Last modified by Mengting Qiu on 2024/04/02 16:44

From version 13.3
edited by Xiaoling
on 2022/06/06 16:15
Change comment: There is no comment for this version
To version 65.10
edited by Xiaoling
on 2022/07/08 15:43
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="848" width="848"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
... ... @@ -8,1028 +8,832 @@
8 8  
9 9  
10 10  
11 -= 1. Introduction =
12 12  
13 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 14  
13 +
14 +**Table of Contents:**
15 +
16 +{{toc/}}
17 +
18 +
19 +
20 +
21 +
22 +
23 +
24 += 1.  Introduction =
25 +
26 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
27 +
15 15  (((
16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
17 -)))
29 +
18 18  
19 19  (((
20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
32 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
21 21  )))
22 22  
23 23  (((
24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
36 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
25 25  )))
26 26  
27 27  (((
28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
40 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
29 29  )))
30 30  
31 31  (((
32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
44 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
33 33  )))
34 34  
47 +
48 +)))
35 35  
36 36  [[image:1654503236291-817.png]]
37 37  
38 38  
39 -[[image:1654503265560-120.png]]
53 +[[image:1657245163077-232.png]]
40 40  
41 41  
42 42  
43 -== 1.2 ​Features ==
57 +== 1.2 ​ Features ==
44 44  
45 -* LoRaWAN 1.0.3 Class A
46 -* Ultra low power consumption
59 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
47 47  * Monitor Soil Moisture
48 48  * Monitor Soil Temperature
49 49  * Monitor Soil Conductivity
50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
51 51  * AT Commands to change parameters
52 52  * Uplink on periodically
53 53  * Downlink to change configure
54 54  * IP66 Waterproof Enclosure
55 -* 4000mAh or 8500mAh Battery for long term use
67 +* Ultra-Low Power consumption
68 +* AT Commands to change parameters
69 +* Micro SIM card slot for NB-IoT SIM
70 +* 8500mAh Battery for long term use
56 56  
57 57  
73 +== 1.3  Specification ==
58 58  
59 -== 1.3 Specification ==
60 60  
61 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
76 +(% style="color:#037691" %)**Common DC Characteristics:**
62 62  
63 -|**Parameter**|**Soil Moisture**|**Soil Conductivity**|**Soil Temperature**
64 -|**Range**|**0-100.00%**|(((
65 -**0-20000uS/cm**
78 +* Supply Voltage: 2.1v ~~ 3.6v
79 +* Operating Temperature: -40 ~~ 85°C
66 66  
67 -**(25℃)(0-20.0EC)**
68 -)))|**-40.00℃~85.00℃**
69 -|**Unit**|**V/V %,**|**uS/cm,**|**℃**
70 -|**Resolution**|**0.01%**|**1 uS/cm**|**0.01℃**
71 -|**Accuracy**|(((
72 -**±3% (0-53%)**
81 +(% style="color:#037691" %)**NB-IoT Spec:**
73 73  
74 -**±5% (>53%)**
75 -)))|**2%FS,**|(((
76 -**-10℃~50℃:<0.3℃**
83 +* - B1 @H-FDD: 2100MHz
84 +* - B3 @H-FDD: 1800MHz
85 +* - B8 @H-FDD: 900MHz
86 +* - B5 @H-FDD: 850MHz
87 +* - B20 @H-FDD: 800MHz
88 +* - B28 @H-FDD: 700MHz
77 77  
78 -**All other: <0.6℃**
79 -)))
80 -|(((
81 -**Measure**
90 +Probe(% style="color:#037691" %)** Specification:**
82 82  
83 -**Method**
84 -)))|**FDR , with temperature &EC compensate**|**Conductivity , with temperature compensate**|**RTD, and calibrate**
92 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
85 85  
86 -*
87 -*1. ​Applications
88 -* Smart Agriculture
94 +[[image:image-20220708101224-1.png]]
89 89  
90 -1.
91 -11. ​Firmware Change log
92 92  
93 -**LSE01 v1.0:**
94 94  
95 -* Release
98 +== ​1.4  Applications ==
96 96  
97 -1. Configure LSE01 to connect to LoRaWAN network
98 -11. How it works
100 +* Smart Agriculture
99 99  
100 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
102 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
103 +​
101 101  
105 +== 1.5  Pin Definitions ==
102 102  
103 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>path:#_​Using_the_AT]]to set the keys in the LSE01.
104 104  
108 +[[image:1657246476176-652.png]]
105 105  
106 106  
107 107  
108 -1.
