Last modified by Mengting Qiu on 2024/04/02 16:44

From version 14.2
edited by Xiaoling
on 2022/06/06 16:22
Change comment: There is no comment for this version
To version 60.2
edited by Xiaoling
on 2022/07/08 14:12
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="848" width="848"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
... ... @@ -8,759 +8,630 @@
8 8  
9 9  
10 10  
11 -= 1. Introduction =
12 12  
13 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 14  
15 -(((
16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
17 -)))
18 18  
19 -(((
20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
21 -)))
14 +**Table of Contents:**
22 22  
23 -(((
24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
25 -)))
26 26  
27 -(((
28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
29 -)))
30 30  
31 -(((
32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
33 -)))
34 34  
35 35  
36 -[[image:1654503236291-817.png]]
37 37  
21 += 1.  Introduction =
38 38  
39 -[[image:1654503265560-120.png]]
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
40 40  
25 +(((
26 +
41 41  
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
42 42  
43 -== 1.2 ​Features ==
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
44 44  
45 -* LoRaWAN 1.0.3 Class A
46 -* Ultra low power consumption
47 -* Monitor Soil Moisture
48 -* Monitor Soil Temperature
49 -* Monitor Soil Conductivity
50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
51 -* AT Commands to change parameters
52 -* Uplink on periodically
53 -* Downlink to change configure
54 -* IP66 Waterproof Enclosure
55 -* 4000mAh or 8500mAh Battery for long term use
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
56 56  
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
57 57  
58 -== 1.3 Specification ==
59 -
60 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
61 -
62 -[[image:image-20220606162220-5.png]]
63 -
64 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:928px" %)
65 -|=(% style="width: 141px;background-color:#4F81BD;" %)**Parameter**|=(% style="width: 306px;background-color:#4F81BD;" %)**Soil Moisture**|=(% style="width: 332px;background-color:#4F81BD;" %)**Soil Conductivity**|=(% style="width: 146px;background-color:#4F81BD;" %)**Soil Temperature**
66 -|(% style="width:141px" %)**Range**|(% style="width:306px" %)**0-100.00%**|(% style="width:332px" %)(((
67 -**0-20000uS/cm**
68 -
69 -**(25℃)(0-20.0EC)**
70 -)))|(% style="width:146px" %)**-40.00℃~85.00℃**
71 -|(% style="width:141px" %)**Unit**|(% style="width:306px" %)**V/V %,**|(% style="width:332px" %)**uS/cm,**|(% style="width:146px" %)**℃**
72 -|(% style="width:141px" %)**Resolution**|(% style="width:306px" %)**0.01%**|(% style="width:332px" %)**1 uS/cm**|(% style="width:146px" %)**0.01℃**
73 -|(% style="width:141px" %)**Accuracy**|(% style="width:306px" %)(((
74 -**±3% (0-53%)**
75 -
76 -**±5% (>53%)**
77 -)))|(% style="width:332px" %)**2%FS,**|(% style="width:146px" %)(((
78 -**-10℃~50℃:<0.3℃**
79 -
80 -**All other: <0.6℃**
36 +
81 81  )))
82 -|(% style="width:141px" %)(((
83 -**Measure Method**
84 -)))|(% style="width:306px" %)**FDR , with temperature &EC compensate**|(% style="width:332px" %)**Conductivity , with temperature compensate**|(% style="width:146px" %)**RTD, and calibrate**
85 85  
86 -*
87 -*1. ​Applications
88 -* Smart Agriculture
39 +[[image:1654503236291-817.png]]
89 89  
90 -1.
91 -11. ​Firmware Change log
92 92  
93 -**LSE01 v1.0:**
42 +[[image:1657245163077-232.png]]
94 94  
95 -* Release
96 96  
97 -1. Configure LSE01 to connect to LoRaWAN network
98 -11. How it works
99 99  
100 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
46 +== 1.2 ​Features ==
101 101  
102 102  
103 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>path:#_​Using_the_AT]]to set the keys in the LSE01.
49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
50 +* Monitor Soil Moisture
51 +* Monitor Soil Temperature
52 +* Monitor Soil Conductivity
53 +* AT Commands to change parameters
54 +* Uplink on periodically
55 +* Downlink to change configure
56 +* IP66 Waterproof Enclosure
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
59 +* Micro SIM card slot for NB-IoT SIM
60 +* 8500mAh Battery for long term use
104 104  
62 +== 1.3  Specification ==
105 105  
106 106  
65 +(% style="color:#037691" %)**Common DC Characteristics:**
107 107  
108 -1.
