Last modified by Mengting Qiu on 2024/04/02 16:44

From version 14.3
edited by Xiaoling
on 2022/06/06 16:24
Change comment: There is no comment for this version
To version 65.10
edited by Xiaoling
on 2022/07/08 15:43
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="848" width="848"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
... ... @@ -8,1010 +8,832 @@
8 8  
9 9  
10 10  
11 -= 1. Introduction =
12 12  
13 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 14  
13 +
14 +**Table of Contents:**
15 +
16 +{{toc/}}
17 +
18 +
19 +
20 +
21 +
22 +
23 +
24 += 1.  Introduction =
25 +
26 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
27 +
15 15  (((
16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
17 -)))
29 +
18 18  
19 19  (((
20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
32 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
21 21  )))
22 22  
23 23  (((
24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
36 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
25 25  )))
26 26  
27 27  (((
28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
40 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
29 29  )))
30 30  
31 31  (((
32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
44 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
33 33  )))
34 34  
47 +
48 +)))
35 35  
36 36  [[image:1654503236291-817.png]]
37 37  
38 38  
39 -[[image:1654503265560-120.png]]
53 +[[image:1657245163077-232.png]]
40 40  
41 41  
42 42  
43 -== 1.2 ​Features ==
57 +== 1.2 ​ Features ==
44 44  
45 -* LoRaWAN 1.0.3 Class A
46 -* Ultra low power consumption
59 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
47 47  * Monitor Soil Moisture
48 48  * Monitor Soil Temperature
49 49  * Monitor Soil Conductivity
50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
51 51  * AT Commands to change parameters
52 52  * Uplink on periodically
53 53  * Downlink to change configure
54 54  * IP66 Waterproof Enclosure
55 -* 4000mAh or 8500mAh Battery for long term use
67 +* Ultra-Low Power consumption
68 +* AT Commands to change parameters
69 +* Micro SIM card slot for NB-IoT SIM
70 +* 8500mAh Battery for long term use
56 56  
57 57  
58 -== 1.3 Specification ==
73 +== 1.3  Specification ==
59 59  
60 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
61 61  
62 -[[image:image-20220606162220-5.png]]
76 +(% style="color:#037691" %)**Common DC Characteristics:**
63 63  
78 +* Supply Voltage: 2.1v ~~ 3.6v
79 +* Operating Temperature: -40 ~~ 85°C
64 64  
81 +(% style="color:#037691" %)**NB-IoT Spec:**
65 65  
66 -== ​1.4 Applications ==
83 +* - B1 @H-FDD: 2100MHz
84 +* - B3 @H-FDD: 1800MHz
85 +* - B8 @H-FDD: 900MHz
86 +* - B5 @H-FDD: 850MHz
87 +* - B20 @H-FDD: 800MHz
88 +* - B28 @H-FDD: 700MHz
67 67  
68 -* Smart Agriculture
90 +Probe(% style="color:#037691" %)** Specification:**
69 69  
92 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
70 70  
71 -== ​1.5 Firmware Change log ==
94 +[[image:image-20220708101224-1.png]]
72 72  
73 73  
74 -**LSE01 v1.0 :**  Release
75 75  
98 +== ​1.4  Applications ==
76 76  
100 +* Smart Agriculture
77 77  
78 -= 2. Configure LSE01 to connect to LoRaWAN network =
102 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
103 +​
79 79  
80 -== 2.1 How it works ==
105 +== 1.5  Pin Definitions ==
81 81  
82 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
83 83  
108 +[[image:1657246476176-652.png]]
84 84  
85 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>path:#_​Using_the_AT]]to set the keys in the LSE01.
86 86  
87 87  
112 += 2.  Use NSE01 to communicate with IoT Server =
88 88  
114 +== 2.1  How it works ==
89 89  
90 -1.
91 -11. ​Quick guide to connect to LoRaWAN server (OTAA)
92 92  
93 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
117 +(((
118 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
119 +)))
94 94  
95 95  
96 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image003.png]]
97 -
98 -
99 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
100 -
101 -
102 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
103 -
104 -Each LSE01 is shipped with a sticker with the default device EUI as below:
105 -
106 -
107 -
108 -
109 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
110 -
111 -
112 -**Add APP EUI in the application**
113 -
114 -
115 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]]
116 -
117 -
118 -
119 -**Add APP KEY and DEV EUI**
120 -
121 -
122 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image005.png]]
123 -
124 -|(((
125 -
122 +(((
123 +The diagram below shows the working flow in default firmware of NSE01:
126 126  )))
127 127  
128 -**Step 2**: Power on LSE01
126 +[[image:image-20220708101605-2.png]]
129 129  
130 -
131 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
132 -
133 -
134 -
135 -|(((
128 +(((
136 136  
137 137  )))
138 138  
139 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image006.png]]
140 140  
141 141  
134 +== 2.2 ​ Configure the NSE01 ==
142 142  
143 143  
137 +=== 2.2.1 Test Requirement ===
144 144  
145 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
146 146  
147 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]
148 -
149 -
150 -
151 -
152 -1.