109 -11. ​Quick guide to connect to LoRaWAN server (OTAA)
112 += 2.  Use NSE01 to communicate with IoT Server =
110 110  
111 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
114 +== 2. How it works ==
112 112  
113 113  
114 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image003.png]]
117 +(((
118 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
119 +)))
115 115  
116 116  
117 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
118 -
119 -
120 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
121 -
122 -Each LSE01 is shipped with a sticker with the default device EUI as below:
123 -
124 -
125 -
126 -
127 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
128 -
129 -
130 -**Add APP EUI in the application**
131 -
132 -
133 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]]
134 -
135 -
136 -
137 -**Add APP KEY and DEV EUI**
138 -
139 -
140 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image005.png]]
141 -
142 -|(((
143 -
122 +(((
123 +The diagram below shows the working flow in default firmware of NSE01:
144 144  )))
145 145  
146 -**Step 2**: Power on LSE01
126 +[[image:image-20220708101605-2.png]]
147 147  
148 -
149 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
150 -
151 -
152 -
153 -|(((
128 +(((
154 154  
155 155  )))
156 156  
157 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image006.png]]
158 158  
159 159  
134 +== 2.2 ​ Configure the NSE01 ==
160 160  
161 161  
137 +=== 2.2.1 Test Requirement ===
162 162  
163 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
164 164  
165 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]
166 -
167 -
168 -
169 -
170 -1.
171 -11. ​Uplink Payload
172 -111. MOD=0(Default Mode)
173 -
174 -LSE01 will uplink payload via LoRaWAN with below payload format: 
175 -
176 -
177 -Uplink payload includes in total 11 bytes.
178 -
179 -
180 -|(((
181 -**Size**
182 -
183 -**(bytes)**
184 -)))|**2**|**2**|**2**|**2**|**2**|**1**
185 -|**Value**|[[BAT>>path:#bat]]|(((
186 -Temperature
187 -
188 -(Reserve, Ignore now)
189 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|(((
190 -MOD & Digital Interrupt
191 -
192 -(Optional)
140 +(((
141 +To use NSE01 in your city, make sure meet below requirements:
193 193  )))
194 194  
195 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]
144 +* Your local operator has already distributed a NB-IoT Network there.
145 +* The local NB-IoT network used the band that NSE01 supports.
146 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
196 196  
197 -
198 -1.
199 -11.
200 -111. MOD=1(Original value)
201 -
202 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
203 -
204 -|(((
205 -**Size**
206 -
207 -**(bytes)**
208 -)))|**2**|**2**|**2**|**2**|**2**|**1**
209 -|**Value**|[[BAT>>path:#bat]]|(((
210 -Temperature
211 -
212 -(Reserve, Ignore now)
213 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|(((
214 -MOD & Digital Interrupt
215 -
216 -(Optional)
148 +(((
149 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
217 217  )))
218 218  
219 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image008.png]]
220 220  
221 -1.
222 -11.
223 -111. Battery Info
153 +[[image:1657249419225-449.png]]
224 224  
225 -Check the battery voltage for LSE01.
226 226  
227 -Ex1: 0x0B45 = 2885mV
228 228  
229 -Ex2: 0x0B49 = 2889mV
157 +=== 2.2.2 Insert SIM card ===
230 230  
159 +Insert the NB-IoT Card get from your provider.
231 231  
161 +User need to take out the NB-IoT module and insert the SIM card like below:
232 232  
233 -1.
234 -11.
235 -111. Soil Moisture
236 236  
237 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
164 +[[image:1657249468462-536.png]]
238 238  
239 -For example, if the data you get from the register is 0x05 0xDC, the moisture content in the soil is
240 240  
241 -**05DC(H) = 1500(D) /100 = 15%.**
242 242  
168 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
243 243  
244 -1.
245 -11.
246 -111. Soil Temperature
170 +(((
171 +(((
172 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
173 +)))
174 +)))
247 247  
248 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
249 249  
250 -**Example**:
177 +**Connection:**
251 251  
252 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
179 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
253 253  
254 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
181 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
255 255  
183 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
256 256  
257 -1.
258 -11.
259 -111. Soil Conductivity (EC)
260 260  
261 -Obtain soluble salt concentration in soil or soluble ion concentration in liquid fertilizer or planting medium,. The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
186 +In the PC, use below serial tool settings:
262 262  
263 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
188 +* Baud:  (% style="color:green" %)**9600**
189 +* Data bits:** (% style="color:green" %)8(%%)**
190 +* Stop bits: (% style="color:green" %)**1**
191 +* Parity:  (% style="color:green" %)**None**
192 +* Flow Control: (% style="color:green" %)**None**
264 264  
194 +(((
195 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
196 +)))
265 265  
266 -Generally, the EC value of irrigation water is less than 800uS / cm.
198 +[[image:image-20220708110657-3.png]]
267 267  
268 -1.
269 -11.
270 -111. MOD
200 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
271 271  
272 -Firmware version at least v2.1 supports changing mode.
