Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 37 added, 0 removed)
- 1654503992078-669.png
- 1654504596150-405.png
- 1654504683289-357.png
- 1654504778294-788.png
- 1654504881641-514.png
- 1654504907647-967.png
- 1654505570700-128.png
- 1654505857935-743.png
- 1654505874829-548.png
- 1654505905236-553.png
- 1654505925508-181.png
- 1654506634463-199.png
- 1654506665940-119.png
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- image-20220606163732-6.jpeg
- image-20220606163915-7.png
- image-20220606165544-8.png
- image-20220606171726-9.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220606151504-2.jpeg||height=" 848" width="848"]]2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]] 3 3 4 4 5 5 ... ... @@ -8,759 +8,630 @@ 8 8 9 9 10 10 11 -= 1. Introduction = 12 12 13 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 14 14 15 -((( 16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 17 -))) 18 18 19 -((( 20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 21 -))) 14 +**Table of Contents:** 22 22 23 -((( 24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 25 -))) 26 26 27 -((( 28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 29 -))) 30 30 31 -((( 32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 33 -))) 34 34 35 35 36 -[[image:1654503236291-817.png]] 37 37 21 += 1. Introduction = 38 38 39 - [[image:1654503265560-120.png]]23 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 40 40 25 +((( 26 + 41 41 28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 42 42 43 -= =1.2Features==30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 44 44 45 -* LoRaWAN 1.0.3 Class A 46 -* Ultra low power consumption 47 -* Monitor Soil Moisture 48 -* Monitor Soil Temperature 49 -* Monitor Soil Conductivity 50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 51 -* AT Commands to change parameters 52 -* Uplink on periodically 53 -* Downlink to change configure 54 -* IP66 Waterproof Enclosure 55 -* 4000mAh or 8500mAh Battery for long term use 32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 56 56 34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 57 57 58 -== 1.3 Specification == 59 - 60 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 61 - 62 -[[image:image-20220606162220-5.png]] 63 - 64 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:928px" %) 65 -|=(% style="width: 141px;background-color:#4F81BD;" %)**Parameter**|=(% style="width: 306px;background-color:#4F81BD;" %)**Soil Moisture**|=(% style="width: 332px;background-color:#4F81BD;" %)**Soil Conductivity**|=(% style="width: 146px;background-color:#4F81BD;" %)**Soil Temperature** 66 -|(% style="width:141px" %)**Range**|(% style="width:306px" %)**0-100.00%**|(% style="width:332px" %)((( 67 -**0-20000uS/cm** 68 - 69 -**(25℃)(0-20.0EC)** 70 -)))|(% style="width:146px" %)**-40.00℃~85.00℃** 71 -|(% style="width:141px" %)**Unit**|(% style="width:306px" %)**V/V %,**|(% style="width:332px" %)**uS/cm,**|(% style="width:146px" %)**℃** 72 -|(% style="width:141px" %)**Resolution**|(% style="width:306px" %)**0.01%**|(% style="width:332px" %)**1 uS/cm**|(% style="width:146px" %)**0.01℃** 73 -|(% style="width:141px" %)**Accuracy**|(% style="width:306px" %)((( 74 -**±3% (0-53%)** 75 - 76 -**±5% (>53%)** 77 -)))|(% style="width:332px" %)**2%FS,**|(% style="width:146px" %)((( 78 -**-10℃~50℃:<0.3℃** 79 - 80 -**All other: <0.6℃** 36 + 81 81 ))) 82 -|(% style="width:141px" %)((( 83 -**Measure Method** 84 -)))|(% style="width:306px" %)**FDR , with temperature &EC compensate**|(% style="width:332px" %)**Conductivity , with temperature compensate**|(% style="width:146px" %)**RTD, and calibrate** 85 85 86 -* 87 -*1. Applications 88 -* Smart Agriculture 39 +[[image:1654503236291-817.png]] 89 89 90 -1. 91 -11. Firmware Change log 92 92 93 - **LSE01v1.0:**42 +[[image:1657245163077-232.png]] 94 94 95 -* Release 96 96 97 -1. Configure LSE01 to connect to LoRaWAN network 98 -11. How it works 99 99 100 - TheLSE01is configured as LoRaWAN OTAA Class A mode by default.It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, youneed to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA andstartto send the sensor value46 +== 1.2 Features == 101 101 102 102 103 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>path:#_Using_the_AT]]to set the keys in the LSE01. 