153 -11. ​Uplink Payload
154 -111. MOD=0(Default Mode)
155 -
156 -LSE01 will uplink payload via LoRaWAN with below payload format: 
157 -
158 -
159 -Uplink payload includes in total 11 bytes.
160 -
161 -
162 -|(((
163 -**Size**
164 -
165 -**(bytes)**
166 -)))|**2**|**2**|**2**|**2**|**2**|**1**
167 -|**Value**|[[BAT>>path:#bat]]|(((
168 -Temperature
169 -
170 -(Reserve, Ignore now)
171 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|(((
172 -MOD & Digital Interrupt
173 -
174 -(Optional)
140 +(((
141 +To use NSE01 in your city, make sure meet below requirements:
175 175  )))
176 176  
177 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]
144 +* Your local operator has already distributed a NB-IoT Network there.
145 +* The local NB-IoT network used the band that NSE01 supports.
146 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
178 178  
179 -
180 -1.
181 -11.
182 -111. MOD=1(Original value)
183 -
184 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
185 -
186 -|(((
187 -**Size**
188 -
189 -**(bytes)**
190 -)))|**2**|**2**|**2**|**2**|**2**|**1**
191 -|**Value**|[[BAT>>path:#bat]]|(((
192 -Temperature
193 -
194 -(Reserve, Ignore now)
195 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|(((
196 -MOD & Digital Interrupt
197 -
198 -(Optional)
148 +(((
149 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
199 199  )))
200 200  
201 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image008.png]]
202 202  
203 -1.
204 -11.
205 -111. Battery Info
153 +[[image:1657249419225-449.png]]
206 206  
207 -Check the battery voltage for LSE01.
208 208  
209 -Ex1: 0x0B45 = 2885mV
210 210  
211 -Ex2: 0x0B49 = 2889mV
157 +=== 2.2.2 Insert SIM card ===
212 212  
159 +Insert the NB-IoT Card get from your provider.
213 213  
161 +User need to take out the NB-IoT module and insert the SIM card like below:
214 214  
215 -1.
216 -11.
217 -111. Soil Moisture
218 218  
219 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
164 +[[image:1657249468462-536.png]]
220 220  
221 -For example, if the data you get from the register is 0x05 0xDC, the moisture content in the soil is
222 222  
223 -**05DC(H) = 1500(D) /100 = 15%.**
224 224  
168 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
225 225  
226 -1.
227 -11.
228 -111. Soil Temperature
170 +(((
171 +(((
172 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
173 +)))
174 +)))
229 229  
230 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
231 231  
232 -**Example**:
177 +**Connection:**
233 233  
234 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
179 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
235 235  
236 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
181 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
237 237  
183 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
238 238  
239 -1.
240 -11.
241 -111. Soil Conductivity (EC)
242 242  
243 -Obtain soluble salt concentration in soil or soluble ion concentration in liquid fertilizer or planting medium,. The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
186 +In the PC, use below serial tool settings:
244 244  
245 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
188 +* Baud:  (% style="color:green" %)**9600**
189 +* Data bits:** (% style="color:green" %)8(%%)**
190 +* Stop bits: (% style="color:green" %)**1**
191 +* Parity:  (% style="color:green" %)**None**
192 +* Flow Control: (% style="color:green" %)**None**
246 246  
194 +(((
195 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
196 +)))
247 247  
248 -Generally, the EC value of irrigation water is less than 800uS / cm.
198 +[[image:image-20220708110657-3.png]]
249 249  
250 -1.
251 -11.
252 -111. MOD
200 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
253 253  
254 -Firmware version at least v2.1 supports changing mode.
255 255  
256 -For example, bytes[10]=90
257 257  
258 -mod=(bytes[10]>>7)&0x01=1.
204 +=== 2.2.4 Use CoAP protocol to uplink data ===
259 259  
206 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
260 260  
261 -Downlink Command:
262 262  
263 -If payload = 0x0A00, workmode=0
209 +**Use below commands:**
264 264  
265 -If** **payload =** **0x0A01, workmode=1
211 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
212 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
213 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
266 266  
215 +For parameter description, please refer to AT command set
267 267  
268 -1.
269 -11.
