Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 37 added, 0 removed)
- 1654503992078-669.png
- 1654504596150-405.png
- 1654504683289-357.png
- 1654504778294-788.png
- 1654504881641-514.png
- 1654504907647-967.png
- 1654505570700-128.png
- 1654505857935-743.png
- 1654505874829-548.png
- 1654505905236-553.png
- 1654505925508-181.png
- 1654506634463-199.png
- 1654506665940-119.png
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- image-20220606163732-6.jpeg
- image-20220606163915-7.png
- image-20220606165544-8.png
- image-20220606171726-9.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220606151504-2.jpeg||height=" 848" width="848"]]2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]] 3 3 4 4 5 5 ... ... @@ -8,741 +8,630 @@ 8 8 9 9 10 10 11 -= 1. Introduction = 12 12 13 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 14 14 15 -((( 16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 17 -))) 18 18 19 -((( 20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 21 -))) 14 +**Table of Contents:** 22 22 23 -((( 24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 25 -))) 26 26 27 -((( 28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 29 -))) 30 30 18 + 19 + 20 + 21 += 1. Introduction = 22 + 23 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 24 + 31 31 ((( 32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 33 -))) 26 + 34 34 28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 35 35 30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 31 + 32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 33 + 34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 35 + 36 + 37 +))) 38 + 36 36 [[image:1654503236291-817.png]] 37 37 38 38 39 -[[image:16545 03265560-120.png]]42 +[[image:1657245163077-232.png]] 40 40 41 41 42 42 43 43 == 1.2 Features == 44 44 45 - * LoRaWAN 1.0.3 Class A46 -* Ultra lowpower consumption48 + 49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 47 47 * Monitor Soil Moisture 48 48 * Monitor Soil Temperature 49 49 * Monitor Soil Conductivity 50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 51 51 * AT Commands to change parameters 52 52 * Uplink on periodically 53 53 * Downlink to change configure 54 54 * IP66 Waterproof Enclosure 55 -* 4000mAh or 8500mAh Battery for long term use 57 +* Ultra-Low Power consumption 58 +* AT Commands to change parameters 59 +* Micro SIM card slot for NB-IoT SIM 60 +* 8500mAh Battery for long term use 56 56 62 +== 1.3 Specification == 57 57 58 -== 1.3 Specification == 59 59 60 - MeasureVolume:Baseonthecentra pin of the probe,aylinderwith 7cm diameter and 10cm height.65 +(% style="color:#037691" %)**Common DC Characteristics:** 61 61 62 -[[image:image-20220606162220-5.png]] 67 +* Supply Voltage: 2.1v ~~ 3.6v 68 +* Operating Temperature: -40 ~~ 85°C 63 63 70 +(% style="color:#037691" %)**NB-IoT Spec:** 64 64 72 +* - B1 @H-FDD: 2100MHz 73 +* - B3 @H-FDD: 1800MHz 74 +* - B8 @H-FDD: 900MHz 75 +* - B5 @H-FDD: 850MHz 76 +* - B20 @H-FDD: 800MHz 77 +* - B28 @H-FDD: 700MHz 65 65 66 - ==1.4Applications ==79 +(% style="color:#037691" %)**Probe Specification:** 67 67 68 - *SmartAgriculture81 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 69 69 83 +[[image:image-20220708101224-1.png]] 70 70 71 -== 1.5 Firmware Change log == 72 72 73 73 74 - **LSE01v1.0 :**Release87 +== 1.4 Applications == 75 75 89 +* Smart Agriculture 76 76 91 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 92 + 77 77 78 -= 2.Configure LSE01 to connecttoLoRaWANnetwork=94 +== 1.5 Pin Definitions == 79 79 80 -== 2.1 How it works == 81 81 82 - The LSE01is configured as LoRaWAN OTAA Class Amode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150.It will automatically jointhe network via OTAA and start to send the sensor value97 +[[image:1657246476176-652.png]] 83 83 84 84 85 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>path:#_Using_the_AT]]to set the keys in the LSE01. 86 86 101 += 2. Use NSE01 to communicate with IoT Server = 87 87 103 +== 2.1 How it works == 88 88 89 89 90 -1. 