109 -11. ​Quick guide to connect to LoRaWAN server (OTAA)
67 +* Supply Voltage: 2.1v ~~ 3.6v
68 +* Operating Temperature: -40 ~~ 85°C
110 110  
111 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
70 +(% style="color:#037691" %)**NB-IoT Spec:**
112 112  
72 +* - B1 @H-FDD: 2100MHz
73 +* - B3 @H-FDD: 1800MHz
74 +* - B8 @H-FDD: 900MHz
75 +* - B5 @H-FDD: 850MHz
76 +* - B20 @H-FDD: 800MHz
77 +* - B28 @H-FDD: 700MHz
113 113  
114 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image003.png]]
79 +(% style="color:#037691" %)**Probe Specification:**
115 115  
81 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
116 116  
117 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
83 +[[image:image-20220708101224-1.png]]
118 118  
119 119  
120 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
121 121  
122 -Each LSE01 is shipped with a sticker with the default device EUI as below:
87 +== 1.4  Applications ==
123 123  
89 +* Smart Agriculture
124 124  
91 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
92 +​
125 125  
94 +== 1.5  Pin Definitions ==
126 126  
127 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
128 128  
97 +[[image:1657246476176-652.png]]
129 129  
130 -**Add APP EUI in the application**
131 131  
132 132  
133 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]]
101 += 2.  Use NSE01 to communicate with IoT Server =
134 134  
103 +== 2.1  How it works ==
135 135  
136 136  
137 -**Add APP KEY and DEV EUI**
106 +(((
107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
108 +)))
138 138  
139 139  
140 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image005.png]]
141 -
142 -|(((
143 -
111 +(((
112 +The diagram below shows the working flow in default firmware of NSE01:
144 144  )))
145 145  
146 -**Step 2**: Power on LSE01
115 +[[image:image-20220708101605-2.png]]
147 147  
148 -
149 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
150 -
151 -
152 -
153 -|(((
117 +(((
154 154  
155 155  )))
156 156  
157 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image006.png]]
158 158  
159 159  
123 +== 2.2 ​ Configure the NSE01 ==
160 160  
161 161  
126 +=== 2.2.1 Test Requirement ===
162 162  
163 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
164 164  
165 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]
129 +To use NSE01 in your city, make sure meet below requirements:
166 166  
131 +* Your local operator has already distributed a NB-IoT Network there.
132 +* The local NB-IoT network used the band that NSE01 supports.
133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
167 167  
135 +(((
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
137 +)))
168 168  
169 169  
170 -1.
171 -11. ​Uplink Payload
172 -111. MOD=0(Default Mode)
140 +[[image:1657249419225-449.png]]
173 173  
174 -LSE01 will uplink payload via LoRaWAN with below payload format: 
175 175  
176 176  
177 -Uplink payload includes in total 11 bytes.
178 -
144 +=== 2.2.2 Insert SIM card ===
179 179  
180 -|(((
181 -**Size**
146 +Insert the NB-IoT Card get from your provider.
182 182  
183 -**(bytes)**
184 -)))|**2**|**2**|**2**|**2**|**2**|**1**
185 -|**Value**|[[BAT>>path:#bat]]|(((
186 -Temperature
148 +User need to take out the NB-IoT module and insert the SIM card like below:
187 187  
188 -(Reserve, Ignore now)
189 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|(((
190 -MOD & Digital Interrupt
191 191  
192 -(Optional)
193 -)))
151 +[[image:1657249468462-536.png]]
194 194  
195 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]
196 196  
197 197  
198 -1.
199 -11.
200 -111. MOD=1(Original value)
155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
201 201  
202 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
203 -
204 -|(((
205 -**Size**
206 -
207 -**(bytes)**
208 -)))|**2**|**2**|**2**|**2**|**2**|**1**
209 -|**Value**|[[BAT>>path:#bat]]|(((
210 -Temperature
211 -
212 -(Reserve, Ignore now)
213 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|(((
214 -MOD & Digital Interrupt
215 -
216 -(Optional)
157 +(((
158 +(((
159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
217 217  )))
161 +)))
218 218  
219 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image008.png]]
220 220  
221 -1.
222 -11.
223 -111. Battery Info
164 +**Connection:**
224 224  
225 -Check the battery voltage for LSE01.