49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 50 +* Monitor Soil Moisture 51 +* Monitor Soil Temperature 52 +* Monitor Soil Conductivity 53 +* AT Commands to change parameters 54 +* Uplink on periodically 55 +* Downlink to change configure 56 +* IP66 Waterproof Enclosure 57 +* Ultra-Low Power consumption 58 +* AT Commands to change parameters 59 +* Micro SIM card slot for NB-IoT SIM 60 +* 8500mAh Battery for long term use 104 104 62 +== 1.3 Specification == 105 105 106 106 65 +(% style="color:#037691" %)**Common DC Characteristics:** 107 107 108 - 1.109 - 11.Quick guideo connectto LoRaWAN server(OTAA)67 +* Supply Voltage: 2.1v ~~ 3.6v 68 +* Operating Temperature: -40 ~~ 85°C 110 110 111 - Followingisan example for howto join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]]as a LoRaWANgateway in this example.70 +(% style="color:#037691" %)**NB-IoT Spec:** 112 112 72 +* - B1 @H-FDD: 2100MHz 73 +* - B3 @H-FDD: 1800MHz 74 +* - B8 @H-FDD: 900MHz 75 +* - B5 @H-FDD: 850MHz 76 +* - B20 @H-FDD: 800MHz 77 +* - B28 @H-FDD: 700MHz 113 113 114 - [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image003.png]]79 +(% style="color:#037691" %)**Probe Specification:** 115 115 81 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 116 116 117 - The LG308isalready set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.83 +[[image:image-20220708101224-1.png]] 118 118 119 119 120 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 121 121 122 - EachLSE01is shipped with a sticker with the defaultdevice EUI asbelow:87 +== 1.4 Applications == 123 123 89 +* Smart Agriculture 124 124 91 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 92 + 125 125 94 +== 1.5 Pin Definitions == 126 126 127 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 128 128 97 +[[image:1657246476176-652.png]] 129 129 130 -**Add APP EUI in the application** 131 131 132 132 133 - [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]]101 += 2. Use NSE01 to communicate with IoT Server = 134 134 103 +== 2.1 How it works == 135 135 136 136 137 -**Add APP KEY and DEV EUI** 106 +((( 107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 108 +))) 138 138 139 139 140 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image005.png]] 141 - 142 -|((( 143 - 111 +((( 112 +The diagram below shows the working flow in default firmware of NSE01: 144 144 ))) 145 145 146 - **Step 2**:Power on LSE01115 +[[image:image-20220708101605-2.png]] 147 147 148 - 149 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 150 - 151 - 152 - 153 -|((( 117 +((( 154 154 155 155 ))) 156 156 157 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image006.png]] 158 158 159 159 123 +== 2.2 Configure the NSE01 == 160 160 161 161 126 +=== 2.2.1 Test Requirement === 162 162 163 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 164 164 165 - [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]129 +To use NSE01 in your city, make sure meet below requirements: 166 166 131 +* Your local operator has already distributed a NB-IoT Network there. 132 +* The local NB-IoT network used the band that NSE01 supports. 133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 167 167 135 +((( 136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 137 +))) 168 168 169 169 170 -1. 171 -11. Uplink Payload 172 -111. MOD=0(Default Mode) 140 +[[image:1657249419225-449.png]] 173 173 174 -LSE01 will uplink payload via LoRaWAN with below payload format: 175 175 176 176 177 -Uplink payload includes in total 11 bytes. 178 - 144 +=== 2.2.2 Insert SIM card === 179 179 180 -|((( 181 -**Size** 146 +Insert the NB-IoT Card get from your provider. 182 182 183 -**(bytes)** 184 -)))|**2**|**2**|**2**|**2**|**2**|**1** 185 -|**Value**|[[BAT>>path:#bat]]|((( 186 -Temperature 148 +User need to take out the NB-IoT module and insert the SIM card like below: 187 187 188 -(Reserve, Ignore now) 189 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|((( 190 -MOD & Digital Interrupt 191 191 192 -(Optional) 193 -))) 151 +[[image:1657249468462-536.png]] 194 194 195 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]] 196 196 197 197 198 -1. 199 -11. 200 -111. MOD=1(Original value) 155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 201 201 202 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 203 - 204 -|((( 205 -**Size** 206 - 207 -**(bytes)** 208 -)))|**2**|**2**|**2**|**2**|**2**|**1** 209 -|**Value**|[[BAT>>path:#bat]]|((( 210 -Temperature 211 - 212 -(Reserve, Ignore now) 213 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|((( 214 -MOD & Digital Interrupt 215 - 216 -(Optional) 157 +((( 158 +((( 159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 217 217 ))) 161 +))) 218 218 219 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image008.png]] 220 220 221 -1. 