273 273  
274 -For example, bytes[10]=90
275 275  
276 -mod=(bytes[10]>>7)&0x01=1.
204 +=== 2.2.4 Use CoAP protocol to uplink data ===
277 277  
206 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
278 278  
279 -Downlink Command:
280 280  
281 -If payload = 0x0A00, workmode=0
209 +**Use below commands:**
282 282  
283 -If** **payload =** **0x0A01, workmode=1
211 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
212 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
213 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
284 284  
215 +For parameter description, please refer to AT command set
285 285  
286 -1.
287 -11.
288 -111. ​Decode payload in The Things Network
217 +[[image:1657249793983-486.png]]
289 289  
290 -While using TTN network, you can add the payload format to decode the payload.
291 291  
220 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
292 292  
293 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.png]]
222 +[[image:1657249831934-534.png]]
294 294  
295 -The payload decoder function for TTN is here:
296 296  
297 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
298 298  
226 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
299 299  
300 -1.
301 -11. Uplink Interval
228 +This feature is supported since firmware version v1.0.1
302 302  
303 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
304 304  
305 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
231 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
232 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
233 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
306 306  
307 -1.
308 -11. ​Downlink Payload
235 +[[image:1657249864775-321.png]]
309 309  
310 -By default, LSE50 prints the downlink payload to console port.
311 311  
312 -|**Downlink Control Type**|**FPort**|**Type Code**|**Downlink payload size(bytes)**
313 -|TDC (Transmit Time Interval)|Any|01|4
314 -|RESET|Any|04|2
315 -|AT+CFM|Any|05|4
316 -|INTMOD|Any|06|4
317 -|MOD|Any|0A|2
238 +[[image:1657249930215-289.png]]
318 318  
319 -**Examples**
320 320  
321 321  
322 -**Set TDC**
242 +=== 2.2.6 Use MQTT protocol to uplink data ===
323 323  
324 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
244 +This feature is supported since firmware version v110
325 325  
326 -Payload:    01 00 00 1E    TDC=30S
327 327  
328 -Payload:    01 00 00 3C    TDC=60S
247 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
248 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
249 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
250 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
251 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
252 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
253 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
329 329  
255 +[[image:1657249978444-674.png]]
330 330  
331 -**Reset**
332 332  
333 -If payload = 0x04FF, it will reset the LSE01
258 +[[image:1657249990869-686.png]]
334 334  
335 335  
336 -**CFM**
261 +(((
262 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
263 +)))
337 337  
338 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
339 339  
340 -1.
341 -11. ​Show Data in DataCake IoT Server
342 342  
343 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
267 +=== 2.2.7 Use TCP protocol to uplink data ===
344 344  
269 +This feature is supported since firmware version v110
345 345  
346 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
347 347  
348 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
272 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
273 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
349 349  
275 +[[image:1657250217799-140.png]]
350 350  
351 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]]
352 352  
278 +[[image:1657250255956-604.png]]
353 353  
354 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]]
355 355  
356 356  
282 +=== 2.2.8 Change Update Interval ===
357 357  
284 +User can use below command to change the (% style="color:green" %)**uplink interval**.
358 358  
286 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
359 359  
360 -Step 3: Create an account or log in Datacake.
288 +(((
289 +(% style="color:red" %)**NOTE:**
290 +)))
361 361  
362 -Step 4: Search the LSE01 and add DevEUI.
292 +(((
293 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
294 +)))
363 363  
364 364  
365 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]]
366 366  
298 +== 2.3  Uplink Payload ==
367 367  
300 +In this mode, uplink payload includes in total 18 bytes
368 368  
369 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
302 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
303 +|=(% style="width: 50px;" %)(((
304 +**Size(bytes)**
305 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
306 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
370 370  
308 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
371 371  
372 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]
373 373  
311 +[[image:image-20220708111918-4.png]]
374 374  
375 375  
376 -1.
377 -11. Frequency Plans
314 +The payload is ASCII string, representative same HEX:
378 378  
379 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
316 +0x72403155615900640c7817075e0a8c02f900 where:
380 380  
381 -1.
382 -11.
383 -111. EU863-870 (EU868)
318 +* Device ID: 0x 724031556159 = 724031556159
319 +* Version: 0x0064=100=1.0.0
384 384  
385 -Uplink:
321 +* BAT: 0x0c78 = 3192 mV = 3.192V
322 +* Singal: 0x17 = 23
323 +* Soil Moisture: 0x075e= 1886 = 18.86  %
324 +* Soil Temperature:0x0a8c =2700=27 °C
325 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
326 +* Interrupt: 0x00 = 0
386 386  
387 -868.1 - SF7BW125 to SF12BW125
388 388  
389 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
329 +== 2.4  Payload Explanation and Sensor Interface ==
390 390  
391 -868.5 - SF7BW125 to SF12BW125
392 392  
393 -867.1 - SF7BW125 to SF12BW125
332 +=== 2.4.1  Device ID ===
394 394  
395 -867.3 - SF7BW125 to SF12BW125
334 +By default, the Device ID equal to the last 6 bytes of IMEI.