270 -111. ​Decode payload in The Things Network
217 +[[image:1657249793983-486.png]]
271 271  
272 -While using TTN network, you can add the payload format to decode the payload.
273 273  
220 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
274 274  
275 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.png]]
222 +[[image:1657249831934-534.png]]
276 276  
277 -The payload decoder function for TTN is here:
278 278  
279 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
280 280  
226 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
281 281  
282 -1.
283 -11. Uplink Interval
228 +This feature is supported since firmware version v1.0.1
284 284  
285 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
286 286  
287 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
231 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
232 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
233 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
288 288  
289 -1.
290 -11. ​Downlink Payload
235 +[[image:1657249864775-321.png]]
291 291  
292 -By default, LSE50 prints the downlink payload to console port.
293 293  
294 -|**Downlink Control Type**|**FPort**|**Type Code**|**Downlink payload size(bytes)**
295 -|TDC (Transmit Time Interval)|Any|01|4
296 -|RESET|Any|04|2
297 -|AT+CFM|Any|05|4
298 -|INTMOD|Any|06|4
299 -|MOD|Any|0A|2
238 +[[image:1657249930215-289.png]]
300 300  
301 -**Examples**
302 302  
303 303  
304 -**Set TDC**
242 +=== 2.2.6 Use MQTT protocol to uplink data ===
305 305  
306 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
244 +This feature is supported since firmware version v110
307 307  
308 -Payload:    01 00 00 1E    TDC=30S
309 309  
310 -Payload:    01 00 00 3C    TDC=60S
247 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
248 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
249 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
250 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
251 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
252 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
253 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
311 311  
255 +[[image:1657249978444-674.png]]
312 312  
313 -**Reset**
314 314  
315 -If payload = 0x04FF, it will reset the LSE01
258 +[[image:1657249990869-686.png]]
316 316  
317 317  
318 -**CFM**
261 +(((
262 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
263 +)))
319 319  
320 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
321 321  
322 -1.
323 -11. ​Show Data in DataCake IoT Server
324 324  
325 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
267 +=== 2.2.7 Use TCP protocol to uplink data ===
326 326  
269 +This feature is supported since firmware version v110
327 327  
328 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
329 329  
330 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
272 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
273 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
331 331  
275 +[[image:1657250217799-140.png]]
332 332  
333 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]]
334 334  
278 +[[image:1657250255956-604.png]]
335 335  
336 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]]
337 337  
338 338  
282 +=== 2.2.8 Change Update Interval ===
339 339  
284 +User can use below command to change the (% style="color:green" %)**uplink interval**.
340 340  
286 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
341 341  
342 -Step 3: Create an account or log in Datacake.
288 +(((
289 +(% style="color:red" %)**NOTE:**
290 +)))
343 343  
344 -Step 4: Search the LSE01 and add DevEUI.
292 +(((
293 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
294 +)))
345 345  
346 346  
347 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]]
348 348  
298 +== 2.3  Uplink Payload ==
349 349  
300 +In this mode, uplink payload includes in total 18 bytes
350 350  
351 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
302 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
303 +|=(% style="width: 50px;" %)(((
304 +**Size(bytes)**
305 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
306 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
352 352  
308 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
353 353  
354 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]
355 355  
311 +[[image:image-20220708111918-4.png]]
356 356  
357 357  
358 -1.
359 -11. Frequency Plans
314 +The payload is ASCII string, representative same HEX:
360 360  
361 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
316 +0x72403155615900640c7817075e0a8c02f900 where:
362 362  
363 -1.
364 -11.
365 -111. EU863-870 (EU868)
318 +* Device ID: 0x 724031556159 = 724031556159
319 +* Version: 0x0064=100=1.0.0
366 366  
367 -Uplink:
321 +* BAT: 0x0c78 = 3192 mV = 3.192V
322 +* Singal: 0x17 = 23
323 +* Soil Moisture: 0x075e= 1886 = 18.86  %
324 +* Soil Temperature:0x0a8c =2700=27 °C
325 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
326 +* Interrupt: 0x00 = 0
368 368  
369 -868.1 - SF7BW125 to SF12BW125
370 370  
371 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
329 +== 2.4  Payload Explanation and Sensor Interface ==
372 372  
373 -868.5 - SF7BW125 to SF12BW125
374 374  
375 -867.1 - SF7BW125 to SF12BW125
332 +=== 2.4.1  Device ID ===
376 376  
377 -867.3 - SF7BW125 to SF12BW125
334 +By default, the Device ID equal to the last 6 bytes of IMEI.