222 -11. 223 -111. Battery Info 164 +**Connection:** 224 224 225 - Checkthettery voltage forLSE01.166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 226 226 227 - Ex1:0x0B45=2885mV168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 228 228 229 - Ex2:0x0B49=2889mV170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 230 230 231 231 173 +In the PC, use below serial tool settings: 232 232 233 -1. 234 -11. 235 -111. Soil Moisture 175 +* Baud: (% style="color:green" %)**9600** 176 +* Data bits:** (% style="color:green" %)8(%%)** 177 +* Stop bits: (% style="color:green" %)**1** 178 +* Parity: (% style="color:green" %)**None** 179 +* Flow Control: (% style="color:green" %)**None** 236 236 237 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 181 +((( 182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 183 +))) 238 238 239 - For example,if the data youget fromthe register is0x050xDC, the moisture content in the soil is185 +[[image:image-20220708110657-3.png]] 240 240 241 - **05DC(H)=1500(D)/100=15%.**187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 242 242 243 243 244 -1. 245 -11. 246 -111. Soil Temperature 247 247 248 - Get the temperature in the soil.The value range of the register is -4000-+800(Decimal), divide thisvalueby 100 toget the temperature in the soil.Forexample,ifthedatayou get from the register is 0x09 0xEC, the temperature content in the soil is191 +=== 2.2.4 Use CoAP protocol to uplink data === 249 249 250 - **Example**:193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 251 251 252 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 253 253 254 - IfpayloadisFF7EH:((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C196 +**Use below commands:** 255 255 198 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 256 256 257 -1. 258 -11. 259 -111. Soil Conductivity (EC) 202 +For parameter description, please refer to AT command set 260 260 261 - Obtain soluble salt concentration in soil or soluble ion concentration in liquid fertilizer or plantingmedium,. The value rangeof the register is 0 -20000(Decimal)( Canbegreater than 20000).204 +[[image:1657249793983-486.png]] 262 262 263 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 264 264 207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 265 265 266 - Generally, the EC value ofirrigation water is less than800uS / cm.209 +[[image:1657249831934-534.png]] 267 267 268 -1. 269 -11. 270 -111. MOD 271 271 272 -Firmware version at least v2.1 supports changing mode. 273 273 274 - Forexample,bytes[10]=90213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 275 275 276 - mod=(bytes[10]>>7)&0x01=1.215 +This feature is supported since firmware version v1.0.1 277 277 278 278 279 -Downlink Command: 218 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 220 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 280 280 281 - If payload = 0x0A00, workmode=0222 +[[image:1657249864775-321.png]] 282 282 283 -If** **payload =** **0x0A01, workmode=1 284 284 225 +[[image:1657249930215-289.png]] 285 285 286 -1. 287 -11. 288 -111. Decode payload in The Things Network 289 289 290 -While using TTN network, you can add the payload format to decode the payload. 291 291 229 +=== 2.2.6 Use MQTT protocol to uplink data === 292 292 293 - [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.png]]231 +This feature is supported since firmware version v110 294 294 295 -The payload decoder function for TTN is here: 296 296 297 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 234 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 237 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 238 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 298 298 242 +[[image:1657249978444-674.png]] 299 299 300 -1. 301 -11. Uplink Interval 302 302 303 - The LSE01 by default uplink the sensor dataevery20minutes.User canchange this interval by AT Command or LoRaWAN Downlink Command. See this link:245 +[[image:1657249990869-686.png]] 304 304 305 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]] 306 306 307 -1. 