396 396  
397 -867.5 - SF7BW125 to SF12BW125
336 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
398 398  
399 -867.7 - SF7BW125 to SF12BW125
338 +**Example:**
400 400  
401 -867.9 - SF7BW125 to SF12BW125
340 +AT+DEUI=A84041F15612
402 402  
403 -868.8 - FSK
342 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
404 404  
405 405  
406 -Downlink:
407 407  
408 -Uplink channels 1-9 (RX1)
346 +=== 2.4.2  Version Info ===
409 409  
410 -869.525 - SF9BW125 (RX2 downlink only)
348 +Specify the software version: 0x64=100, means firmware version 1.00.
411 411  
350 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
412 412  
413 -1.
414 -11.
415 -111. US902-928(US915)
416 416  
417 -Used in USA, Canada and South America. Default use CHE=2
418 418  
419 -Uplink:
354 +=== 2.4.3  Battery Info ===
420 420  
421 -903.9 - SF7BW125 to SF10BW125
356 +(((
357 +Check the battery voltage for LSE01.
358 +)))
422 422  
423 -904.1 - SF7BW125 to SF10BW125
360 +(((
361 +Ex1: 0x0B45 = 2885mV
362 +)))
424 424  
425 -904.3 - SF7BW125 to SF10BW125
364 +(((
365 +Ex2: 0x0B49 = 2889mV
366 +)))
426 426  
427 -904.5 - SF7BW125 to SF10BW125
428 428  
429 -904.7 - SF7BW125 to SF10BW125
430 430  
431 -904.9 - SF7BW125 to SF10BW125
370 +=== 2.4. Signal Strength ===
432 432  
433 -905.1 - SF7BW125 to SF10BW125
372 +NB-IoT Network signal Strength.
434 434  
435 -905.3 - SF7BW125 to SF10BW125
374 +**Ex1: 0x1d = 29**
436 436  
376 +(% style="color:blue" %)**0**(%%)  -113dBm or less
437 437  
438 -Downlink:
378 +(% style="color:blue" %)**1**(%%)  -111dBm
439 439  
440 -923.3 - SF7BW500 to SF12BW500
380 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
441 441  
442 -923.9 - SF7BW500 to SF12BW500
382 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
443 443  
444 -924.5 - SF7BW500 to SF12BW500
384 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
445 445  
446 -925.1 - SF7BW500 to SF12BW500
447 447  
448 -925.7 - SF7BW500 to SF12BW500
449 449  
450 -926.3 - SF7BW500 to SF12BW500
388 +=== 2.4.5  Soil Moisture ===
451 451  
452 -926.9 - SF7BW500 to SF12BW500
390 +(((
391 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
392 +)))
453 453  
454 -927.5 - SF7BW500 to SF12BW500
394 +(((
395 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
396 +)))
455 455  
456 -923.3 - SF12BW500(RX2 downlink only)
398 +(((
399 +
400 +)))
457 457  
402 +(((
403 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
404 +)))
458 458  
459 -1.
460 -11.
461 -111. CN470-510 (CN470)
462 462  
463 -Used in China, Default use CHE=1
464 464  
465 -Uplink:
408 +=== 2.4.6  Soil Temperature ===
466 466  
467 -486.3 - SF7BW125 to SF12BW125
410 +(((
411 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
412 +)))
468 468  
469 -486.5 - SF7BW125 to SF12BW125
414 +(((
415 +**Example**:
416 +)))
470 470  
471 -486.7 - SF7BW125 to SF12BW125
418 +(((
419 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
420 +)))
472 472  
473 -486.9 - SF7BW125 to SF12BW125
422 +(((
423 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
424 +)))
474 474  
475 -487.1 - SF7BW125 to SF12BW125
476 476  
477 -487.3 - SF7BW125 to SF12BW125
478 478  
479 -487.5 - SF7BW125 to SF12BW125
428 +=== 2.4. Soil Conductivity (EC) ===
480 480  
481 -487.7 - SF7BW125 to SF12BW125
430 +(((
431 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
432 +)))
482 482  
434 +(((
435 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
436 +)))
483 483  
484 -Downlink:
438 +(((
439 +Generally, the EC value of irrigation water is less than 800uS / cm.