166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
226 226  
227 -Ex1: 0x0B45 = 2885mV
168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
228 228  
229 -Ex2: 0x0B49 = 2889mV
170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
230 230  
231 231  
173 +In the PC, use below serial tool settings:
232 232  
233 -1.
234 -11.
235 -111. Soil Moisture
175 +* Baud:  (% style="color:green" %)**9600**
176 +* Data bits:** (% style="color:green" %)8(%%)**
177 +* Stop bits: (% style="color:green" %)**1**
178 +* Parity:  (% style="color:green" %)**None**
179 +* Flow Control: (% style="color:green" %)**None**
236 236  
237 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
181 +(((
182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
183 +)))
238 238  
239 -For example, if the data you get from the register is 0x05 0xDC, the moisture content in the soil is
185 +[[image:image-20220708110657-3.png]]
240 240  
241 -**05DC(H) = 1500(D) /100 = 15%.**
187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
242 242  
243 243  
244 -1.
245 -11.
246 -111. Soil Temperature
247 247  
248 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
191 +=== 2.2.4 Use CoAP protocol to uplink data ===
249 249  
250 -**Example**:
193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
251 251  
252 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
253 253  
254 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
196 +**Use below commands:**
255 255  
198 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
256 256  
257 -1.
258 -11.
259 -111. Soil Conductivity (EC)
202 +For parameter description, please refer to AT command set
260 260  
261 -Obtain soluble salt concentration in soil or soluble ion concentration in liquid fertilizer or planting medium,. The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
204 +[[image:1657249793983-486.png]]
262 262  
263 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
264 264  
207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
265 265  
266 -Generally, the EC value of irrigation water is less than 800uS / cm.
209 +[[image:1657249831934-534.png]]
267 267  
268 -1.
269 -11.
270 -111. MOD
271 271  
272 -Firmware version at least v2.1 supports changing mode.
273 273  
274 -For example, bytes[10]=90
213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
275 275  
276 -mod=(bytes[10]>>7)&0x01=1.
215 +This feature is supported since firmware version v1.0.1
277 277  
278 278  
279 -Downlink Command:
218 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
220 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
280 280  
281 -If payload = 0x0A00, workmode=0
222 +[[image:1657249864775-321.png]]
282 282  
283 -If** **payload =** **0x0A01, workmode=1
284 284  
225 +[[image:1657249930215-289.png]]
285 285  
286 -1.
287 -11.
288 -111. ​Decode payload in The Things Network
289 289  
290 -While using TTN network, you can add the payload format to decode the payload.
291 291  
229 +=== 2.2.6 Use MQTT protocol to uplink data ===
292 292  
293 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.png]]
231 +This feature is supported since firmware version v110
294 294  
295 -The payload decoder function for TTN is here:
296 296  
297 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
234 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
237 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
238 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
298 298  
242 +[[image:1657249978444-674.png]]
299 299  
300 -1.
301 -11. Uplink Interval
302 302  
303 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
245 +[[image:1657249990869-686.png]]
304 304  
305 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
306 306  
307 -1.
308 -11. ​Downlink Payload
248 +(((
249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
250 +)))
309 309  
310 -By default, LSE50 prints the downlink payload to console port.
311 311  
312 -|**Downlink Control Type**|**FPort**|**Type Code**|**Downlink payload size(bytes)**
313 -|TDC (Transmit Time Interval)|Any|01|4
314 -|RESET|Any|04|2
315 -|AT+CFM|Any|05|4
316 -|INTMOD|Any|06|4
317 -|MOD|Any|0A|2
318 318  
319 -**Examples**
254 +=== 2.2.7 Use TCP protocol to uplink data ===
320 320  
256 +This feature is supported since firmware version v110
321 321  
322 -**Set TDC**
323 323  
324 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
259 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
325 325  
326 -Payload:    01 00 00 1E    TDC=30S
262 +[[image:1657250217799-140.png]]
327 327  
328 -Payload:    01 00 00 3C    TDC=60S
329 329  
265 +[[image:1657250255956-604.png]]
330 330  
331 -**Reset**
332 332  
333 -If payload = 0x04FF, it will reset the LSE01
334 334  
269 +=== 2.2.8 Change Update Interval ===
335 335  
336 -**CFM**
271 +User can use below command to change the (% style="color:green" %)**uplink interval**.
337 337  
338 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
273 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
339 339  
340 -1.