308 -11. Downlink Payload 248 +((( 249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 250 +))) 309 309 310 -By default, LSE50 prints the downlink payload to console port. 311 311 312 -|**Downlink Control Type**|**FPort**|**Type Code**|**Downlink payload size(bytes)** 313 -|TDC (Transmit Time Interval)|Any|01|4 314 -|RESET|Any|04|2 315 -|AT+CFM|Any|05|4 316 -|INTMOD|Any|06|4 317 -|MOD|Any|0A|2 318 318 319 - **Examples**254 +=== 2.2.7 Use TCP protocol to uplink data === 320 320 256 +This feature is supported since firmware version v110 321 321 322 -**Set TDC** 323 323 324 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 259 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 325 325 326 - Payload:010 001E TDC=30S262 +[[image:1657250217799-140.png]] 327 327 328 -Payload: 01 00 00 3C TDC=60S 329 329 265 +[[image:1657250255956-604.png]] 330 330 331 -**Reset** 332 332 333 -If payload = 0x04FF, it will reset the LSE01 334 334 269 +=== 2.2.8 Change Update Interval === 335 335 336 -** CFM**271 +User can use below command to change the (% style="color:green" %)**uplink interval**. 337 337 338 - DownlinkPayload:05000001, SetAT+CFM=1 or05000000,setAT+CFM=0273 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 339 339 340 -1. 341 -11. Show Data in DataCake IoT Server 275 +((( 276 +(% style="color:red" %)**NOTE:** 277 +))) 342 342 343 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 279 +((( 280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 281 +))) 344 344 345 345 346 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 347 347 348 - **Step2**:To configure the Applicationto forward data to DATACAKEyou will need todintegration. To add the DATACAKE integration, perform the following steps:285 +== 2.3 Uplink Payload == 349 349 287 +In this mode, uplink payload includes in total 18 bytes 350 350 351 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]] 289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 290 +|=(% style="width: 50px;" %)((( 291 +**Size(bytes)** 292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]] 352 352 295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 353 353 354 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]] 355 355 298 +[[image:image-20220708111918-4.png]] 356 356 357 357 301 +The payload is ASCII string, representative same HEX: 358 358 303 +0x72403155615900640c7817075e0a8c02f900 where: 359 359 360 -Step 3: Create an account or log in Datacake. 305 +* Device ID: 0x 724031556159 = 724031556159 306 +* Version: 0x0064=100=1.0.0 361 361 362 -Step 4: Search the LSE01 and add DevEUI. 308 +* BAT: 0x0c78 = 3192 mV = 3.192V 309 +* Singal: 0x17 = 23 310 +* Soil Moisture: 0x075e= 1886 = 18.86 % 311 +* Soil Temperature:0x0a8c =2700=27 °C 312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 313 +* Interrupt: 0x00 = 0 363 363 315 +== 2.4 Payload Explanation and Sensor Interface == 364 364 365 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]] 366 366 318 +=== 2.4.1 Device ID === 367 367 320 +By default, the Device ID equal to the last 6 bytes of IMEI. 368 368 369 - After added,the sensordata arrive TTN,itwill alsoarriveand show in Mydevices.322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 370 370 324 +**Example:** 371 371 372 - [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]326 +AT+DEUI=A84041F15612 373 373 328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 374 374 375 375 376 -1. 377 -11. Frequency Plans 378 378 379 - TheLSE01 uses OTAA mode and below frequency plans by default.If userwant to useit with differentfrequency plan, please refer the AT commandsets.332 +=== 2.4.2 Version Info === 380 380 381 -1. 382 -11. 383 -111. EU863-870 (EU868) 334 +Specify the software version: 0x64=100, means firmware version 1.00. 384 384 385 - Uplink:336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 386 386 387 -868.1 - SF7BW125 to SF12BW125 388 388 389 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 390 390 391 - 868.5- SF7BW125toSF12BW125340 +=== 2.4.3 Battery Info === 392 392 393 -867.1 - SF7BW125 to SF12BW125 342 +((( 343 +Check the battery voltage for LSE01. 344 +))) 394 394 395 -867.3 - SF7BW125 to SF12BW125 346 +((( 347 +Ex1: 0x0B45 = 2885mV 348 +))) 396 396 397 -867.5 - SF7BW125 to SF12BW125 350 +((( 351 +Ex2: 0x0B49 = 2889mV 352 +))) 398 398 399 -867.7 - SF7BW125 to SF12BW125 400 400 401 -867.9 - SF7BW125 to SF12BW125 402 402 403 - 868.8-FSK356 +=== 2.4.4 Signal Strength === 404 404 358 +NB-IoT Network signal Strength. 405 405 406 - Downlink:360 +**Ex1: 0x1d = 29** 407 407 408 - Uplinkchannels1-9(RX1)362 +(% style="color:blue" %)**0**(%%) -113dBm or less 409 409 410 - 869.525 - SF9BW125(RX2downlinkonly)364 +(% style="color:blue" %)**1**(%%) -111dBm 411 411 366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 412 412 413 -1. 