Last modified by Mengting Qiu on 2024/04/02 16:44

From version 13.2
edited by Xiaoling
on 2022/06/06 16:14
Change comment: There is no comment for this version
To version 65.7
edited by Xiaoling
on 2022/07/08 15:24
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="848" width="848"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
... ... @@ -8,1027 +8,821 @@
8 8  
9 9  
10 10  
11 -= 1. Introduction =
12 12  
13 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 14  
15 -(((
16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
17 -)))
18 18  
19 -(((
20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
21 -)))
14 +**Table of Contents:**
22 22  
23 -(((
24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
25 -)))
16 +{{toc/}}
26 26  
27 -(((
28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
29 -)))
30 30  
31 -(((
32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
33 -)))
34 34  
35 35  
36 -[[image:1654503236291-817.png]]
37 37  
38 38  
39 -[[image:1654503265560-120.png]]
23 += 1.  Introduction =
40 40  
25 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
41 41  
27 +(((
28 +
42 42  
43 -*
44 -*1. ​Features
45 -* LoRaWAN 1.0.3 Class A
46 -* Ultra low power consumption
47 -* Monitor Soil Moisture
48 -* Monitor Soil Temperature
49 -* Monitor Soil Conductivity
50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
51 -* AT Commands to change parameters
52 -* Uplink on periodically
53 -* Downlink to change configure
54 -* IP66 Waterproof Enclosure
55 -* 4000mAh or 8500mAh Battery for long term use
30 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
56 56  
57 -1.
58 -11. Specification
32 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
59 59  
60 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
34 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
61 61  
62 -|**Parameter**|**Soil Moisture**|**Soil Conductivity**|**Soil Temperature**
63 -|**Range**|**0-100.00%**|(((
64 -**0-20000uS/cm**
36 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
65 65  
66 -**(25℃)(0-20.0EC)**
67 -)))|**-40.00℃~85.00℃**
68 -|**Unit**|**V/V %,**|**uS/cm,**|**℃**
69 -|**Resolution**|**0.01%**|**1 uS/cm**|**0.01℃**
70 -|**Accuracy**|(((
71 -**±3% (0-53%)**
72 -
73 -**±5% (>53%)**
74 -)))|**2%FS,**|(((
75 -**-10℃~50℃:<0.3℃**
76 -
77 -**All other: <0.6℃**
38 +
78 78  )))
79 -|(((
80 -**Measure**
81 81  
82 -**Method**
83 -)))|**FDR , with temperature &EC compensate**|**Conductivity , with temperature compensate**|**RTD, and calibrate**
41 +[[image:1654503236291-817.png]]
84 84  
85 -*
86 -*1. ​Applications
87 -* Smart Agriculture
88 88  
89 -1.
90 -11. ​Firmware Change log
44 +[[image:1657245163077-232.png]]
91 91  
92 -**LSE01 v1.0:**
93 93  
94 -* Release
95 95  
96 -1. Configure LSE01 to connect to LoRaWAN network
97 -11. How it works
48 +== 1.2 ​ Features ==
98 98  
99 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
50 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
51 +* Monitor Soil Moisture
52 +* Monitor Soil Temperature
53 +* Monitor Soil Conductivity
54 +* AT Commands to change parameters
55 +* Uplink on periodically
56 +* Downlink to change configure
57 +* IP66 Waterproof Enclosure
58 +* Ultra-Low Power consumption
59 +* AT Commands to change parameters
60 +* Micro SIM card slot for NB-IoT SIM
61 +* 8500mAh Battery for long term use
100 100  
101 101  
102 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>path:#_​Using_the_AT]]to set the keys in the LSE01.
64 +== 1.3  Specification ==
103 103  
104 104  
67 +(% style="color:#037691" %)**Common DC Characteristics:**
105 105  
69 +* Supply Voltage: 2.1v ~~ 3.6v
70 +* Operating Temperature: -40 ~~ 85°C
106 106  
107 -1.