341 -11. ​Show Data in DataCake IoT Server
275 +(((
276 +(% style="color:red" %)**NOTE:**
277 +)))
342 342  
343 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
279 +(((
280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
281 +)))
344 344  
345 345  
346 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
347 347  
348 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
285 +== 2.3  Uplink Payload ==
349 349  
287 +In this mode, uplink payload includes in total 18 bytes
350 350  
351 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]]
289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
290 +|=(% style="width: 50px;" %)(((
291 +**Size(bytes)**
292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
352 352  
295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
353 353  
354 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]]
355 355  
298 +[[image:image-20220708111918-4.png]]
356 356  
357 357  
301 +The payload is ASCII string, representative same HEX:
358 358  
303 +0x72403155615900640c7817075e0a8c02f900 where:
359 359  
360 -Step 3: Create an account or log in Datacake.
305 +* Device ID: 0x 724031556159 = 724031556159
306 +* Version: 0x0064=100=1.0.0
361 361  
362 -Step 4: Search the LSE01 and add DevEUI.
308 +* BAT: 0x0c78 = 3192 mV = 3.192V
309 +* Singal: 0x17 = 23
310 +* Soil Moisture: 0x075e= 1886 = 18.86  %
311 +* Soil Temperature:0x0a8c =2700=27 °C
312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
313 +* Interrupt: 0x00 = 0
363 363  
315 +== 2.4  Payload Explanation and Sensor Interface ==
364 364  
365 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]]
366 366  
318 +=== 2.4.1  Device ID ===
367 367  
320 +By default, the Device ID equal to the last 6 bytes of IMEI.
368 368  
369 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
370 370  
324 +**Example:**
371 371  
372 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]
326 +AT+DEUI=A84041F15612
373 373  
328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
374 374  
375 375  
376 -1.
377 -11. Frequency Plans
378 378  
379 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
332 +=== 2.4.2  Version Info ===
380 380  
381 -1.
382 -11.
383 -111. EU863-870 (EU868)
334 +Specify the software version: 0x64=100, means firmware version 1.00.
384 384  
385 -Uplink:
336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
386 386  
387 -868.1 - SF7BW125 to SF12BW125
388 388  
389 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
390 390  
391 -868.5 - SF7BW125 to SF12BW125
340 +=== 2.4.3  Battery Info ===
392 392  
393 -867.1 - SF7BW125 to SF12BW125
342 +(((
343 +Check the battery voltage for LSE01.
344 +)))
394 394  
395 -867.3 - SF7BW125 to SF12BW125
346 +(((
347 +Ex1: 0x0B45 = 2885mV
348 +)))
396 396  
397 -867.5 - SF7BW125 to SF12BW125
350 +(((
351 +Ex2: 0x0B49 = 2889mV
352 +)))
398 398  
399 -867.7 - SF7BW125 to SF12BW125
400 400  
401 -867.9 - SF7BW125 to SF12BW125
402 402  
403 -868.8 - FSK
356 +=== 2.4.4  Signal Strength ===
404 404  
358 +NB-IoT Network signal Strength.
405 405  
406 -Downlink:
360 +**Ex1: 0x1d = 29**
407 407  
408 -Uplink channels 1-9 (RX1)
362 +(% style="color:blue" %)**0**(%%)  -113dBm or less
409 409  
410 -869.525 - SF9BW125 (RX2 downlink only)
364 +(% style="color:blue" %)**1**(%%)  -111dBm
411 411  
366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
412 412  
413 -1.
414 -11.