414 -11. 415 -111. US902-928(US915) 368 +(% style="color:blue" %)**31** (%%) -51dBm or greater 416 416 417 - UsedinUSA,CanadaandSouthAmerica. Default useCHE=2370 +(% style="color:blue" %)**99** (%%) Not known or not detectable 418 418 419 -Uplink: 420 420 421 -903.9 - SF7BW125 to SF10BW125 422 422 423 - 904.1-SF7BW125toSF10BW125374 +=== 2.4.5 Soil Moisture === 424 424 425 -904.3 - SF7BW125 to SF10BW125 376 +((( 377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 378 +))) 426 426 427 -904.5 - SF7BW125 to SF10BW125 380 +((( 381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 382 +))) 428 428 429 -904.7 - SF7BW125 to SF10BW125 384 +((( 385 + 386 +))) 430 430 431 -904.9 - SF7BW125 to SF10BW125 388 +((( 389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 390 +))) 432 432 433 -905.1 - SF7BW125 to SF10BW125 434 434 435 -905.3 - SF7BW125 to SF10BW125 436 436 394 +=== 2.4.6 Soil Temperature === 437 437 438 -Downlink: 396 +((( 397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 398 +))) 439 439 440 -923.3 - SF7BW500 to SF12BW500 400 +((( 401 +**Example**: 402 +))) 441 441 442 -923.9 - SF7BW500 to SF12BW500 404 +((( 405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 406 +))) 443 443 444 -924.5 - SF7BW500 to SF12BW500 408 +((( 409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 410 +))) 445 445 446 -925.1 - SF7BW500 to SF12BW500 447 447 448 -925.7 - SF7BW500 to SF12BW500 449 449 450 - 926.3-SF7BW500toSF12BW500414 +=== 2.4.7 Soil Conductivity (EC) === 451 451 452 -926.9 - SF7BW500 to SF12BW500 416 +((( 417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 418 +))) 453 453 454 -927.5 - SF7BW500 to SF12BW500 420 +((( 421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 422 +))) 455 455 456 -923.3 - SF12BW500(RX2 downlink only) 424 +((( 425 +Generally, the EC value of irrigation water is less than 800uS / cm. 426 +))) 457 457 428 +((( 429 + 430 +))) 458 458 459 - 1.460 - 11.461 - 111. CN470-510 (CN470)432 +((( 433 + 434 +))) 462 462 463 - UsedinChina,Defaultuse CHE=1436 +=== 2.4.8 Digital Interrupt === 464 464 465 - Uplink:438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 466 466 467 - 486.3- SF7BW125 toSF12BW125440 +The command is: 468 468 469 - 486.5-SF7BW125to SF12BW125442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 470 470 471 -486.7 - SF7BW125 to SF12BW125 472 472 473 - 486.9-SF7BW125toSF12BW125445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up. 474 474 475 -487.1 - SF7BW125 to SF12BW125 476 476 477 - 487.3 - SF7BW125 to SF12BW125448 +Example: 478 478 479 - 487.5-SF7BW125to SF12BW125450 +0x(00): Normal uplink packet. 480 480 481 - 487.7 - SF7BW125toSF12BW125452 +0x(01): Interrupt Uplink Packet. 482 482 483 483 484 -Downlink: 485 485 486 - 506.7- SF7BW125 toSF12BW125456 +=== 2.4.9 +5V Output === 487 487 488 - 506.9-SF7BW125 toSF12BW125458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 489 489 490 -507.1 - SF7BW125 to SF12BW125 491 491 492 -5 07.3-SF7BW125toSF12BW125461 +The 5V output time can be controlled by AT Command. 493 493 494 - 507.5- SF7BW125toSF12BW125463 +(% style="color:blue" %)**AT+5VT=1000** 495 495 496 -50 7.7-SF7BW125toSF12BW125465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 497 497 498 -507.9 - SF7BW125 to SF12BW125 499 499 500 -508.1 - SF7BW125 to SF12BW125 501 501 502 - 505.3- SF12BW125(RX2 downlinkonly)469 +== 2.5 Downlink Payload == 503 503 471 +By default, NSE01 prints the downlink payload to console port. 504 504 505 -1. 506 -11. 507 -111. AU915-928(AU915) 473 +[[image:image-20220708133731-5.png]] 508 508 509 -Default use CHE=2 510 510 511 -Uplink: 512 512 513 -916.8 - SF7BW125 to SF12BW125 477 +((( 478 +(% style="color:blue" %)**Examples:** 479 +))) 514 514 515 -917.0 - SF7BW125 to SF12BW125 481 +((( 482 + 483 +))) 516 516 517 -917.2 - SF7BW125 to SF12BW125 485 +* ((( 486 +(% style="color:blue" %)**Set TDC** 487 +))) 518 518 519 -917.4 - SF7BW125 to SF12BW125 489 +((( 490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 491 +))) 520 520 521 -917.6 - SF7BW125 to SF12BW125 493 +((( 494 +Payload: 01 00 00 1E TDC=30S 495 +))) 522 522 523 -917.8 - SF7BW125 to SF12BW125 497 +((( 498 +Payload: 01 00 00 3C TDC=60S 499 +))) 524 524 525 -918.0 - SF7BW125 to SF12BW125 501 +((( 502 + 503 +))) 526 526 527 -918.2 - SF7BW125 to SF12BW125 505 +* ((( 506 +(% style="color:blue" %)**Reset** 507 +))) 528 528 509 +((( 510 +If payload = 0x04FF, it will reset the NSE01 511 +))) 529 529 530 -Downlink: 531 531 532 - 923.3-SF7BW500toSF12BW500514 +* (% style="color:blue" %)**INTMOD** 533 533 534 - 923.9-SF7BW500 toSF12BW500516 +Downlink Payload: 06000003, Set AT+INTMOD=3 535 535 536 -924.5 - SF7BW500 to SF12BW500 537 537 538 -925.1 - SF7BW500 to SF12BW500 539 539 540 - 925.7-SF7BW500toSF12BW500520 +== 2.6 LED Indicator == 541 541 542 -926.3 - SF7BW500 to SF12BW500 522 +((( 523 +The NSE01 has an internal LED which is to show the status of different state. 