108 -11. ​Quick guide to connect to LoRaWAN server (OTAA)
72 +(% style="color:#037691" %)**NB-IoT Spec:**
109 109  
110 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
74 +* - B1 @H-FDD: 2100MHz
75 +* - B3 @H-FDD: 1800MHz
76 +* - B8 @H-FDD: 900MHz
77 +* - B5 @H-FDD: 850MHz
78 +* - B20 @H-FDD: 800MHz
79 +* - B28 @H-FDD: 700MHz
111 111  
81 +Probe(% style="color:#037691" %)** Specification:**
112 112  
113 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image003.png]]
83 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
114 114  
85 +[[image:image-20220708101224-1.png]]
115 115  
116 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
117 117  
118 118  
119 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
89 +== 1.4  Applications ==
120 120  
121 -Each LSE01 is shipped with a sticker with the default device EUI as below:
91 +* Smart Agriculture
122 122  
93 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
94 +​
123 123  
96 +== 1.5  Pin Definitions ==
124 124  
125 125  
126 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
99 +[[image:1657246476176-652.png]]
127 127  
128 128  
129 -**Add APP EUI in the application**
130 130  
103 += 2.  Use NSE01 to communicate with IoT Server =
131 131  
132 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]]
105 +== 2.1  How it works ==
133 133  
134 134  
108 +(((
109 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
110 +)))
135 135  
136 -**Add APP KEY and DEV EUI**
137 137  
138 -
139 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image005.png]]
140 -
141 -|(((
142 -
113 +(((
114 +The diagram below shows the working flow in default firmware of NSE01:
143 143  )))
144 144  
145 -**Step 2**: Power on LSE01
117 +[[image:image-20220708101605-2.png]]
146 146  
147 -
148 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
149 -
150 -
151 -
152 -|(((
119 +(((
153 153  
154 154  )))
155 155  
156 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image006.png]]
157 157  
158 158  
125 +== 2.2 ​ Configure the NSE01 ==
159 159  
160 160  
128 +=== 2.2.1 Test Requirement ===
161 161  
162 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
163 163  
164 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]
131 +To use NSE01 in your city, make sure meet below requirements:
165 165  
133 +* Your local operator has already distributed a NB-IoT Network there.
134 +* The local NB-IoT network used the band that NSE01 supports.
135 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
166 166  
137 +(((
138 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
139 +)))
167 167  
168 168  
169 -1.
170 -11. ​Uplink Payload
171 -111. MOD=0(Default Mode)
142 +[[image:1657249419225-449.png]]
172 172  
173 -LSE01 will uplink payload via LoRaWAN with below payload format: 
174 174  
175 175  
176 -Uplink payload includes in total 11 bytes.
177 -
146 +=== 2.2.2 Insert SIM card ===
178 178  
179 -|(((
180 -**Size**
148 +Insert the NB-IoT Card get from your provider.
181 181  
182 -**(bytes)**
183 -)))|**2**|**2**|**2**|**2**|**2**|**1**
184 -|**Value**|[[BAT>>path:#bat]]|(((
185 -Temperature
150 +User need to take out the NB-IoT module and insert the SIM card like below:
186 186  
187 -(Reserve, Ignore now)
188 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|(((
189 -MOD & Digital Interrupt
190 190  
191 -(Optional)
192 -)))
153 +[[image:1657249468462-536.png]]
193 193  
194 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]
195 195  
196 196  
197 -1.
198 -11.
199 -111. MOD=1(Original value)
157 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
200 200  
201 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
202 -
203 -|(((
204 -**Size**
205 -
206 -**(bytes)**
207 -)))|**2**|**2**|**2**|**2**|**2**|**1**
208 -|**Value**|[[BAT>>path:#bat]]|(((
209 -Temperature
210 -
211 -(Reserve, Ignore now)
212 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|(((
213 -MOD & Digital Interrupt
214 -
215 -(Optional)
159 +(((
160 +(((
161 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
216 216  )))
163 +)))
217 217  
218 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image008.png]]
219 219  
220 -1.
221 -11.
222 -111. Battery Info
166 +**Connection:**
223 223  
224 -Check the battery voltage for LSE01.
168 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
225 225  
226 -Ex1: 0x0B45 = 2885mV
170 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
227 227  
228 -Ex2: 0x0B49 = 2889mV
172 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
229 229  
230 230  
175 +In the PC, use below serial tool settings:
231 231  
232 -1.
233 -11.
234 -111. Soil Moisture
177 +* Baud:  (% style="color:green" %)**9600**
178 +* Data bits:** (% style="color:green" %)8(%%)**
179 +* Stop bits: (% style="color:green" %)**1**
180 +* Parity:  (% style="color:green" %)**None**
181 +* Flow Control: (% style="color:green" %)**None**
235 235  
236 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
183 +(((
184 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
185 +)))
237 237  
238 -For example, if the data you get from the register is 0x05 0xDC, the moisture content in the soil is
187 +[[image:image-20220708110657-3.png]]
239 239  
240 -**05DC(H) = 1500(D) /100 = 15%.**
189 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
241 241  
242 242  
243 -1.
244 -11.
245 -111. Soil Temperature
246 246  
247 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
193 +=== 2.2.4 Use CoAP protocol to uplink data ===
248 248  
249 -**Example**:
195 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
250 250  
251 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
252 252  
253 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
198 +**Use below commands:**
254 254  
200 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
201 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
202 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
255 255  
256 -1.
257 -11.
258 -111. Soil Conductivity (EC)
204 +For parameter description, please refer to AT command set
259 259  
260 -Obtain soluble salt concentration in soil or soluble ion concentration in liquid fertilizer or planting medium,. The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
206 +[[image:1657249793983-486.png]]
261 261  
262 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
263 263  
209 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
264 264  
265 -Generally, the EC value of irrigation water is less than 800uS / cm.