415 -111. US902-928(US915)
368 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
416 416  
417 -Used in USA, Canada and South America. Default use CHE=2
370 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
418 418  
419 -Uplink:
420 420  
421 -903.9 - SF7BW125 to SF10BW125
422 422  
423 -904.1 - SF7BW125 to SF10BW125
374 +=== 2.4. Soil Moisture ===
424 424  
425 -904.3 - SF7BW125 to SF10BW125
376 +(((
377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
378 +)))
426 426  
427 -904.5 - SF7BW125 to SF10BW125
380 +(((
381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
382 +)))
428 428  
429 -904.7 - SF7BW125 to SF10BW125
384 +(((
385 +
386 +)))
430 430  
431 -904.9 - SF7BW125 to SF10BW125
388 +(((
389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
390 +)))
432 432  
433 -905.1 - SF7BW125 to SF10BW125
434 434  
435 -905.3 - SF7BW125 to SF10BW125
436 436  
394 +=== 2.4.6  Soil Temperature ===
437 437  
438 -Downlink:
396 +(((
397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
398 +)))
439 439  
440 -923.3 - SF7BW500 to SF12BW500
400 +(((
401 +**Example**:
402 +)))
441 441  
442 -923.9 - SF7BW500 to SF12BW500
404 +(((
405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
406 +)))
443 443  
444 -924.5 - SF7BW500 to SF12BW500
408 +(((
409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
410 +)))
445 445  
446 -925.1 - SF7BW500 to SF12BW500
447 447  
448 -925.7 - SF7BW500 to SF12BW500
449 449  
450 -926.3 - SF7BW500 to SF12BW500
414 +=== 2.4.7  Soil Conductivity (EC) ===
451 451  
452 -926.9 - SF7BW500 to SF12BW500
416 +(((
417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
418 +)))
453 453  
454 -927.5 - SF7BW500 to SF12BW500
420 +(((
421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
422 +)))
455 455  
456 -923.3 - SF12BW500(RX2 downlink only)
424 +(((
425 +Generally, the EC value of irrigation water is less than 800uS / cm.
426 +)))
457 457  
428 +(((
429 +
430 +)))
458 458  
459 -1.
460 -11.
461 -111. CN470-510 (CN470)
432 +(((
433 +
434 +)))
462 462  
463 -Used in China, Default use CHE=1
436 +=== 2.4.8  Digital Interrupt ===
464 464  
465 -Uplink:
438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
466 466  
467 -486.3 - SF7BW125 to SF12BW125
440 +The command is:
468 468  
469 -486.5 - SF7BW125 to SF12BW125
442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
470 470  
471 -486.7 - SF7BW125 to SF12BW125
472 472  
473 -486.9 - SF7BW125 to SF12BW125
445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
474 474  
475 -487.1 - SF7BW125 to SF12BW125
476 476  
477 -487.3 - SF7BW125 to SF12BW125
448 +Example:
478 478  
479 -487.5 - SF7BW125 to SF12BW125
450 +0x(00): Normal uplink packet.
480 480  
481 -487.7 - SF7BW125 to SF12BW125
452 +0x(01): Interrupt Uplink Packet.
482 482  
483 483  
484 -Downlink:
485 485  
486 -506.7 - SF7BW125 to SF12BW125
456 +=== 2.4.9  ​+5V Output ===
487 487  
488 -506.9 - SF7BW125 to SF12BW125
458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
489 489  
490 -507.1 - SF7BW125 to SF12BW125
491 491  
492 -507.3 - SF7BW125 to SF12BW125
461 +The 5V output time can be controlled by AT Command.
493 493  
494 -507.5 - SF7BW125 to SF12BW125
463 +(% style="color:blue" %)**AT+5VT=1000**
495 495  
496 -507.7 - SF7BW125 to SF12BW125
465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
497 497  
498 -507.9 - SF7BW125 to SF12BW125
499 499  
500 -508.1 - SF7BW125 to SF12BW125
501 501  
502 -505.3 - SF12BW125 (RX2 downlink only)
469 +== 2.5  Downlink Payload ==
503 503  
471 +By default, NSE01 prints the downlink payload to console port.
504 504  
505 -1.
506 -11.
507 -111. AU915-928(AU915)
473 +[[image:image-20220708133731-5.png]]
508 508  
509 -Default use CHE=2
510 510  
511 -Uplink:
512 512  
513 -916.8 - SF7BW125 to SF12BW125
477 +(((
478 +(% style="color:blue" %)**Examples:**
479 +)))
514 514  
515 -917.0 - SF7BW125 to SF12BW125
481 +(((
482 +
483 +)))
516 516  
517 -917.2 - SF7BW125 to SF12BW125
485 +* (((
486 +(% style="color:blue" %)**Set TDC**
487 +)))
518 518  
519 -917.4 - SF7BW125 to SF12BW125
489 +(((
490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
491 +)))
520 520  
521 -917.6 - SF7BW125 to SF12BW125
493 +(((
494 +Payload:    01 00 00 1E    TDC=30S
495 +)))
522 522  
523 -917.8 - SF7BW125 to SF12BW125
497 +(((
498 +Payload:    01 00 00 3C    TDC=60S
499 +)))
524 524  
525 -918.0 - SF7BW125 to SF12BW125
501 +(((
502 +
503 +)))
526 526  
527 -918.2 - SF7BW125 to SF12BW125
505 +* (((
506 +(% style="color:blue" %)**Reset**
507 +)))
528 528  
509 +(((
510 +If payload = 0x04FF, it will reset the NSE01
511 +)))
529 529  
530 -Downlink:
531 531  
532 -923.3 - SF7BW500 to SF12BW500
514 +* (% style="color:blue" %)**INTMOD**
533 533  
534 -923.9 - SF7BW500 to SF12BW500
516 +Downlink Payload: 06000003, Set AT+INTMOD=3
535 535  
536 -924.5 - SF7BW500 to SF12BW500
537 537  
538 -925.1 - SF7BW500 to SF12BW500
539 539  
540 -925.7 - SF7BW500 to SF12BW500
520 +== 2. ​LED Indicator ==
541 541  
542 -926.3 - SF7BW500 to SF12BW500
522 +(((
523 +The NSE01 has an internal LED which is to show the status of different state.