543 543 544 -926.9 - SF7BW500 to SF12BW500 545 545 546 -927.5 - SF7BW500 to SF12BW500 526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 527 +* Then the LED will be on for 1 second means device is boot normally. 528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 529 +* For each uplink probe, LED will be on for 500ms. 530 +))) 547 547 548 -923.3 - SF12BW500(RX2 downlink only) 549 549 550 -1. 551 -11. 552 -111. AS920-923 & AS923-925 (AS923) 553 553 554 -**Default Uplink channel:** 555 555 556 - 923.2 - SF7BW125to SF10BW125535 +== 2.7 Installation in Soil == 557 557 558 - 923.4- SF7BW125toSF10BW125537 +__**Measurement the soil surface**__ 559 559 539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 560 560 561 - **Additional UplinkChannel**:541 +[[image:1657259653666-883.png]] 562 562 563 -(OTAA mode, channel added by JoinAccept message) 564 564 565 -**AS920~~AS923 for Japan, Malaysia, Singapore**: 544 +((( 545 + 566 566 567 -922.2 - SF7BW125 to SF10BW125 547 +((( 548 +Dig a hole with diameter > 20CM. 549 +))) 568 568 569 -922.4 - SF7BW125 to SF10BW125 551 +((( 552 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 553 +))) 554 +))) 570 570 571 - 922.6 - SF7BW125to SF10BW125556 +[[image:1654506665940-119.png]] 572 572 573 -922.8 - SF7BW125 to SF10BW125 558 +((( 559 + 560 +))) 574 574 575 -923.0 - SF7BW125 to SF10BW125 576 576 577 - 922.0- SF7BW125toSF10BW125563 +== 2.8 Firmware Change Log == 578 578 579 579 580 - **AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia,Laos,Taiwan,Thailand, Vietnam**:566 +Download URL & Firmware Change log 581 581 582 - 923.6-F7BW125toSF10BW125568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 583 583 584 -923.8 - SF7BW125 to SF10BW125 585 585 586 - 924.0- SF7BW125toSF10BW125571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]] 587 587 588 -924.2 - SF7BW125 to SF10BW125 589 589 590 -924.4 - SF7BW125 to SF10BW125 591 591 592 - 924.6- SF7BW125toSF10BW125575 +== 2.9 Battery Analysis == 593 593 577 +=== 2.9.1 Battery Type === 594 594 595 595 596 - **Downlink:**580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 597 597 598 -Uplink channels 1-8 (RX1) 599 599 600 - 923.2-SF10BW125(RX2)583 +The battery is designed to last for several years depends on the actually use environment and update interval. 601 601 602 602 603 -1. 604 -11. 605 -111. KR920-923 (KR920) 586 +The battery related documents as below: 606 606 607 -Default channel: 588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 608 608 609 -922.1 - SF7BW125 to SF12BW125 592 +((( 593 +[[image:image-20220708140453-6.png]] 594 +))) 610 610 611 -922.3 - SF7BW125 to SF12BW125 612 612 613 -922.5 - SF7BW125 to SF12BW125 614 614 598 +2.9.2 615 615 616 - Uplink:(OTAAmode,channeladdedbyJoinAcceptmessage)600 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 617 617 618 -922.1 - SF7BW125 to SF12BW125 619 619 620 - 922.3- SF7BW125toSF12BW125603 +Instruction to use as below: 621 621 622 -922.5 - SF7BW125 to SF12BW125 623 623 624 - 922.7 -SF7BW125toSF12BW125606 +Step 1: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: 625 625 626 - 922.9 - SF7BW125toSF12BW125608 +[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 627 627 628 -923.1 - SF7BW125 to SF12BW125 629 629 630 - 923.3 -SF7BW125toSF12BW125611 +Step 2: Open it and choose 631 631 613 +* Product Model 614 +* Uplink Interval 615 +* Working Mode 632 632 633 - Downlink:617 +And the Life expectation in difference case will be shown on the right. 634 634 635 -Uplink channels 1-7(RX1) 636 636 637 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 638 638 621 +=== 2.9.3 Battery Note === 639 639 640 -1. 641 -11. 642 -111. IN865-867 (IN865) 643 - 644 -Uplink: 645 - 646 -865.0625 - SF7BW125 to SF12BW125 647 - 648 -865.4025 - SF7BW125 to SF12BW125 649 - 650 -865.9850 - SF7BW125 to SF12BW125 651 - 652 - 653 -Downlink: 654 - 655 -Uplink channels 1-3 (RX1) 656 - 657 -866.550 - SF10BW125 (RX2) 658 - 659 - 660 -1. 