378 378  
379 -867.5 - SF7BW125 to SF12BW125
336 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
380 380  
381 -867.7 - SF7BW125 to SF12BW125
338 +**Example:**
382 382  
383 -867.9 - SF7BW125 to SF12BW125
340 +AT+DEUI=A84041F15612
384 384  
385 -868.8 - FSK
342 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
386 386  
387 387  
388 -Downlink:
389 389  
390 -Uplink channels 1-9 (RX1)
346 +=== 2.4.2  Version Info ===
391 391  
392 -869.525 - SF9BW125 (RX2 downlink only)
348 +Specify the software version: 0x64=100, means firmware version 1.00.
393 393  
350 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
394 394  
395 -1.
396 -11.
397 -111. US902-928(US915)
398 398  
399 -Used in USA, Canada and South America. Default use CHE=2
400 400  
401 -Uplink:
354 +=== 2.4.3  Battery Info ===
402 402  
403 -903.9 - SF7BW125 to SF10BW125
356 +(((
357 +Check the battery voltage for LSE01.
358 +)))
404 404  
405 -904.1 - SF7BW125 to SF10BW125
360 +(((
361 +Ex1: 0x0B45 = 2885mV
362 +)))
406 406  
407 -904.3 - SF7BW125 to SF10BW125
364 +(((
365 +Ex2: 0x0B49 = 2889mV
366 +)))
408 408  
409 -904.5 - SF7BW125 to SF10BW125
410 410  
411 -904.7 - SF7BW125 to SF10BW125
412 412  
413 -904.9 - SF7BW125 to SF10BW125
370 +=== 2.4. Signal Strength ===
414 414  
415 -905.1 - SF7BW125 to SF10BW125
372 +NB-IoT Network signal Strength.
416 416  
417 -905.3 - SF7BW125 to SF10BW125
374 +**Ex1: 0x1d = 29**
418 418  
376 +(% style="color:blue" %)**0**(%%)  -113dBm or less
419 419  
420 -Downlink:
378 +(% style="color:blue" %)**1**(%%)  -111dBm
421 421  
422 -923.3 - SF7BW500 to SF12BW500
380 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
423 423  
424 -923.9 - SF7BW500 to SF12BW500
382 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
425 425  
426 -924.5 - SF7BW500 to SF12BW500
384 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
427 427  
428 -925.1 - SF7BW500 to SF12BW500
429 429  
430 -925.7 - SF7BW500 to SF12BW500
431 431  
432 -926.3 - SF7BW500 to SF12BW500
388 +=== 2.4.5  Soil Moisture ===
433 433  
434 -926.9 - SF7BW500 to SF12BW500
390 +(((
391 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
392 +)))
435 435  
436 -927.5 - SF7BW500 to SF12BW500
394 +(((
395 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
396 +)))
437 437  
438 -923.3 - SF12BW500(RX2 downlink only)
398 +(((
399 +
400 +)))
439 439  
402 +(((
403 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
404 +)))
440 440  
441 -1.
442 -11.
443 -111. CN470-510 (CN470)
444 444  
445 -Used in China, Default use CHE=1
446 446  
447 -Uplink:
408 +=== 2.4.6  Soil Temperature ===
448 448  
449 -486.3 - SF7BW125 to SF12BW125
410 +(((
411 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
412 +)))
450 450  
451 -486.5 - SF7BW125 to SF12BW125
414 +(((
415 +**Example**:
416 +)))
452 452  
453 -486.7 - SF7BW125 to SF12BW125
418 +(((
419 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
420 +)))
454 454  
455 -486.9 - SF7BW125 to SF12BW125
422 +(((
423 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
424 +)))
456 456  
457 -487.1 - SF7BW125 to SF12BW125
458 458  
459 -487.3 - SF7BW125 to SF12BW125
460 460  
461 -487.5 - SF7BW125 to SF12BW125
428 +=== 2.4. Soil Conductivity (EC) ===
462 462  
463 -487.7 - SF7BW125 to SF12BW125
430 +(((
431 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
432 +)))
464 464  
434 +(((
435 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
436 +)))
465 465  
466 -Downlink:
438 +(((
439 +Generally, the EC value of irrigation water is less than 800uS / cm.
440 +)))
467 467  
468 -506.7 - SF7BW125 to SF12BW125
442 +(((
443 +
444 +)))
469 469  
470 -506.9 - SF7BW125 to SF12BW125
446 +(((
447 +
448 +)))
471 471  
472 -507.1 - SF7BW125 to SF12BW125
450 +=== 2.4.8  Digital Interrupt ===
473 473  
474 -507.3 - SF7BW125 to SF12BW125
452 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
475 475  
476 -507.5 - SF7BW125 to SF12BW125
454 +The command is:
477 477  
478 -507.7 - SF7BW125 to SF12BW125
456 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
479 479  
480 -507.9 - SF7BW125 to SF12BW125
481 481  
482 -508.1 - SF7BW125 to SF12BW125
459 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
483 483  
484 -505.3 - SF12BW125 (RX2 downlink only)
485 485  
462 +Example:
486 486  
487 -1.