440 +)))
485 485  
486 -506.7 - SF7BW125 to SF12BW125
442 +(((
443 +
444 +)))
487 487  
488 -506.9 - SF7BW125 to SF12BW125
446 +(((
447 +
448 +)))
489 489  
490 -507.1 - SF7BW125 to SF12BW125
450 +=== 2.4.8  Digital Interrupt ===
491 491  
492 -507.3 - SF7BW125 to SF12BW125
452 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
493 493  
494 -507.5 - SF7BW125 to SF12BW125
454 +The command is:
495 495  
496 -507.7 - SF7BW125 to SF12BW125
456 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
497 497  
498 -507.9 - SF7BW125 to SF12BW125
499 499  
500 -508.1 - SF7BW125 to SF12BW125
459 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
501 501  
502 -505.3 - SF12BW125 (RX2 downlink only)
503 503  
462 +Example:
504 504  
505 -1.
506 -11.
507 -111. AU915-928(AU915)
464 +0x(00): Normal uplink packet.
508 508  
509 -Default use CHE=2
466 +0x(01): Interrupt Uplink Packet.
510 510  
511 -Uplink:
512 512  
513 -916.8 - SF7BW125 to SF12BW125
514 514  
515 -917.0 - SF7BW125 to SF12BW125
470 +=== 2.4.9  ​+5V Output ===
516 516  
517 -917.2 - SF7BW125 to SF12BW125
472 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
518 518  
519 -917.4 - SF7BW125 to SF12BW125
520 520  
521 -917.6 - SF7BW125 to SF12BW125
475 +The 5V output time can be controlled by AT Command.
522 522  
523 -917.8 - SF7BW125 to SF12BW125
477 +(% style="color:blue" %)**AT+5VT=1000**
524 524  
525 -918.0 - SF7BW125 to SF12BW125
479 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
526 526  
527 -918.2 - SF7BW125 to SF12BW125
528 528  
529 529  
530 -Downlink:
483 +== 2.5  Downlink Payload ==
531 531  
532 -923.3 - SF7BW500 to SF12BW500
485 +By default, NSE01 prints the downlink payload to console port.
533 533  
534 -923.9 - SF7BW500 to SF12BW500
487 +[[image:image-20220708133731-5.png]]
535 535  
536 -924.5 - SF7BW500 to SF12BW500
537 537  
538 -925.1 - SF7BW500 to SF12BW500
490 +(((
491 +(% style="color:blue" %)**Examples:**
492 +)))
539 539  
540 -925.7 - SF7BW500 to SF12BW500
494 +(((
495 +
496 +)))
541 541  
542 -926.3 - SF7BW500 to SF12BW500
498 +* (((
499 +(% style="color:blue" %)**Set TDC**
500 +)))
543 543  
544 -926.9 - SF7BW500 to SF12BW500
502 +(((
503 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
504 +)))
545 545  
546 -927.5 - SF7BW500 to SF12BW500
506 +(((
507 +Payload:    01 00 00 1E    TDC=30S
508 +)))
547 547  
548 -923.3 - SF12BW500(RX2 downlink only)
510 +(((
511 +Payload:    01 00 00 3C    TDC=60S
512 +)))
549 549  
550 -1.
551 -11.
552 -111. AS920-923 & AS923-925 (AS923)
514 +(((
515 +
516 +)))
553 553  
554 -**Default Uplink channel:**
518 +* (((
519 +(% style="color:blue" %)**Reset**
520 +)))
555 555  
556 -923.2 - SF7BW125 to SF10BW125
522 +(((
523 +If payload = 0x04FF, it will reset the NSE01
524 +)))
557 557  
558 -923.4 - SF7BW125 to SF10BW125
559 559  
527 +* (% style="color:blue" %)**INTMOD**
560 560  
561 -**Additional Uplink Channel**:
529 +Downlink Payload: 06000003, Set AT+INTMOD=3
562 562  
563 -(OTAA mode, channel added by JoinAccept message)
564 564  
565 -**AS920~~AS923 for Japan, Malaysia, Singapore**:
566 566  
567 -922.2 - SF7BW125 to SF10BW125
533 +== 2. ​LED Indicator ==
568 568  
569 -922.4 - SF7BW125 to SF10BW125
535 +(((
536 +The NSE01 has an internal LED which is to show the status of different state.
570 570  
571 -922.6 - SF7BW125 to SF10BW125
572 572  
573 -922.8 - SF7BW125 to SF10BW125
539 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
540 +* Then the LED will be on for 1 second means device is boot normally.
541 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
542 +* For each uplink probe, LED will be on for 500ms.