661 -11. LED Indicator 662 - 663 -The LSE01 has an internal LED which is to show the status of different state. 664 - 665 - 666 -* Blink once when device power on. 667 -* Solid ON for 5 seconds once device successful Join the network. 668 -* Blink once when device transmit a packet. 669 - 670 -1. 671 -11. Installation in Soil 672 - 673 -**Measurement the soil surface** 674 - 675 - 676 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] 677 - 678 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 679 - 680 - 681 - 682 - 683 - 684 - 685 - 686 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]] 687 - 688 - 689 - 690 -Dig a hole with diameter > 20CM. 691 - 692 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 693 - 694 - 695 - 696 - 697 -1. 698 -11. Firmware Change Log 699 - 700 -**Firmware download link:** 701 - 702 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 703 - 704 - 705 -**Firmware Upgrade Method:** 706 - 707 -[[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]] 708 - 709 - 710 -**V1.0.** 711 - 712 -Release 713 - 714 - 715 - 716 -1. 717 -11. Battery Analysis 718 -111. Battery Type 719 - 720 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 721 - 722 - 723 -The battery is designed to last for more than 5 years for the LSN50. 724 - 725 - 726 -The battery related documents as below: 727 - 728 -* [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 729 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]] 730 -* [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 731 - 732 -|((( 733 -JST-XH-2P connector 623 +((( 624 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 734 734 ))) 735 735 736 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]] 737 737 738 738 629 +=== 2.9.4 Replace the battery === 739 739 740 -1. 741 -11. 742 -111. Battery Note 631 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 743 743 744 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 745 745 746 746 747 -1. 748 -11. 749 -111. Replace the battery 750 - 751 -If Battery is lower than 2.7v, user should replace the battery of LSE01. 752 - 753 - 754 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 755 - 756 - 757 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 758 - 759 - 760 - 761 - 762 - 763 - 764 764 = 3. Using the AT Commands = 765 765 766 766 == 3.1 Access AT Commands == ... ... @@ -768,13 +768,13 @@ 768 768 769 769 LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 770 770 771 -[[image:1654501986557-872.png]] 642 +[[image:1654501986557-872.png||height="391" width="800"]] 772 772 773 773 774 774 Or if you have below board, use below connection: 775 775 776 776 777 -[[image:1654502005655-729.png]] 648 +[[image:1654502005655-729.png||height="503" width="801"]] 778 778 779 779 780 780 ... ... @@ -781,10 +781,10 @@ 781 781 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 782 782 783 783 784 - [[image:1654502050864-459.png]] 655 + [[image:1654502050864-459.png||height="564" width="806"]] 785 785 786 786 787 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>> url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]658 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 788 788 789 789 790 790 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> ... ... @@ -896,20 +896,38 @@ 896 896 897 897 == 4.1 How to change the LoRa Frequency Bands/Region? == 898 898 899 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]]. 770 +((( 771 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 900 900 When downloading the images, choose the required image file for download. 773 +))) 901 901 775 +((( 776 + 777 +))) 902 902 779 +((( 903 903 How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 781 +))) 904 904 783 +((( 784 + 785 +))) 905 905 787 +((( 906 906 You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 789 +))) 907 907 791 +((( 792 + 793 +))) 908 908 795 +((( 909 909 For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 797 +))) 910 910 911 911 [[image:image-20220606154726-3.png]] 912 912 801 + 913 913 When you use the TTN network, the US915 frequency bands use are: 914 914 915 915 * 903.9 - SF7BW125 to SF10BW125 ... ... @@ -922,37 +922,47 @@ 922 922 * 905.3 - SF7BW125 to SF10BW125 923 923 * 904.6 - SF8BW500 924 924 814 +((( 925 925 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 926 926 927 -(% class="box infomessage" %) 928 -((( 929 -**AT+CHE=2** 817 +* (% style="color:#037691" %)**AT+CHE=2** 818 +* (% style="color:#037691" %)**ATZ** 930 930 ))) 931 931 932 -(% class="box infomessage" %) 933 933 ((( 934 -**ATZ** 935 -))) 822 + 936 936 937 937 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 825 +))) 938 938 827 +((( 828 + 829 +))) 939 939 831 +((( 940 940 The **AU915** band is similar. Below are the AU915 Uplink Channels. 