91 -11. Quick guide to connect to LoRaWAN server (OTAA) 106 +((( 107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 108 +))) 92 92 93 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 94 94 95 - 96 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image003.png]] 97 - 98 - 99 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 100 - 101 - 102 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 103 - 104 -Each LSE01 is shipped with a sticker with the default device EUI as below: 105 - 106 - 107 - 108 - 109 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 110 - 111 - 112 -**Add APP EUI in the application** 113 - 114 - 115 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]] 116 - 117 - 118 - 119 -**Add APP KEY and DEV EUI** 120 - 121 - 122 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image005.png]] 123 - 124 -|((( 125 - 111 +((( 112 +The diagram below shows the working flow in default firmware of NSE01: 126 126 ))) 127 127 128 - **Step 2**:Power on LSE01115 +[[image:image-20220708101605-2.png]] 129 129 130 - 131 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 132 - 133 - 134 - 135 -|((( 117 +((( 136 136 137 137 ))) 138 138 139 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image006.png]] 140 140 141 141 123 +== 2.2 Configure the NSE01 == 142 142 143 143 126 +=== 2.2.1 Test Requirement === 144 144 145 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 146 146 147 - [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]129 +To use NSE01 in your city, make sure meet below requirements: 148 148 131 +* Your local operator has already distributed a NB-IoT Network there. 132 +* The local NB-IoT network used the band that NSE01 supports. 133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 149 149 135 +((( 136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 137 +))) 150 150 151 151 152 -1. 153 -11. Uplink Payload 154 -111. MOD=0(Default Mode) 140 +[[image:1657249419225-449.png]] 155 155 156 -LSE01 will uplink payload via LoRaWAN with below payload format: 157 157 158 158 159 -Uplink payload includes in total 11 bytes. 160 - 144 +=== 2.2.2 Insert SIM card === 161 161 162 -|((( 163 -**Size** 146 +Insert the NB-IoT Card get from your provider. 164 164 165 -**(bytes)** 166 -)))|**2**|**2**|**2**|**2**|**2**|**1** 167 -|**Value**|[[BAT>>path:#bat]]|((( 168 -Temperature 148 +User need to take out the NB-IoT module and insert the SIM card like below: 169 169 170 -(Reserve, Ignore now) 171 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|((( 172 -MOD & Digital Interrupt 173 173 174 -(Optional) 175 -))) 151 +[[image:1657249468462-536.png]] 176 176 177 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]] 178 178 179 179 180 -1. 181 -11. 182 -111. MOD=1(Original value) 155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 183 183 184 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 185 - 186 -|((( 187 -**Size** 188 - 189 -**(bytes)** 190 -)))|**2**|**2**|**2**|**2**|**2**|**1** 191 -|**Value**|[[BAT>>path:#bat]]|((( 192 -Temperature 193 - 194 -(Reserve, Ignore now) 195 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|((( 196 -MOD & Digital Interrupt 197 - 198 -(Optional) 157 +((( 158 +((( 159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 199 199 ))) 161 +))) 200 200 201 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image008.png]] 202 202 203 -1. 204 -11. 205 -111. Battery Info 164 +**Connection:** 206 206 207 - Checkthettery voltage forLSE01.166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 208 208 209 - Ex1:0x0B45=2885mV168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 210 210 211 - Ex2:0x0B49=2889mV170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 212 212 213 213 173 +In the PC, use below serial tool settings: 214 214 215 -1. 216 -11. 217 -111. Soil Moisture 175 +* Baud: (% style="color:green" %)**9600** 176 +* Data bits:** (% style="color:green" %)8(%%)** 177 +* Stop bits: (% style="color:green" %)**1** 178 +* Parity: (% style="color:green" %)**None** 179 +* Flow Control: (% style="color:green" %)**None** 218 218 219 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 181 +((( 182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 183 +))) 220 220 221 - For example,if the data youget fromthe register is0x050xDC, the moisture content in the soil is185 +[[image:image-20220708110657-3.png]] 222 222 223 - **05DC(H)=1500(D)/100=15%.