543 +)))
574 574  
575 -923.0 - SF7BW125 to SF10BW125
576 576  
577 -922.0 - SF7BW125 to SF10BW125
578 578  
579 579  
580 -**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
548 +== 2.7  Installation in Soil ==
581 581  
582 -923.6 - SF7BW125 to SF10BW125
550 +__**Measurement the soil surface**__
583 583  
584 -923.8 - SF7BW125 to SF10BW125
552 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
585 585  
586 -924.0 - SF7BW125 to SF10BW125
554 +[[image:1657259653666-883.png]] ​
587 587  
588 -924.2 - SF7BW125 to SF10BW125
589 589  
590 -924.4 - SF7BW125 to SF10BW125
557 +(((
558 +
591 591  
592 -924.6 - SF7BW125 to SF10BW125
593 -
594 -
595 -
596 -**Downlink:**
597 -
598 -Uplink channels 1-8 (RX1)
599 -
600 -923.2 - SF10BW125 (RX2)
601 -
602 -
603 -1.
604 -11.
605 -111. KR920-923 (KR920)
606 -
607 -Default channel:
608 -
609 -922.1 - SF7BW125 to SF12BW125
610 -
611 -922.3 - SF7BW125 to SF12BW125
612 -
613 -922.5 - SF7BW125 to SF12BW125
614 -
615 -
616 -Uplink: (OTAA mode, channel added by JoinAccept message)
617 -
618 -922.1 - SF7BW125 to SF12BW125
619 -
620 -922.3 - SF7BW125 to SF12BW125
621 -
622 -922.5 - SF7BW125 to SF12BW125
623 -
624 -922.7 - SF7BW125 to SF12BW125
625 -
626 -922.9 - SF7BW125 to SF12BW125
627 -
628 -923.1 - SF7BW125 to SF12BW125
629 -
630 -923.3 - SF7BW125 to SF12BW125
631 -
632 -
633 -Downlink:
634 -
635 -Uplink channels 1-7(RX1)
636 -
637 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
638 -
639 -
640 -1.
641 -11.
642 -111. IN865-867 (IN865)
643 -
644 -Uplink:
645 -
646 -865.0625 - SF7BW125 to SF12BW125
647 -
648 -865.4025 - SF7BW125 to SF12BW125
649 -
650 -865.9850 - SF7BW125 to SF12BW125
651 -
652 -
653 -Downlink:
654 -
655 -Uplink channels 1-3 (RX1)
656 -
657 -866.550 - SF10BW125 (RX2)
658 -
659 -
660 -1.
661 -11. LED Indicator
662 -
663 -The LSE01 has an internal LED which is to show the status of different state.
664 -
665 -
666 -* Blink once when device power on.
667 -* Solid ON for 5 seconds once device successful Join the network.
668 -* Blink once when device transmit a packet.
669 -
670 -1.
671 -11. Installation in Soil
672 -
673 -**Measurement the soil surface**
674 -
675 -
676 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] ​
677 -
678 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
679 -
680 -
681 -
682 -
683 -
684 -
685 -
686 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
687 -
688 -
689 -
560 +(((
690 690  Dig a hole with diameter > 20CM.
562 +)))
691 691  
564 +(((
692 692  Horizontal insert the probe to the soil and fill the hole for long term measurement.
566 +)))
567 +)))
693 693  
569 +[[image:1654506665940-119.png]]
694 694  
571 +(((
572 +
573 +)))
695 695  
696 696  
697 -1.
698 -11. ​Firmware Change Log
576 +== 2.8  ​Firmware Change Log ==
699 699  
700 -**Firmware download link:**
701 701  
702 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
579 +Download URL & Firmware Change log
703 703  
581 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
704 704  
705 -**Firmware Upgrade Method:**
706 706  
707 -[[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]]
584 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
708 708  
709 709  
710 -**V1.0.**
711 711  
712 -Release
588 +== 2.9  ​Battery Analysis ==
713 713  
590 +=== 2.9.1  ​Battery Type ===
714 714  
715 715  
716 -1.
717 -11. ​Battery Analysis
718 -111. ​Battery Type
593 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
719 719  
720 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
721 721  
596 +The battery is designed to last for several years depends on the actually use environment and update interval. 
722 722  
723 -The battery is designed to last for more than 5 years for the LSN50.
724 724  
725 -
726 726  The battery related documents as below:
727 727  
728 -* [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
729 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]]
730 -* [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
601 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
602 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
603 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
731 731  
732 -|(((
733 -JST-XH-2P connector
605 +(((
606 +[[image:image-20220708140453-6.png]]
734 734  )))
735 735  
736 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
737 737  
738 738  
611 +=== 2.9.2  Power consumption Analyze ===
739 739  
740 -1.
741 -11.
742 -111. ​Battery Note
613 +(((
614 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
615 +)))
743 743  
744 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
745 745  
618 +(((
619 +Instruction to use as below:
620 +)))
746 746  
747 -1.
748 -11.