833 +))) 941 941 942 942 [[image:image-20220606154825-4.png]] 943 943 944 944 838 +== 4.2 Can I calibrate LSE01 to different soil types? == 945 945 840 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 841 + 842 + 946 946 = 5. Trouble Shooting = 947 947 948 -== 5.1 Why I can ’t join TTN in US915 / AU915 bands? ==845 +== 5.1 Why I can't join TTN in US915 / AU915 bands? == 949 949 950 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main. LoRaWANCommunication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.847 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details. 951 951 952 952 953 -== 5.2 AT Command input doesn ’t work ==850 +== 5.2 AT Command input doesn't work == 954 954 955 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 852 +((( 853 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 854 +))) 956 956 957 957 958 958 == 5.3 Device rejoin in at the second uplink packet == ... ... @@ -964,7 +964,9 @@ 964 964 965 965 (% style="color:#4f81bd" %)**Cause for this issue:** 966 966 866 +((( 967 967 The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 868 +))) 968 968 969 969 970 970 (% style="color:#4f81bd" %)**Solution: ** ... ... @@ -971,7 +971,7 @@ 971 971 972 972 All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 973 973 974 -[[image:1654500929571-736.png]] 875 +[[image:1654500929571-736.png||height="458" width="832"]] 975 975 976 976 977 977 = 6. Order Info = ... ... @@ -996,10 +996,17 @@ 996 996 * (% style="color:red" %)**4**(%%): 4000mAh battery 997 997 * (% style="color:red" %)**8**(%%): 8500mAh battery 998 998 900 +(% class="wikigeneratedid" %) 901 +((( 902 + 903 +))) 904 + 999 999 = 7. Packing Info = 1000 1000 1001 1001 ((( 1002 -**Package Includes**: 908 + 909 + 910 +(% style="color:#037691" %)**Package Includes**: 1003 1003 ))) 1004 1004 1005 1005 * ((( ... ... @@ -1008,10 +1008,8 @@ 1008 1008 1009 1009 ((( 1010 1010 1011 -))) 1012 1012 1013 -((( 1014 -**Dimension and weight**: 920 +(% style="color:#037691" %)**Dimension and weight**: 1015 1015 ))) 1016 1016 1017 1017 * ((( ... ... @@ -1025,6 +1025,8 @@ 1025 1025 ))) 1026 1026 * ((( 1027 1027 Weight / pcs : g 934 + 935 + 1028 1028 ))) 1029 1029 1030 1030 = 8. Support = ... ... @@ -1031,5 +1031,3 @@ 1031 1031 1032 1032 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1033 1033 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1034 - 1035 -
- 1654503992078-669.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1654504596150-405.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +66.7 KB - Content
- 1654504683289-357.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +94.0 KB - Content
- 1654504778294-788.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +119.4 KB - Content
- 1654504881641-514.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +119.4 KB - Content
- 1654504907647-967.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +54.7 KB - Content
- 1654505570700-128.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +59.2 KB - Content
- 1654505857935-743.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +86.0 KB - Content
- 1654505874829-548.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +129.9 KB - Content
- 1654505905236-553.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +92.0 KB - Content
- 1654505925508-181.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +69.5 KB - Content
- 1654506634463-199.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1654506665940-119.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +423.3 KB - Content
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- image-20220606163732-6.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +16.5 KB - Content
- image-20220606163915-7.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +94.8 KB - Content
- image-20220606165544-8.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +11.6 KB - Content
- image-20220606171726-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +171.0 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content