**187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 224 224 225 225 226 -1. 227 -11. 228 -111. Soil Temperature 229 229 230 - Get the temperature in the soil.The value range of the register is -4000-+800(Decimal), divide thisvalueby 100 toget the temperature in the soil.Forexample,ifthedatayou get from the register is 0x09 0xEC, the temperature content in the soil is191 +=== 2.2.4 Use CoAP protocol to uplink data === 231 231 232 - **Example**:193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 233 233 234 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 235 235 236 - IfpayloadisFF7EH:((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C196 +**Use below commands:** 237 237 198 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 238 238 239 -1. 240 -11. 241 -111. Soil Conductivity (EC) 202 +For parameter description, please refer to AT command set 242 242 243 - Obtain soluble salt concentration in soil or soluble ion concentration in liquid fertilizer or plantingmedium,. The value rangeof the register is 0 -20000(Decimal)( Canbegreater than 20000).204 +[[image:1657249793983-486.png]] 244 244 245 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 246 246 207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 247 247 248 - Generally, the EC value ofirrigation water is less than800uS / cm.209 +[[image:1657249831934-534.png]] 249 249 250 -1. 251 -11. 252 -111. MOD 253 253 254 -Firmware version at least v2.1 supports changing mode. 255 255 256 - Forexample,bytes[10]=90213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 257 257 258 - mod=(bytes[10]>>7)&0x01=1.215 +This feature is supported since firmware version v1.0.1 259 259 260 260 261 -Downlink Command: 218 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 220 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 262 262 263 - If payload = 0x0A00, workmode=0222 +[[image:1657249864775-321.png]] 264 264 265 -If** **payload =** **0x0A01, workmode=1 266 266 225 +[[image:1657249930215-289.png]] 267 267 268 -1. 269 -11. 270 -111. Decode payload in The Things Network 271 271 272 -While using TTN network, you can add the payload format to decode the payload. 273 273 229 +=== 2.2.6 Use MQTT protocol to uplink data === 274 274 275 - [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.png]]231 +This feature is supported since firmware version v110 276 276 277 -The payload decoder function for TTN is here: 278 278 279 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 234 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 237 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 238 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 280 280 242 +[[image:1657249978444-674.png]] 281 281 282 -1. 283 -11. Uplink Interval 284 284 285 - The LSE01 by default uplink the sensor dataevery20minutes.User canchange this interval by AT Command or LoRaWAN Downlink Command. See this link:245 +[[image:1657249990869-686.png]] 286 286 287 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]] 288 288 289 -1. 290 -11. Downlink Payload 248 +((( 249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 250 +))) 291 291 292 -By default, LSE50 prints the downlink payload to console port. 293 293 294 -|**Downlink Control Type**|**FPort**|**Type Code**|**Downlink payload size(bytes)** 295 -|TDC (Transmit Time Interval)|Any|01|4 296 -|RESET|Any|04|2 297 -|AT+CFM|Any|05|4 298 -|INTMOD|Any|06|4 299 -|MOD|Any|0A|2 300 300 301 - **Examples**254 +=== 2.2.7 Use TCP protocol to uplink data === 302 302 256 +This feature is supported since firmware version v110 303 303 304 -**Set TDC** 305 305 306 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 259 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 307 307 308 - Payload:010 001E TDC=30S262 +[[image:1657250217799-140.png]] 309 309 310 -Payload: 01 00 00 3C TDC=60S 311 311 265 +[[image:1657250255956-604.png]] 312 312 313 -**Reset** 314 314 315 -If payload = 0x04FF, it will reset the LSE01 316 316 269 +=== 2.2.8 Change Update Interval === 317 317 318 -** CFM**271 +User can use below command to change the (% style="color:green" %)**uplink interval**. 319 319 320 - DownlinkPayload:05000001, SetAT+CFM=1 or05000000,setAT+CFM=0273 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 321 321 322 -1. 