211 +[[image:1657249831934-534.png]]
266 266  
267 -1.
268 -11.
269 -111. MOD
270 270  
271 -Firmware version at least v2.1 supports changing mode.
272 272  
273 -For example, bytes[10]=90
215 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
274 274  
275 -mod=(bytes[10]>>7)&0x01=1.
217 +This feature is supported since firmware version v1.0.1
276 276  
277 277  
278 -Downlink Command:
220 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
221 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
222 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
279 279  
280 -If payload = 0x0A00, workmode=0
224 +[[image:1657249864775-321.png]]
281 281  
282 -If** **payload =** **0x0A01, workmode=1
283 283  
227 +[[image:1657249930215-289.png]]
284 284  
285 -1.
286 -11.
287 -111. ​Decode payload in The Things Network
288 288  
289 -While using TTN network, you can add the payload format to decode the payload.
290 290  
231 +=== 2.2.6 Use MQTT protocol to uplink data ===
291 291  
292 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.png]]
233 +This feature is supported since firmware version v110
293 293  
294 -The payload decoder function for TTN is here:
295 295  
296 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
236 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
237 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
238 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
239 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
240 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
241 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
242 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
297 297  
244 +[[image:1657249978444-674.png]]
298 298  
299 -1.
300 -11. Uplink Interval
301 301  
302 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
247 +[[image:1657249990869-686.png]]
303 303  
304 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
305 305  
306 -1.
307 -11. ​Downlink Payload
250 +(((
251 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
252 +)))
308 308  
309 -By default, LSE50 prints the downlink payload to console port.
310 310  
311 -|**Downlink Control Type**|**FPort**|**Type Code**|**Downlink payload size(bytes)**
312 -|TDC (Transmit Time Interval)|Any|01|4
313 -|RESET|Any|04|2
314 -|AT+CFM|Any|05|4
315 -|INTMOD|Any|06|4
316 -|MOD|Any|0A|2
317 317  
318 -**Examples**
256 +=== 2.2.7 Use TCP protocol to uplink data ===
319 319  
258 +This feature is supported since firmware version v110
320 320  
321 -**Set TDC**
322 322  
323 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
261 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
262 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
324 324  
325 -Payload:    01 00 00 1E    TDC=30S
264 +[[image:1657250217799-140.png]]
326 326  
327 -Payload:    01 00 00 3C    TDC=60S
328 328  
267 +[[image:1657250255956-604.png]]
329 329  
330 -**Reset**
331 331  
332 -If payload = 0x04FF, it will reset the LSE01
333 333  
271 +=== 2.2.8 Change Update Interval ===
334 334  
335 -**CFM**
273 +User can use below command to change the (% style="color:green" %)**uplink interval**.
336 336  
337 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
275 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
338 338  
339 -1.
340 -11. ​Show Data in DataCake IoT Server
277 +(((
278 +(% style="color:red" %)**NOTE:**
279 +)))
341 341  
342 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
281 +(((
282 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
283 +)))
343 343  
344 344  
345 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
346 346  
347 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
287 +== 2.3  Uplink Payload ==
348 348  
289 +In this mode, uplink payload includes in total 18 bytes
349 349  
350 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]]
291 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
292 +|=(% style="width: 50px;" %)(((
293 +**Size(bytes)**
294 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
295 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
351 351  
297 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
352 352  
353 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]]
354 354  
300 +[[image:image-20220708111918-4.png]]
355 355  
356 356  
303 +The payload is ASCII string, representative same HEX:
357 357  
305 +0x72403155615900640c7817075e0a8c02f900 where:
358 358  
359 -Step 3: Create an account or log in Datacake.
307 +* Device ID: 0x 724031556159 = 724031556159
308 +* Version: 0x0064=100=1.0.0
360 360  
361 -Step 4: Search the LSE01 and add DevEUI.
310 +* BAT: 0x0c78 = 3192 mV = 3.192V
311 +* Singal: 0x17 = 23
312 +* Soil Moisture: 0x075e= 1886 = 18.86  %
313 +* Soil Temperature:0x0a8c =2700=27 °C
314 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
315 +* Interrupt: 0x00 = 0
362 362  
363 363  
364 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]]
318 +== 2.4  Payload Explanation and Sensor Interface ==
365 365  
366 366  
321 +=== 2.4.1  Device ID ===
367 367  
368 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
323 +By default, the Device ID equal to the last 6 bytes of IMEI.
369 369  
325 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
370 370  
371 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]
327 +**Example:**
372 372  
329 +AT+DEUI=A84041F15612
373 373  
331 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
374 374  
375 -1.
376 -11. Frequency Plans
377 377  
378 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
379 379  
380 -1.