543 543  
544 -926.9 - SF7BW500 to SF12BW500
545 545  
546 -927.5 - SF7BW500 to SF12BW500
526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
527 +* Then the LED will be on for 1 second means device is boot normally.
528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
529 +* For each uplink probe, LED will be on for 500ms.
530 +)))
547 547  
548 -923.3 - SF12BW500(RX2 downlink only)
549 549  
550 -1.
551 -11.
552 -111. AS920-923 & AS923-925 (AS923)
553 553  
554 -**Default Uplink channel:**
555 555  
556 -923.2 - SF7BW125 to SF10BW125
535 +== 2.7  Installation in Soil ==
557 557  
558 -923.4 - SF7BW125 to SF10BW125
537 +__**Measurement the soil surface**__
559 559  
539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
560 560  
561 -**Additional Uplink Channel**:
541 +[[image:1657259653666-883.png]]
562 562  
563 -(OTAA mode, channel added by JoinAccept message)
564 564  
565 -**AS920~~AS923 for Japan, Malaysia, Singapore**:
544 +(((
545 +
566 566  
567 -922.2 - SF7BW125 to SF10BW125
547 +(((
548 +Dig a hole with diameter > 20CM.
549 +)))
568 568  
569 -922.4 - SF7BW125 to SF10BW125
551 +(((
552 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
553 +)))
554 +)))
570 570  
571 -922.6 - SF7BW125 to SF10BW125
556 +[[image:1654506665940-119.png]]
572 572  
573 -922.8 - SF7BW125 to SF10BW125
558 +(((
559 +
560 +)))
574 574  
575 -923.0 - SF7BW125 to SF10BW125
576 576  
577 -922.0 - SF7BW125 to SF10BW125
563 +== 2. Firmware Change Log ==
578 578  
579 579  
580 -**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
566 +Download URL & Firmware Change log
581 581  
582 -923.6 - SF7BW125 to SF10BW125
568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
583 583  
584 -923.8 - SF7BW125 to SF10BW125
585 585  
586 -924.0 - SF7BW125 to SF10BW125
571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
587 587  
588 -924.2 - SF7BW125 to SF10BW125
589 589  
590 -924.4 - SF7BW125 to SF10BW125
591 591  
592 -924.6 - SF7BW125 to SF10BW125
575 +== 2. Battery Analysis ==
593 593  
577 +=== 2.9.1  ​Battery Type ===
594 594  
595 595  
596 -**Downlink:**
580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
597 597  
598 -Uplink channels 1-8 (RX1)
599 599  
600 -923.2 - SF10BW125 (RX2)
583 +The battery is designed to last for several years depends on the actually use environment and update interval.
601 601  
602 602  
603 -1.
604 -11.
605 -111. KR920-923 (KR920)
586 +The battery related documents as below:
606 606  
607 -Default channel:
588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
608 608  
609 -922.1 - SF7BW125 to SF12BW125
592 +(((
593 +[[image:image-20220708140453-6.png]]
594 +)))
610 610  
611 -922.3 - SF7BW125 to SF12BW125
612 612  
613 -922.5 - SF7BW125 to SF12BW125
614 614  
598 +2.9.2 
615 615  
616 -Uplink: (OTAA mode, channel added by JoinAccept message)
600 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
617 617  
618 -922.1 - SF7BW125 to SF12BW125
619 619  
620 -922.3 - SF7BW125 to SF12BW125
603 +Instruction to use as below:
621 621  
622 -922.5 - SF7BW125 to SF12BW125
623 623  
624 -922.7 - SF7BW125 to SF12BW125
606 +Step 1: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
625 625  
626 -922.9 - SF7BW125 to SF12BW125
608 +[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
627 627  
628 -923.1 - SF7BW125 to SF12BW125
629 629  
630 -923.3 - SF7BW125 to SF12BW125
611 +Step 2: Open it and choose
631 631  
613 +* Product Model
614 +* Uplink Interval
615 +* Working Mode
632 632  
633 -Downlink:
617 +And the Life expectation in difference case will be shown on the right.