323 -11. Show Data in DataCake IoT Server 275 +((( 276 +(% style="color:red" %)**NOTE:** 277 +))) 324 324 325 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 279 +((( 280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 281 +))) 326 326 327 327 328 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 329 329 330 - **Step2**:To configure the Applicationto forward data to DATACAKEyou will need todintegration. To add the DATACAKE integration, perform the following steps:285 +== 2.3 Uplink Payload == 331 331 287 +In this mode, uplink payload includes in total 18 bytes 332 332 333 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]] 289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 290 +|=(% style="width: 50px;" %)((( 291 +**Size(bytes)** 292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]] 334 334 295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 335 335 336 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]] 337 337 298 +[[image:image-20220708111918-4.png]] 338 338 339 339 301 +The payload is ASCII string, representative same HEX: 340 340 303 +0x72403155615900640c7817075e0a8c02f900 where: 341 341 342 -Step 3: Create an account or log in Datacake. 305 +* Device ID: 0x 724031556159 = 724031556159 306 +* Version: 0x0064=100=1.0.0 343 343 344 -Step 4: Search the LSE01 and add DevEUI. 308 +* BAT: 0x0c78 = 3192 mV = 3.192V 309 +* Singal: 0x17 = 23 310 +* Soil Moisture: 0x075e= 1886 = 18.86 % 311 +* Soil Temperature:0x0a8c =2700=27 °C 312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 313 +* Interrupt: 0x00 = 0 345 345 315 +== 2.4 Payload Explanation and Sensor Interface == 346 346 347 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]] 348 348 318 +=== 2.4.1 Device ID === 349 349 320 +By default, the Device ID equal to the last 6 bytes of IMEI. 350 350 351 - After added,the sensordata arrive TTN,itwill alsoarriveand show in Mydevices.322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 352 352 324 +**Example:** 353 353 354 - [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]326 +AT+DEUI=A84041F15612 355 355 328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 356 356 357 357 358 -1. 359 -11. Frequency Plans 360 360 361 - TheLSE01 uses OTAA mode and below frequency plans by default.If userwant to useit with differentfrequency plan, please refer the AT commandsets.332 +=== 2.4.2 Version Info === 362 362 363 -1. 364 -11. 365 -111. EU863-870 (EU868) 334 +Specify the software version: 0x64=100, means firmware version 1.00. 366 366 367 - Uplink:336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 368 368 369 -868.1 - SF7BW125 to SF12BW125 370 370 371 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 372 372 373 - 868.5- SF7BW125toSF12BW125340 +=== 2.4.3 Battery Info === 374 374 375 -867.1 - SF7BW125 to SF12BW125 342 +((( 343 +Check the battery voltage for LSE01. 344 +))) 376 376 377 -867.3 - SF7BW125 to SF12BW125 346 +((( 347 +Ex1: 0x0B45 = 2885mV 348 +))) 378 378 379 -867.5 - SF7BW125 to SF12BW125 350 +((( 351 +Ex2: 0x0B49 = 2889mV 352 +))) 380 380 381 -867.7 - SF7BW125 to SF12BW125 382 382 383 -867.9 - SF7BW125 to SF12BW125 384 384 385 - 868.8-FSK356 +=== 2.4.4 Signal Strength === 386 386 358 +NB-IoT Network signal Strength. 387 387 388 - Downlink:360 +**Ex1: 0x1d = 29** 389 389 390 - Uplinkchannels1-9(RX1)362 +(% style="color:blue" %)**0**(%%) -113dBm or less 391 391 392 - 869.525 - SF9BW125(RX2downlinkonly)364 +(% style="color:blue" %)**1**(%%) -111dBm 393 393 366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 394 394 395 -1. 396 -11. 397 -111. US902-928(US915) 368 +(% style="color:blue" %)**31** (%%) -51dBm or greater 398 398 399 - UsedinUSA,CanadaandSouthAmerica. Default useCHE=2370 +(% style="color:blue" %)**99** (%%) Not known or not detectable 400 400 401 -Uplink: 402 402 403 -903.9 - SF7BW125 to SF10BW125 404 404 405 - 904.1-SF7BW125toSF10BW125374 +=== 2.4.5 Soil Moisture === 406 406 407 -904.3 - SF7BW125 to SF10BW125 376 +((( 377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 378 +))) 408 408 409 -904.5 - SF7BW125 to SF10BW125 380 +((( 381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 382 +))) 410 410 411 -904.7 - SF7BW125 to SF10BW125 384 +((( 385 + 386 +))) 412 412 413 -904.9 - SF7BW125 to SF10BW125 388 +((( 389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 390 +))) 414 414 415 -905.1 - SF7BW125 to SF10BW125 416 416 417 -905.3 - SF7BW125 to SF10BW125 418 418 394 +=== 2.4.6 Soil Temperature === 419 419 420 -Downlink: 396 +((( 397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 398 +))) 421 421 422 -923.3 - SF7BW500 to SF12BW500 400 +((( 401 +**Example**: 402 +))) 423 423 424 -923.9 - SF7BW500 to SF12BW500 404 +((( 405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 406 +))) 425 425 426 -924.5 - SF7BW500 to SF12BW500 408 +((( 409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 410 +))) 427 427 428 -925.1 - SF7BW500 to SF12BW500 429 429 430 -925.7 - SF7BW500 to SF12BW500 431 431 432 - 926.3-SF7BW500toSF12BW500414 +=== 2.4.7 Soil Conductivity (EC) === 433 433 434 -926.9 - SF7BW500 to SF12BW500 416 +((( 417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 418 +))) 435 435 436 -927.5 - SF7BW500 to SF12BW500 420 +((( 421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 422 +))) 437 437 438 -923.3 - SF12BW500(RX2 downlink only) 424 +((( 425 +Generally, the EC value of irrigation water is less than 800uS / cm. 426 +))) 439 439 428 +((( 429 + 430 +))) 440 440 441 - 1.442 - 11.443 - 111. CN470-510 (CN470)432 +((( 433 + 434 +))) 444 444 445 - UsedinChina,Defaultuse CHE=1436 +=== 2.4.8 Digital Interrupt === 446 446 447 - Uplink:438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 448 448 449 - 486.3- SF7BW125 toSF12BW125440 +The command is: 450 450 451 - 486.5-SF7BW125to SF12BW125442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 452 452 453 -486.7 - SF7BW125 to SF12BW125 454 454 455 - 486.9-SF7BW125toSF12BW125445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up. 456 456 457 -487.1 - SF7BW125 to SF12BW125 458 458 459 - 487.3 - SF7BW125 to SF12BW125448 +Example: 460 460 461 - 487.5-SF7BW125to SF12BW125450 +0x(00): Normal uplink packet. 462 462 463 - 487.7 - SF7BW125toSF12BW125452 +0x(01): Interrupt Uplink Packet. 464 464 465 465 466 -Downlink: 467 467 468 - 506.7- SF7BW125 toSF12BW125456 +=== 2.4.9 +5V Output === 469 469 470 - 506.9-SF7BW125 toSF12BW125458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 471 471 472 -507.1 - SF7BW125 to SF12BW125 473 473 474 -5 07.3-SF7BW125toSF12BW125461 +The 5V output time can be controlled by AT Command. 475 475 476 - 507.5- SF7BW125toSF12BW125463 +(% style="color:blue" %)**AT+5VT=1000** 477 477 478 -50 7.7-SF7BW125toSF12BW125465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 479 479 480 -507.9 - SF7BW125 to SF12BW125 481 481 482 -508.1 - SF7BW125 to SF12BW125 483 483 484 - 505.3- SF12BW125(RX2 downlinkonly)469 +== 2.5 Downlink Payload == 485 485 471 +By default, NSE01 prints the downlink payload to console port. 486 486 487 -1. 488 -11. 489 -111. AU915-928(AU915) 473 +[[image:image-20220708133731-5.png]] 490 490 491 -Default use CHE=2 492 492 493 -Uplink: 494 494 495 -916.8 - SF7BW125 to SF12BW125 477 +((( 478 +(% style="color:blue" %)**Examples:** 479 +))) 496 496 497 -917.0 - SF7BW125 to SF12BW125 481 +((( 482 + 483 +))) 498 498 499 -917.2 - SF7BW125 to SF12BW125 485 +* ((( 486 +(% style="color:blue" %)**Set TDC** 487 +))) 500 500 501 -917.4 - SF7BW125 to SF12BW125 489 +((( 490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 491 +))) 502 502 503 -917.6 - SF7BW125 to SF12BW125 493 +((( 494 +Payload: 01 00 00 1E TDC=30S 495 +))) 504 504 505 -917.8 - SF7BW125 to SF12BW125 497 +((( 498 +Payload: 01 00 00 3C TDC=60S 499 +))) 506 506 507 -918.0 - SF7BW125 to SF12BW125 501 +((( 502 + 503 +))) 508 508 509 -918.2 - SF7BW125 to SF12BW125 505 +* ((( 506 +(% style="color:blue" %)**Reset** 507 +))) 510 510 509 +((( 510 +If payload = 0x04FF, it will reset the NSE01 511 +))) 511 511 512 -Downlink: 513 513 514 - 923.3-SF7BW500toSF12BW500514 +* (% style="color:blue" %)**INTMOD** 515 515 516 - 923.9-SF7BW500 toSF12BW500516 +Downlink Payload: 06000003, Set AT+INTMOD=3 517 517 518 -924.5 - SF7BW500 to SF12BW500 519 519 520 -925.1 - SF7BW500 to SF12BW500 521 521 522 - 925.7-SF7BW500toSF12BW500520 +== 2.6 LED Indicator == 523 523 524 -926.3 - SF7BW500 to SF12BW500 522 +((( 523 +The NSE01 has an internal LED which is to show the status of different state. 