488 -11.
489 -111. AU915-928(AU915)
464 +0x(00): Normal uplink packet.
490 490  
491 -Default use CHE=2
466 +0x(01): Interrupt Uplink Packet.
492 492  
493 -Uplink:
494 494  
495 -916.8 - SF7BW125 to SF12BW125
496 496  
497 -917.0 - SF7BW125 to SF12BW125
470 +=== 2.4.9  ​+5V Output ===
498 498  
499 -917.2 - SF7BW125 to SF12BW125
472 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
500 500  
501 -917.4 - SF7BW125 to SF12BW125
502 502  
503 -917.6 - SF7BW125 to SF12BW125
475 +The 5V output time can be controlled by AT Command.
504 504  
505 -917.8 - SF7BW125 to SF12BW125
477 +(% style="color:blue" %)**AT+5VT=1000**
506 506  
507 -918.0 - SF7BW125 to SF12BW125
479 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
508 508  
509 -918.2 - SF7BW125 to SF12BW125
510 510  
511 511  
512 -Downlink:
483 +== 2.5  Downlink Payload ==
513 513  
514 -923.3 - SF7BW500 to SF12BW500
485 +By default, NSE01 prints the downlink payload to console port.
515 515  
516 -923.9 - SF7BW500 to SF12BW500
487 +[[image:image-20220708133731-5.png]]
517 517  
518 -924.5 - SF7BW500 to SF12BW500
519 519  
520 -925.1 - SF7BW500 to SF12BW500
490 +(((
491 +(% style="color:blue" %)**Examples:**
492 +)))
521 521  
522 -925.7 - SF7BW500 to SF12BW500
494 +(((
495 +
496 +)))
523 523  
524 -926.3 - SF7BW500 to SF12BW500
498 +* (((
499 +(% style="color:blue" %)**Set TDC**
500 +)))
525 525  
526 -926.9 - SF7BW500 to SF12BW500
502 +(((
503 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
504 +)))
527 527  
528 -927.5 - SF7BW500 to SF12BW500
506 +(((
507 +Payload:    01 00 00 1E    TDC=30S
508 +)))
529 529  
530 -923.3 - SF12BW500(RX2 downlink only)
510 +(((
511 +Payload:    01 00 00 3C    TDC=60S
512 +)))
531 531  
532 -1.
533 -11.
534 -111. AS920-923 & AS923-925 (AS923)
514 +(((
515 +
516 +)))
535 535  
536 -**Default Uplink channel:**
518 +* (((
519 +(% style="color:blue" %)**Reset**
520 +)))
537 537  
538 -923.2 - SF7BW125 to SF10BW125
522 +(((
523 +If payload = 0x04FF, it will reset the NSE01
524 +)))
539 539  
540 -923.4 - SF7BW125 to SF10BW125
541 541  
527 +* (% style="color:blue" %)**INTMOD**
542 542  
543 -**Additional Uplink Channel**:
529 +Downlink Payload: 06000003, Set AT+INTMOD=3
544 544  
545 -(OTAA mode, channel added by JoinAccept message)
546 546  
547 -**AS920~~AS923 for Japan, Malaysia, Singapore**:
548 548  
549 -922.2 - SF7BW125 to SF10BW125
533 +== 2. ​LED Indicator ==
550 550  
551 -922.4 - SF7BW125 to SF10BW125
535 +(((
536 +The NSE01 has an internal LED which is to show the status of different state.
552 552  
553 -922.6 - SF7BW125 to SF10BW125
554 554  
555 -922.8 - SF7BW125 to SF10BW125
539 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
540 +* Then the LED will be on for 1 second means device is boot normally.
541 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
542 +* For each uplink probe, LED will be on for 500ms.
543 +)))
556 556  
557 -923.0 - SF7BW125 to SF10BW125
558 558  
559 -922.0 - SF7BW125 to SF10BW125
560 560  
561 561  
562 -**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
548 +== 2.7  Installation in Soil ==
563 563  
564 -923.6 - SF7BW125 to SF10BW125
550 +__**Measurement the soil surface**__
565 565  
566 -923.8 - SF7BW125 to SF10BW125
552 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
567 567  
568 -924.0 - SF7BW125 to SF10BW125
554 +[[image:1657259653666-883.png]] ​
569 569  
570 -924.2 - SF7BW125 to SF10BW125
571 571  
572 -924.4 - SF7BW125 to SF10BW125
557 +(((
558 +
573 573  
574 -924.6 - SF7BW125 to SF10BW125
575 -
576 -
577 -
578 -**Downlink:**
579 -
580 -Uplink channels 1-8 (RX1)
581 -
582 -923.2 - SF10BW125 (RX2)
583 -
584 -
585 -1.
