +
1008 1008  )))
1009 1009  
1010 1010  = 8. Support =
... ... @@ -1011,4 +1011,3 @@
1011 1011  
1012 1012  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1013 1013  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1014 -
1654504596150-405.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +66.7 KB
Content
1654504683289-357.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +94.0 KB
Content
1654504778294-788.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +119.4 KB
Content
1654504881641-514.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +119.4 KB
Content
1654504907647-967.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +54.7 KB
Content
1654505570700-128.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +59.2 KB
Content
1654505857935-743.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +86.0 KB
Content
1654505874829-548.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +129.9 KB
Content
1654505905236-553.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +92.0 KB
Content
1654505925508-181.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +69.5 KB
Content
1654506634463-199.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1654506665940-119.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +423.3 KB
Content
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
image-20220606163732-6.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +16.5 KB
Content
image-20220606163915-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +94.8 KB
Content
image-20220606165544-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +11.6 KB
Content
image-20220606171726-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +171.0 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content