749 -111. ​Replace the battery
622 +(((
623 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
624 +)))
750 750  
751 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
752 752  
627 +(((
628 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
629 +)))
753 753  
754 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
631 +* (((
632 +Product Model
633 +)))
634 +* (((
635 +Uplink Interval
636 +)))
637 +* (((
638 +Working Mode
639 +)))
755 755  
641 +(((
642 +And the Life expectation in difference case will be shown on the right.
643 +)))
756 756  
757 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
645 +[[image:image-20220708141352-7.jpeg]]
758 758  
759 759  
760 760  
649 +=== 2.9.3  ​Battery Note ===
761 761  
651 +(((
652 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
653 +)))
762 762  
763 763  
764 -= 3. ​Using the AT Commands =
765 765  
766 -== 3.1 Access AT Commands ==
657 +=== 2.9.4  Replace the battery ===
767 767  
659 +(((
660 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
661 +)))
768 768  
769 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
770 770  
771 -[[image:1654501986557-872.png]]
772 772  
665 += 3. ​ Access NB-IoT Module =
773 773  
774 -Or if you have below board, use below connection:
667 +(((
668 +Users can directly access the AT command set of the NB-IoT module.
669 +)))
775 775  
671 +(((
672 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
673 +)))
776 776  
777 -[[image:1654502005655-729.png]]
675 +[[image:1657261278785-153.png]]
778 778  
779 779  
780 780  
781 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
679 += 4.  Using the AT Commands =
782 782  
681 +== 4.1  Access AT Commands ==
783 783  
784 - [[image:1654502050864-459.png]]
683 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
785 785  
786 786  
787 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
686 +AT+<CMD>?  : Help on <CMD>
788 788  
688 +AT+<CMD>         : Run <CMD>
789 789  
790 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
690 +AT+<CMD>=<value> : Set the value
791 791  
792 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
692 +AT+<CMD>=?  : Get the value
793 793  
794 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
795 795  
796 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
797 -
798 -
799 799  (% style="color:#037691" %)**General Commands**(%%)      
800 800  
801 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
697 +AT  : Attention       
802 802  
803 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
699 +AT?  : Short Help     
804 804  
805 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
701 +ATZ  : MCU Reset    
806 806  
807 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
703 +AT+TDC  : Application Data Transmission Interval
808 808  
705 +AT+CFG  : Print all configurations
809 809  
810 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
707 +AT+CFGMOD           : Working mode selection
811 811  
812 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
709 +AT+INTMOD            : Set the trigger interrupt mode
813 813  
814 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
711 +AT+5VT  : Set extend the time of 5V power  
815 815  
816 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
713 +AT+PRO  : Choose agreement
817 817  
818 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
715 +AT+WEIGRE  : Get weight or set weight to 0
819 819  
820 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
717 +AT+WEIGAP  : Get or Set the GapValue of weight
821 821  
822 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
719 +AT+RXDL  : Extend the sending and receiving time
823 823  
824 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
721 +AT+CNTFAC  : Get or set counting parameters
825 825  
826 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
723 +AT+SERVADDR  : Server Address
827 827  
828 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
829 829  
830 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
726 +(% style="color:#037691" %)**COAP Management**      
831 831  
832 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
728 +AT+URI            : Resource parameters
833 833  
834 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
835 835  
836 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
731 +(% style="color:#037691" %)**UDP Management**
837 837  
838 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
733 +AT+CFM          : Upload confirmation mode (only valid for UDP)
839 839  
840 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
841 841  
842 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
736 +(% style="color:#037691" %)**MQTT Management**
843 843  
738 +AT+CLIENT               : Get or Set MQTT client
844 844  
845 -(% style="color:#037691" %)**LoRa Network Management**
740 +AT+UNAME  : Get or Set MQTT Username
846 846  
847 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
742 +AT+PWD                  : Get or Set MQTT password
848 848  
849 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
744 +AT+PUBTOPI : Get or Set MQTT publish topic
850 850  
851 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
746 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
852 852  
853 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
854 854  
855 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
749 +(% style="color:#037691" %)**Information**          
856 856  
857 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
751 +AT+FDR  : Factory Data Reset
858 858  
859 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
753 +AT+PWOR : Serial Access Password
860 860  
861 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
862 862  
863 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
864 864  
865 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
757 += ​5.  FAQ =
866 866  
867 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
759 +== 5.1 How to Upgrade Firmware ==
868 868  
869 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
870 870  
871 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
762 +(((
763 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
764 +)))
872 872  
873 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
874 -
875 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
876 -
877 -
878 -(% style="color:#037691" %)**Information** 
879 -
880 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
881 -
882 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
883 -
884 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
885 -
886 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
887 -
888 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
889 -
890 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
891 -
892 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
893 -
894 -
895 -= ​4. FAQ =
896 -
897 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
898 -
899 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]].