525 525 526 -926.9 - SF7BW500 to SF12BW500 527 527 528 -927.5 - SF7BW500 to SF12BW500 526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 527 +* Then the LED will be on for 1 second means device is boot normally. 528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 529 +* For each uplink probe, LED will be on for 500ms. 530 +))) 529 529 530 -923.3 - SF12BW500(RX2 downlink only) 531 531 532 -1. 533 -11. 534 -111. AS920-923 & AS923-925 (AS923) 535 535 536 -**Default Uplink channel:** 537 537 538 - 923.2 - SF7BW125to SF10BW125535 +== 2.7 Installation in Soil == 539 539 540 - 923.4- SF7BW125toSF10BW125537 +__**Measurement the soil surface**__ 541 541 539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 542 542 543 - **Additional UplinkChannel**:541 +[[image:1657259653666-883.png]] 544 544 545 -(OTAA mode, channel added by JoinAccept message) 546 546 547 -**AS920~~AS923 for Japan, Malaysia, Singapore**: 544 +((( 545 + 548 548 549 -922.2 - SF7BW125 to SF10BW125 547 +((( 548 +Dig a hole with diameter > 20CM. 549 +))) 550 550 551 -922.4 - SF7BW125 to SF10BW125 551 +((( 552 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 553 +))) 554 +))) 552 552 553 - 922.6 - SF7BW125to SF10BW125556 +[[image:1654506665940-119.png]] 554 554 555 -922.8 - SF7BW125 to SF10BW125 558 +((( 559 + 560 +))) 556 556 557 -923.0 - SF7BW125 to SF10BW125 558 558 559 - 922.0- SF7BW125toSF10BW125563 +== 2.8 Firmware Change Log == 560 560 561 561 562 - **AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia,Laos,Taiwan,Thailand, Vietnam**:566 +Download URL & Firmware Change log 563 563 564 - 923.6-F7BW125toSF10BW125568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 565 565 566 -923.8 - SF7BW125 to SF10BW125 567 567 568 - 924.0- SF7BW125toSF10BW125571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]] 569 569 570 -924.2 - SF7BW125 to SF10BW125 571 571 572 -924.4 - SF7BW125 to SF10BW125 573 573 574 - 924.6- SF7BW125toSF10BW125575 +== 2.9 Battery Analysis == 575 575 577 +=== 2.9.1 Battery Type === 576 576 577 577 578 - **Downlink:**580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 579 579 580 -Uplink channels 1-8 (RX1) 581 581 582 - 923.2-SF10BW125(RX2)583 +The battery is designed to last for several years depends on the actually use environment and update interval. 583 583 584 584 585 -1. 586 -11. 587 -111. KR920-923 (KR920) 586 +The battery related documents as below: 588 588 589 -Default channel: 588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 590 590 591 -922.1 - SF7BW125 to SF12BW125 592 +((( 593 +[[image:image-20220708140453-6.png]] 594 +))) 592 592 593 -922.3 - SF7BW125 to SF12BW125 594 594 595 -922.5 - SF7BW125 to SF12BW125 596 596 598 +2.9.2 597 597 598 - Uplink:(OTAAmode,channeladdedbyJoinAcceptmessage)600 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 599 599 600 -922.1 - SF7BW125 to SF12BW125 601 601 602 - 922.3- SF7BW125toSF12BW125603 +Instruction to use as below: 603 603 604 -922.5 - SF7BW125 to SF12BW125 605 605 606 - 922.7 -SF7BW125toSF12BW125606 +Step 1: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: 607 607 608 - 922.9 - SF7BW125toSF12BW125608 +[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 609 609 610 -923.1 - SF7BW125 to SF12BW125 611 611 612 - 923.3 -SF7BW125toSF12BW125611 +Step 2: Open it and choose 613 613 613 +* Product Model 614 +* Uplink Interval 615 +* Working Mode 614 614 615 - Downlink:617 +And the Life expectation in difference case will be shown on the right. 616 616 617 -Uplink channels 1-7(RX1) 618 618 619 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 620 620 621 +=== 2.9.3 Battery Note === 621 621 622 -1. 623 -11. 624 -111. IN865-867 (IN865) 625 - 626 -Uplink: 627 - 628 -865.0625 - SF7BW125 to SF12BW125 629 - 630 -865.4025 - SF7BW125 to SF12BW125 631 - 632 -865.9850 - SF7BW125 to SF12BW125 633 - 634 - 635 -Downlink: 636 - 637 -Uplink channels 1-3 (RX1) 638 - 639 -866.550 - SF10BW125 (RX2) 640 - 641 - 642 -1. 643 -11. LED Indicator 644 - 645 -The LSE01 has an internal LED which is to show the status of different state. 646 - 647 - 648 -* Blink once when device power on. 649 -* Solid ON for 5 seconds once device successful Join the network. 650 -* Blink once when device transmit a packet. 651 - 652 -1. 