634 634  
635 -Uplink channels 1-7(RX1)
636 636  
637 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
638 638  
621 +=== 2.9.3  ​Battery Note ===
639 639  
640 -1.
641 -11.
642 -111. IN865-867 (IN865)
643 -
644 -Uplink:
645 -
646 -865.0625 - SF7BW125 to SF12BW125
647 -
648 -865.4025 - SF7BW125 to SF12BW125
649 -
650 -865.9850 - SF7BW125 to SF12BW125
651 -
652 -
653 -Downlink:
654 -
655 -Uplink channels 1-3 (RX1)
656 -
657 -866.550 - SF10BW125 (RX2)
658 -
659 -
660 -1.
661 -11. LED Indicator
662 -
663 -The LSE01 has an internal LED which is to show the status of different state.
664 -
665 -
666 -* Blink once when device power on.
667 -* Solid ON for 5 seconds once device successful Join the network.
668 -* Blink once when device transmit a packet.
669 -
670 -1.
671 -11. Installation in Soil
672 -
673 -**Measurement the soil surface**
674 -
675 -
676 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] ​
677 -
678 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
679 -
680 -
681 -
682 -
683 -
684 -
685 -
686 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
687 -
688 -
689 -
690 -Dig a hole with diameter > 20CM.
691 -
692 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
693 -
694 -
695 -
696 -
697 -1.
698 -11. ​Firmware Change Log
699 -
700 -**Firmware download link:**
701 -
702 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
703 -
704 -
705 -**Firmware Upgrade Method:**
706 -
707 -[[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]]
708 -
709 -
710 -**V1.0.**
711 -
712 -Release
713 -
714 -
715 -
716 -1.
717 -11. ​Battery Analysis
718 -111. ​Battery Type
719 -
720 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
721 -
722 -
723 -The battery is designed to last for more than 5 years for the LSN50.
724 -
725 -
726 -The battery related documents as below:
727 -
728 -* [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
729 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]]
730 -* [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
731 -
732 -|(((
733 -JST-XH-2P connector
623 +(((
624 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
734 734  )))
735 735  
736 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
737 737  
738 738  
629 +=== 2.9.4  Replace the battery ===
739 739  
740 -1.
741 -11.
742 -111. ​Battery Note
631 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
743 743  
744 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
745 745  
746 746  
747 -1.
748 -11.
749 -111. ​Replace the battery
750 -
751 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
752 -
753 -
754 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
755 -
756 -
757 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
758 -
759 -
760 -
761 -
762 -
763 -
764 764  = 3. ​Using the AT Commands =
765 765  
766 766  == 3.1 Access AT Commands ==
... ... @@ -768,13 +768,13 @@
768 768  
769 769  LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
770 770  
771 -[[image:1654501986557-872.png]]
642 +[[image:1654501986557-872.png||height="391" width="800"]]
772 772  
773 773  
774 774  Or if you have below board, use below connection:
775 775  
776 776  
777 -[[image:1654502005655-729.png]]
648 +[[image:1654502005655-729.png||height="503" width="801"]]
778 778  
779 779  
780 780  
... ... @@ -781,10 +781,10 @@
781 781  In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
782 782  
783 783  
784 - [[image:1654502050864-459.png]]
655 + [[image:1654502050864-459.png||height="564" width="806"]]
785 785  
786 786  
787 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
658 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
788 788  
789 789  
790 790  (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
... ... @@ -896,20 +896,38 @@
896 896  
897 897  == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
898 898  
899 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]].