900 -When downloading the images, choose the required image file for download. ​
901 -
902 -
903 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
904 -
905 -
906 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
907 -
908 -
909 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
910 -
911 -[[image:image-20220606154726-3.png]]
912 -
913 -When you use the TTN network, the US915 frequency bands use are:
914 -
915 -* 903.9 - SF7BW125 to SF10BW125
916 -* 904.1 - SF7BW125 to SF10BW125
917 -* 904.3 - SF7BW125 to SF10BW125
918 -* 904.5 - SF7BW125 to SF10BW125
919 -* 904.7 - SF7BW125 to SF10BW125
920 -* 904.9 - SF7BW125 to SF10BW125
921 -* 905.1 - SF7BW125 to SF10BW125
922 -* 905.3 - SF7BW125 to SF10BW125
923 -* 904.6 - SF8BW500
924 -
925 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
926 -
927 -(% class="box infomessage" %)
928 928  (((
929 -**AT+CHE=2**
767 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
930 930  )))
931 931  
932 -(% class="box infomessage" %)
933 933  (((
934 -**ATZ**
771 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
935 935  )))
936 936  
937 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
938 938  
939 939  
940 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
776 += 6.  Trouble Shooting =
941 941  
942 -[[image:image-20220606154825-4.png]]
778 +== 6.1  ​Connection problem when uploading firmware ==
943 943  
944 944  
781 +(% class="wikigeneratedid" %)
782 +(((
783 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]]
784 +)))
945 945  
946 -= 5. Trouble Shooting =
947 947  
948 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
949 949  
950 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
788 +== 6. AT Command input doesn't work ==
951 951  
790 +(((
791 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
792 +)))
952 952  
953 -== 5.2 AT Command input doesn’t work ==
954 954  
955 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
956 956  
796 += 7. ​ Order Info =
957 957  
958 -== 5.3 Device rejoin in at the second uplink packet ==
959 959  
960 -(% style="color:#4f81bd" %)**Issue describe as below:**
799 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
961 961  
962 -[[image:1654500909990-784.png]]
963 963  
802 +(% class="wikigeneratedid" %)
803 +(((
804 +
805 +)))
964 964  
965 -(% style="color:#4f81bd" %)**Cause for this issue:**
807 += 8 Packing Info =
966 966  
967 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
809 +(((
810 +
968 968  
812 +(% style="color:#037691" %)**Package Includes**:
969 969  
970 -(% style="color:#4f81bd" %)**Solution: **
971 971  
972 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
815 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
816 +* External antenna x 1
817 +)))
973 973  
974 -[[image:1654500929571-736.png]]
819 +(((
820 +
975 975  
822 +(% style="color:#037691" %)**Dimension and weight**:
976 976  
977 -= 6. ​Order Info =
978 978  
979 -
980 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
981 -
982 -
983 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
984 -
985 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
986 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
987 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
988 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
989 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
990 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
991 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
992 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
993 -
994 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
995 -
996 -* (% style="color:red" %)**4**(%%): 4000mAh battery
997 -* (% style="color:red" %)**8**(%%): 8500mAh battery
998 -
999 -= 7. Packing Info =
1000 -
1001 -(((
1002 -**Package Includes**:
825 +* Size: 195 x 125 x 55 mm
826 +* Weight:   420g
1003 1003  )))
1004 1004  
1005 -* (((
1006 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
1007 -)))
1008 -
1009 1009  (((
1010 1010  
1011 -)))
1012 1012  
1013 -(((
1014 -**Dimension and weight**:
1015 -)))
1016 1016  
1017 -* (((
1018 -Device Size: cm
833 +
1019 1019  )))
1020 -* (((
1021 -Device Weight: g
1022 -)))
1023 -* (((
1024 -Package Size / pcs : cm
1025 -)))
1026 -* (((
1027 -Weight / pcs : g
1028 -)))
1029 1029  
1030 -= 8. Support =
836 += 9.  Support =
1031 1031  
1032 1032  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1033 1033  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1034 -
1035 -
1654503992078-669.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1654504596150-405.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +66.7 KB
Content
1654504683289-357.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +94.0 KB
Content
1654504778294-788.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +119.4 KB
Content
1654504881641-514.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +119.4 KB
Content
1654504907647-967.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +54.7 KB
Content
1654505570700-128.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +59.2 KB
Content
1654505857935-743.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +86.0 KB
Content
1654505874829-548.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +129.9 KB
Content
1654505905236-553.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +92.0 KB
Content
1654505925508-181.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +69.5 KB
Content
1654506634463-199.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1654506665940-119.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +423.3 KB
Content
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
image-20220606162220-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +23.0 KB
Content
image-20220606163732-6.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +16.5 KB
Content
image-20220606163915-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +94.8 KB
Content
image-20220606165544-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +11.6 KB
Content
image-20220606171726-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +171.0 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content