653 -11. Installation in Soil 654 - 655 -**Measurement the soil surface** 656 - 657 - 658 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] 659 - 660 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 661 - 662 - 663 - 664 - 665 - 666 - 667 - 668 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]] 669 - 670 - 671 - 672 -Dig a hole with diameter > 20CM. 673 - 674 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 675 - 676 - 677 - 678 - 679 -1. 680 -11. Firmware Change Log 681 - 682 -**Firmware download link:** 683 - 684 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 685 - 686 - 687 -**Firmware Upgrade Method:** 688 - 689 -[[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]] 690 - 691 - 692 -**V1.0.** 693 - 694 -Release 695 - 696 - 697 - 698 -1. 699 -11. Battery Analysis 700 -111. Battery Type 701 - 702 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 703 - 704 - 705 -The battery is designed to last for more than 5 years for the LSN50. 706 - 707 - 708 -The battery related documents as below: 709 - 710 -* [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 711 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]] 712 -* [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 713 - 714 -|((( 715 -JST-XH-2P connector 623 +((( 624 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 716 716 ))) 717 717 718 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]] 719 719 720 720 629 +=== 2.9.4 Replace the battery === 721 721 722 -1. 723 -11. 724 -111. Battery Note 631 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 725 725 726 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 727 727 728 728 729 -1. 730 -11. 731 -111. Replace the battery 732 - 733 -If Battery is lower than 2.7v, user should replace the battery of LSE01. 734 - 735 - 736 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 737 - 738 - 739 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 740 - 741 - 742 - 743 - 744 - 745 - 746 746 = 3. Using the AT Commands = 747 747 748 748 == 3.1 Access AT Commands == ... ... @@ -750,13 +750,13 @@ 750 750 751 751 LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 752 752 753 -[[image:1654501986557-872.png]] 642 +[[image:1654501986557-872.png||height="391" width="800"]] 754 754 755 755 756 756 Or if you have below board, use below connection: 757 757 758 758 759 -[[image:1654502005655-729.png]] 648 +[[image:1654502005655-729.png||height="503" width="801"]] 760 760 761 761 762 762 ... ... @@ -763,10 +763,10 @@ 763 763 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 764 764 765 765 766 - [[image:1654502050864-459.png]] 655 + [[image:1654502050864-459.png||height="564" width="806"]] 767 767 768 768 769 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>> url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]658 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 770 770 771 771 772 772 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> ... ... @@ -878,20 +878,38 @@ 878 878 879 879 == 4.1 How to change the LoRa Frequency Bands/Region? == 880 880 881 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]]. 770 +((( 771 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 882 882 When downloading the images, choose the required image file for download. 773 +))) 883 883 775 +((( 776 + 777 +))) 884 884 779 +((( 885 885 How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 781 +))) 886 886 783 +((( 784 + 785 +))) 887 887 787 +((( 888 888 You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 789 +))) 889 889 791 +((( 792 + 793 +))) 890 890 795 +((( 891 891 For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 797 +))) 892 892 893 893 [[image:image-20220606154726-3.png]] 894 894 801 + 895 895 When you use the TTN network, the US915 frequency bands use are: 896 896 897 897 * 903.9 - SF7BW125 to SF10BW125 ... ... @@ -904,37 +904,47 @@ 904 904 * 905.3 - SF7BW125 to SF10BW125 905 905 * 904.6 - SF8BW500 906 906 814 +((( 907 907 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 908 908 909 -(% class="box infomessage" %) 910 -((( 911 -**AT+CHE=2** 817 +* (% style="color:#037691" %)**AT+CHE=2** 818 +* (% style="color:#037691" %)**ATZ** 912 912 ))) 913 913 914 -(% class="box infomessage" %) 915 915 ((( 916 -**ATZ** 917 -))) 822 + 918 918 919 919 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 825 +))) 920 920 827 +((( 828 + 829 +))) 921 921 831 +((( 922 922 The **AU915** band is similar. Below are the AU915 Uplink Channels. 