586 -11.
587 -111. KR920-923 (KR920)
588 -
589 -Default channel:
590 -
591 -922.1 - SF7BW125 to SF12BW125
592 -
593 -922.3 - SF7BW125 to SF12BW125
594 -
595 -922.5 - SF7BW125 to SF12BW125
596 -
597 -
598 -Uplink: (OTAA mode, channel added by JoinAccept message)
599 -
600 -922.1 - SF7BW125 to SF12BW125
601 -
602 -922.3 - SF7BW125 to SF12BW125
603 -
604 -922.5 - SF7BW125 to SF12BW125
605 -
606 -922.7 - SF7BW125 to SF12BW125
607 -
608 -922.9 - SF7BW125 to SF12BW125
609 -
610 -923.1 - SF7BW125 to SF12BW125
611 -
612 -923.3 - SF7BW125 to SF12BW125
613 -
614 -
615 -Downlink:
616 -
617 -Uplink channels 1-7(RX1)
618 -
619 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
620 -
621 -
622 -1.
623 -11.
624 -111. IN865-867 (IN865)
625 -
626 -Uplink:
627 -
628 -865.0625 - SF7BW125 to SF12BW125
629 -
630 -865.4025 - SF7BW125 to SF12BW125
631 -
632 -865.9850 - SF7BW125 to SF12BW125
633 -
634 -
635 -Downlink:
636 -
637 -Uplink channels 1-3 (RX1)
638 -
639 -866.550 - SF10BW125 (RX2)
640 -
641 -
642 -1.
643 -11. LED Indicator
644 -
645 -The LSE01 has an internal LED which is to show the status of different state.
646 -
647 -
648 -* Blink once when device power on.
649 -* Solid ON for 5 seconds once device successful Join the network.
650 -* Blink once when device transmit a packet.
651 -
652 -1.
653 -11. Installation in Soil
654 -
655 -**Measurement the soil surface**
656 -
657 -
658 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] ​
659 -
660 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
661 -
662 -
663 -
664 -
665 -
666 -
667 -
668 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
669 -
670 -
671 -
560 +(((
672 672  Dig a hole with diameter > 20CM.
562 +)))
673 673  
564 +(((
674 674  Horizontal insert the probe to the soil and fill the hole for long term measurement.
566 +)))
567 +)))
675 675  
569 +[[image:1654506665940-119.png]]
676 676  
571 +(((
572 +
573 +)))
677 677  
678 678  
679 -1.
680 -11. ​Firmware Change Log
576 +== 2.8  ​Firmware Change Log ==
681 681  
682 -**Firmware download link:**
683 683  
684 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
579 +Download URL & Firmware Change log
685 685  
581 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
686 686  
687 -**Firmware Upgrade Method:**
688 688  
689 -[[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]]
584 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
690 690  
691 691  
692 -**V1.0.**
693 693  
694 -Release
588 +== 2.9  ​Battery Analysis ==
695 695  
590 +=== 2.9.1  ​Battery Type ===
696 696  
697 697  
698 -1.
699 -11. ​Battery Analysis
700 -111. ​Battery Type
593 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
701 701  
702 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
703 703  
596 +The battery is designed to last for several years depends on the actually use environment and update interval. 
704 704  
705 -The battery is designed to last for more than 5 years for the LSN50.
706 706  
707 -
708 708  The battery related documents as below:
709 709  
710 -* [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
711 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]]
712 -* [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
601 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
602 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
603 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
713 713  
714 -|(((
715 -JST-XH-2P connector
605 +(((
606 +[[image:image-20220708140453-6.png]]
716 716  )))
717 717  
718 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
719 719  
720 720  
611 +=== 2.9.2  Power consumption Analyze ===
721 721  
722 -1.
723 -11.
724 -111. ​Battery Note
613 +(((
614 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
615 +)))
725 725  
726 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
727 727  
618 +(((
619 +Instruction to use as below:
620 +)))
728 728  
729 -1.
730 -11.
731 -111. ​Replace the battery
622 +(((
623 +(% style="color:blue" %)**Step 1 **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
624 +)))
732 732  
733 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
734 734  
627 +(((
628 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
629 +)))
735 735  
736 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
631 +* (((
632 +Product Model
633 +)))
634 +* (((
635 +Uplink Interval
636 +)))
637 +* (((
638 +Working Mode
639 +)))
737 737  
641 +(((
642 +And the Life expectation in difference case will be shown on the right.