770 +(((
771 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
900 900  When downloading the images, choose the required image file for download. ​
773 +)))
901 901  
775 +(((
776 +
777 +)))
902 902  
779 +(((
903 903  How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
781 +)))
904 904  
783 +(((
784 +
785 +)))
905 905  
787 +(((
906 906  You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
789 +)))
907 907  
791 +(((
792 +
793 +)))
908 908  
795 +(((
909 909  For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
797 +)))
910 910  
911 911  [[image:image-20220606154726-3.png]]
912 912  
801 +
913 913  When you use the TTN network, the US915 frequency bands use are:
914 914  
915 915  * 903.9 - SF7BW125 to SF10BW125
... ... @@ -922,37 +922,47 @@
922 922  * 905.3 - SF7BW125 to SF10BW125
923 923  * 904.6 - SF8BW500
924 924  
814 +(((
925 925  Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
926 926  
927 -(% class="box infomessage" %)
928 -(((
929 -**AT+CHE=2**
817 +* (% style="color:#037691" %)**AT+CHE=2**
818 +* (% style="color:#037691" %)**ATZ**
930 930  )))
931 931  
932 -(% class="box infomessage" %)
933 933  (((
934 -**ATZ**
935 -)))
822 +
936 936  
937 937  to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
825 +)))
938 938  
827 +(((
828 +
829 +)))
939 939  
831 +(((
940 940  The **AU915** band is similar. Below are the AU915 Uplink Channels.
833 +)))
941 941  
942 942  [[image:image-20220606154825-4.png]]
943 943  
944 944  
838 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
945 945  
840 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
841 +
842 +
946 946  = 5. Trouble Shooting =
947 947  
948 -== 5.1 ​Why I cant join TTN in US915 / AU915 bands? ==
845 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
949 949  
950 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
847 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
951 951  
952 952  
953 -== 5.2 AT Command input doesnt work ==
850 +== 5.2 AT Command input doesn't work ==
954 954  
955 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
852 +(((
853 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
854 +)))
956 956  
957 957  
958 958  == 5.3 Device rejoin in at the second uplink packet ==
... ... @@ -964,7 +964,9 @@
964 964  
965 965  (% style="color:#4f81bd" %)**Cause for this issue:**
966 966  
866 +(((
967 967  The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
868 +)))
968 968  
969 969  
970 970  (% style="color:#4f81bd" %)**Solution: **
... ... @@ -971,7 +971,7 @@
971 971  
972 972  All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
973 973  
974 -[[image:1654500929571-736.png]]
875 +[[image:1654500929571-736.png||height="458" width="832"]]
975 975  
976 976  
977 977  = 6. ​Order Info =
... ... @@ -996,10 +996,17 @@
996 996  * (% style="color:red" %)**4**(%%): 4000mAh battery
997 997  * (% style="color:red" %)**8**(%%): 8500mAh battery
998 998  
900 +(% class="wikigeneratedid" %)
901 +(((
902 +
903 +)))
904 +
999 999  = 7. Packing Info =
1000 1000  
1001 1001  (((
1002 -**Package Includes**:
908 +
909 +
910 +(% style="color:#037691" %)**Package Includes**:
1003 1003  )))
1004 1004  
1005 1005  * (((
... ... @@ -1008,10 +1008,8 @@
1008 1008  
1009 1009  (((
1010 1010  
1011 -)))
1012 1012  
1013 -(((
1014 -**Dimension and weight**:
920 +(% style="color:#037691" %)**Dimension and weight**:
1015 1015  )))
1016 1016  
1017 1017  * (((
... ... @@ -1025,6 +1025,8 @@
1025 1025  )))
1026 1026  * (((
1027 1027  Weight / pcs : g
934 +
935 +
1028 1028  )))
1029 1029  
1030 1030  = 8. Support =
... ... @@ -1031,5 +1031,3 @@
1031 1031  
1032 1032  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1033 1033  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1034 -
1035 -
1654503992078-669.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1654504596150-405.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +66.7 KB
Content
1654504683289-357.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +94.0 KB
Content
1654504778294-788.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +119.4 KB
Content
1654504881641-514.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +119.4 KB
Content
1654504907647-967.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +54.7 KB
Content
1654505570700-128.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +59.2 KB
Content
1654505857935-743.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +86.0 KB
Content
1654505874829-548.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +129.9 KB
Content
1654505905236-553.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +92.0 KB
Content
1654505925508-181.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +69.5 KB
Content
1654506634463-199.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1654506665940-119.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +423.3 KB
Content
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
image-20220606163732-6.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +16.5 KB
Content
image-20220606163915-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +94.8 KB
Content
image-20220606165544-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +11.6 KB
Content
image-20220606171726-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +171.0 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content