833 +))) 923 923 924 924 [[image:image-20220606154825-4.png]] 925 925 926 926 838 +== 4.2 Can I calibrate LSE01 to different soil types? == 927 927 840 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 841 + 842 + 928 928 = 5. Trouble Shooting = 929 929 930 -== 5.1 Why I can ’t join TTN in US915 / AU915 bands? ==845 +== 5.1 Why I can't join TTN in US915 / AU915 bands? == 931 931 932 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main. LoRaWANCommunication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.847 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details. 933 933 934 934 935 -== 5.2 AT Command input doesn ’t work ==850 +== 5.2 AT Command input doesn't work == 936 936 937 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 852 +((( 853 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 854 +))) 938 938 939 939 940 940 == 5.3 Device rejoin in at the second uplink packet == ... ... @@ -946,7 +946,9 @@ 946 946 947 947 (% style="color:#4f81bd" %)**Cause for this issue:** 948 948 866 +((( 949 949 The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 868 +))) 950 950 951 951 952 952 (% style="color:#4f81bd" %)**Solution: ** ... ... @@ -953,7 +953,7 @@ 953 953 954 954 All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 955 955 956 -[[image:1654500929571-736.png]] 875 +[[image:1654500929571-736.png||height="458" width="832"]] 957 957 958 958 959 959 = 6. Order Info = ... ... @@ -978,10 +978,17 @@ 978 978 * (% style="color:red" %)**4**(%%): 4000mAh battery 979 979 * (% style="color:red" %)**8**(%%): 8500mAh battery 980 980 900 +(% class="wikigeneratedid" %) 901 +((( 902 + 903 +))) 904 + 981 981 = 7. Packing Info = 982 982 983 983 ((( 984 -**Package Includes**: 908 + 909 + 910 +(% style="color:#037691" %)**Package Includes**: 985 985 ))) 986 986 987 987 * ((( ... ... @@ -990,10 +990,8 @@ 990 990 991 991 ((( 992 992 993 -))) 994 994 995 -((( 996 -**Dimension and weight**: 920 +(% style="color:#037691" %)**Dimension and weight**: 997 997 ))) 998 998 999 999 * ((( ... ... @@ -1007,6 +1007,8 @@ 1007 1007 ))) 1008 1008 * ((( 1009 1009 Weight / pcs : g 934 + 935 + 1010 1010 ))) 1011 1011 1012 1012 = 8. Support = ... ... @@ -1013,5 +1013,3 @@ 1013 1013 1014 1014 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1015 1015 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1016 - 1017 -
- 1654503992078-669.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1654504596150-405.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +66.7 KB - Content
- 1654504683289-357.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +94.0 KB - Content
- 1654504778294-788.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +119.4 KB - Content
- 1654504881641-514.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +119.4 KB - Content
- 1654504907647-967.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +54.7 KB - Content
- 1654505570700-128.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +59.2 KB - Content
- 1654505857935-743.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +86.0 KB - Content
- 1654505874829-548.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +129.9 KB - Content
- 1654505905236-553.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +92.0 KB - Content
- 1654505925508-181.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +69.5 KB - Content
- 1654506634463-199.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1654506665940-119.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +423.3 KB - Content
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- image-20220606163732-6.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +16.5 KB - Content
- image-20220606163915-7.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +94.8 KB - Content
- image-20220606165544-8.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +11.6 KB - Content
- image-20220606171726-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +171.0 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content