643 +)))
738 738  
739 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
645 +[[image:image-20220708141352-7.jpeg]]
740 740  
741 741  
742 742  
649 +=== 2.9.3  ​Battery Note ===
743 743  
651 +(((
652 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
653 +)))
744 744  
745 745  
746 -= 3. ​Using the AT Commands =
747 747  
748 -== 3.1 Access AT Commands ==
657 +=== 2.9.4  Replace the battery ===
749 749  
659 +(((
660 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
661 +)))
750 750  
751 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
752 752  
753 -[[image:1654501986557-872.png]]
754 754  
665 += 3. ​ Access NB-IoT Module =
755 755  
756 -Or if you have below board, use below connection:
667 +(((
668 +Users can directly access the AT command set of the NB-IoT module.
669 +)))
757 757  
671 +(((
672 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
673 +)))
758 758  
759 -[[image:1654502005655-729.png]]
675 +[[image:1657261278785-153.png]]
760 760  
761 761  
762 762  
763 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
679 += 4.  Using the AT Commands =
764 764  
681 +== 4.1  Access AT Commands ==
765 765  
766 - [[image:1654502050864-459.png]]
683 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
767 767  
768 768  
769 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
686 +AT+<CMD>?  : Help on <CMD>
770 770  
688 +AT+<CMD>         : Run <CMD>
771 771  
772 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
690 +AT+<CMD>=<value> : Set the value
773 773  
774 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
692 +AT+<CMD>=?  : Get the value
775 775  
776 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
777 777  
778 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
779 -
780 -
781 781  (% style="color:#037691" %)**General Commands**(%%)      
782 782  
783 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
697 +AT  : Attention       
784 784  
785 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
699 +AT?  : Short Help     
786 786  
787 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
701 +ATZ  : MCU Reset    
788 788  
789 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
703 +AT+TDC  : Application Data Transmission Interval
790 790  
705 +AT+CFG  : Print all configurations
791 791  
792 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
707 +AT+CFGMOD           : Working mode selection
793 793  
794 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
709 +AT+INTMOD            : Set the trigger interrupt mode
795 795  
796 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
711 +AT+5VT  : Set extend the time of 5V power  
797 797  
798 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
713 +AT+PRO  : Choose agreement
799 799  
800 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
715 +AT+WEIGRE  : Get weight or set weight to 0
801 801  
802 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
717 +AT+WEIGAP  : Get or Set the GapValue of weight
803 803  
804 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
719 +AT+RXDL  : Extend the sending and receiving time
805 805  
806 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
721 +AT+CNTFAC  : Get or set counting parameters
807 807  
808 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
723 +AT+SERVADDR  : Server Address
809 809  
810 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
811 811  
812 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
726 +(% style="color:#037691" %)**COAP Management**      
813 813  
814 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
728 +AT+URI            : Resource parameters
815 815  
816 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
817 817  
818 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
731 +(% style="color:#037691" %)**UDP Management**
819 819  
820 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
733 +AT+CFM          : Upload confirmation mode (only valid for UDP)
821 821  
822 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
823 823  
824 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
736 +(% style="color:#037691" %)**MQTT Management**
825 825  
738 +AT+CLIENT               : Get or Set MQTT client
826 826  
827 -(% style="color:#037691" %)**LoRa Network Management**
740 +AT+UNAME  : Get or Set MQTT Username
828 828  
829 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
742 +AT+PWD                  : Get or Set MQTT password
830 830  
831 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
744 +AT+PUBTOPI : Get or Set MQTT publish topic
832 832  
833 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
746 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
834 834  
835 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
836 836  
837 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
749 +(% style="color:#037691" %)**Information**          
838 838  
839 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
751 +AT+FDR  : Factory Data Reset
840 840  
841 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
753 +AT+PWOR : Serial Access Password
842 842  
843 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
844 844  
845 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
846 846  
847 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
757 += ​5.  FAQ =
848 848  
849 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
759 +== 5.1 How to Upgrade Firmware ==
850 850  
851 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
852 852  
853 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
762 +(((
763 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
764 +)))
854 854  
855 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
856 -
857 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
858 -
859 -
860 -(% style="color:#037691" %)**Information** 
861 -
862 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
863 -
864 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
865 -
866 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
867 -
868 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
869 -
870 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
871 -
872 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
873 -
874 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
875 -
876 -
877 -= ​4. FAQ =
878 -
879 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
880 -
881 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]].
882 -When downloading the images, choose the required image file for download. ​
883 -
884 -
885 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
886 -
887 -
888 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
889 -
890 -
891 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
892 -
893 -[[image:image-20220606154726-3.png]]
894 -
895 -When you use the TTN network, the US915 frequency bands use are:
896 -
897 -* 903.9 - SF7BW125 to SF10BW125
898 -* 904.1 - SF7BW125 to SF10BW125
899 -* 904.3 - SF7BW125 to SF10BW125
900 -* 904.5 - SF7BW125 to SF10BW125
901 -* 904.7 - SF7BW125 to SF10BW125
902 -* 904.9 - SF7BW125 to SF10BW125
903 -* 905.1 - SF7BW125 to SF10BW125
904 -* 905.3 - SF7BW125 to SF10BW125
905 -* 904.6 - SF8BW500
906 -
907 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
908 -
909 -(% class="box infomessage" %)
910 910  (((
911 -**AT+CHE=2**
767 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
912 912  )))
913 913  
914 -(% class="box infomessage" %)
915 915  (((
916 -**ATZ**
771 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
917 917  )))
918 918  
919 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
920 920  
921 921  
922 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
776 += 6.  Trouble Shooting =
923 923  
924 -[[image:image-20220606154825-4.png]]
778 +== 6.1  ​Connection problem when uploading firmware ==
925 925  
926 926  
781 +(% class="wikigeneratedid" %)
782 +(((
783 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]]
784 +)))
927 927  
928 -= 5. Trouble Shooting =
929 929  
930 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
931 931  
932 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
788 +== 6. AT Command input doesn't work ==
933 933  
790 +(((
791 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
792 +)))
934 934  
935 -== 5.2 AT Command input doesn’t work ==
936 936  
937 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
938 938  
796 += 7. ​ Order Info =
939 939  
940 -== 5.3 Device rejoin in at the second uplink packet ==
941 941  
942 -(% style="color:#4f81bd" %)**Issue describe as below:**
799 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
943 943  
944 -[[image:1654500909990-784.png]]
945 945  
802 +(% class="wikigeneratedid" %)
803 +(((
804 +
805 +)))
946 946  
947 -(% style="color:#4f81bd" %)**Cause for this issue:**
807 += 8 Packing Info =
948 948  
949 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
809 +(((
810 +
950 950  
812 +(% style="color:#037691" %)**Package Includes**:
951 951  
952 -(% style="color:#4f81bd" %)**Solution: **
953 953  
954 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
815 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
816 +* External antenna x 1
817 +)))
955 955  
956 -[[image:1654500929571-736.png]]
819 +(((
820 +
957 957  
822 +(% style="color:#037691" %)**Dimension and weight**:
958 958  
959 -= 6. ​Order Info =
960 960  
961 -
962 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
963 -
964 -
965 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
966 -
967 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
968 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
969 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
970 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
971 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
972 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
973 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
974 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
975 -
976 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
977 -
978 -* (% style="color:red" %)**4**(%%): 4000mAh battery
979 -* (% style="color:red" %)**8**(%%): 8500mAh battery
980 -
981 -= 7. Packing Info =
982 -
983 -(((
984 -**Package Includes**:
825 +* Size: 195 x 125 x 55 mm
826 +* Weight:   420g
985 985  )))
986 986  
987 -* (((
988 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
989 -)))
990 -
991 991  (((
992 992  
993 -)))
994 994  
995 -(((
996 -**Dimension and weight**:
997 -)))
998 998  
999 -* (((
1000 -Device Size: cm
833 +
1001 1001  )))
1002 -* (((
1003 -Device Weight: g
1004 -)))
1005 -* (((
1006 -Package Size / pcs : cm
1007 -)))
1008 -* (((
1009 -Weight / pcs : g
1010 -)))
1011 1011  
1012 -= 8. Support =
836 += 9.  Support =
1013 1013  
1014 1014  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1015 1015  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1016 -
1017 -
1654503992078-669.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1654504596150-405.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +66.7 KB
Content
1654504683289-357.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +94.0 KB
Content
1654504778294-788.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +119.4 KB
Content
1654504881641-514.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +119.4 KB
Content
1654504907647-967.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +54.7 KB
Content
1654505570700-128.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +59.2 KB
Content
1654505857935-743.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +86.0 KB
Content
1654505874829-548.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +129.9 KB
Content
1654505905236-553.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +92.0 KB
Content
1654505925508-181.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +69.5 KB
Content
1654506634463-199.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1654506665940-119.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +423.3 KB
Content
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
image-20220606163732-6.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +16.5 KB
Content
image-20220606163915-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +94.8 KB
Content
image-20220606165544-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +11.6 KB
Content
image-20220606171726-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +171.0 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content