381 -11.
382 -111. EU863-870 (EU868)
335 +=== 2.4.2  Version Info ===
383 383  
384 -Uplink:
337 +Specify the software version: 0x64=100, means firmware version 1.00.
385 385  
386 -868.1 - SF7BW125 to SF12BW125
339 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
387 387  
388 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
389 389  
390 -868.5 - SF7BW125 to SF12BW125
391 391  
392 -867.1 - SF7BW125 to SF12BW125
343 +=== 2.4.3  Battery Info ===
393 393  
394 -867.3 - SF7BW125 to SF12BW125
345 +(((
346 +Check the battery voltage for LSE01.
347 +)))
395 395  
396 -867.5 - SF7BW125 to SF12BW125
349 +(((
350 +Ex1: 0x0B45 = 2885mV
351 +)))
397 397  
398 -867.7 - SF7BW125 to SF12BW125
353 +(((
354 +Ex2: 0x0B49 = 2889mV
355 +)))
399 399  
400 -867.9 - SF7BW125 to SF12BW125
401 401  
402 -868.8 - FSK
403 403  
359 +=== 2.4.4  Signal Strength ===
404 404  
405 -Downlink:
361 +NB-IoT Network signal Strength.
406 406  
407 -Uplink channels 1-9 (RX1)
363 +**Ex1: 0x1d = 29**
408 408  
409 -869.525 - SF9BW125 (RX2 downlink only)
365 +(% style="color:blue" %)**0**(%%)  -113dBm or less
410 410  
367 +(% style="color:blue" %)**1**(%%)  -111dBm
411 411  
412 -1.
413 -11.
414 -111. US902-928(US915)
369 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
415 415  
416 -Used in USA, Canada and South America. Default use CHE=2
371 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
417 417  
418 -Uplink:
373 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
419 419  
420 -903.9 - SF7BW125 to SF10BW125
421 421  
422 -904.1 - SF7BW125 to SF10BW125
423 423  
424 -904.3 - SF7BW125 to SF10BW125
377 +=== 2.4. Soil Moisture ===
425 425  
426 -904.5 - SF7BW125 to SF10BW125
379 +(((
380 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
381 +)))
427 427  
428 -904.7 - SF7BW125 to SF10BW125
383 +(((
384 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
385 +)))
429 429  
430 -904.9 - SF7BW125 to SF10BW125
387 +(((
388 +
389 +)))
431 431  
432 -905.1 - SF7BW125 to SF10BW125
391 +(((
392 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
393 +)))
433 433  
434 -905.3 - SF7BW125 to SF10BW125
435 435  
436 436  
437 -Downlink:
397 +=== 2.4.6  Soil Temperature ===
438 438  
439 -923.3 - SF7BW500 to SF12BW500
399 +(((
400 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
401 +)))
440 440  
441 -923.9 - SF7BW500 to SF12BW500
403 +(((
404 +**Example**:
405 +)))
442 442  
443 -924.5 - SF7BW500 to SF12BW500
407 +(((
408 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
409 +)))
444 444  
445 -925.1 - SF7BW500 to SF12BW500
411 +(((
412 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
413 +)))
446 446  
447 -925.7 - SF7BW500 to SF12BW500
448 448  
449 -926.3 - SF7BW500 to SF12BW500
450 450  
451 -926.9 - SF7BW500 to SF12BW500
417 +=== 2.4.7  Soil Conductivity (EC) ===
452 452  
453 -927.5 - SF7BW500 to SF12BW500
419 +(((
420 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
421 +)))
454 454  
455 -923.3 - SF12BW500(RX2 downlink only)
423 +(((
424 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
425 +)))
456 456  
427 +(((
428 +Generally, the EC value of irrigation water is less than 800uS / cm.
429 +)))
457 457  
458 -1.
459 -11.
460 -111. CN470-510 (CN470)
431 +(((
432 +
433 +)))
461 461  
462 -Used in China, Default use CHE=1
435 +(((
436 +
437 +)))
463 463  
464 -Uplink:
439 +=== 2.4.8  Digital Interrupt ===
465 465  
466 -486.3 - SF7BW125 to SF12BW125
441 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
467 467  
468 -486.5 - SF7BW125 to SF12BW125
443 +The command is:
469 469  
470 -486.7 - SF7BW125 to SF12BW125
445 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
471 471  
472 -486.9 - SF7BW125 to SF12BW125
473 473  
474 -487.1 - SF7BW125 to SF12BW125
448 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
475 475  
476 -487.3 - SF7BW125 to SF12BW125
477 477  
478 -487.5 - SF7BW125 to SF12BW125
451 +Example:
479 479  
480 -487.7 - SF7BW125 to SF12BW125
453 +0x(00): Normal uplink packet.
481 481  
455 +0x(01): Interrupt Uplink Packet.
482 482  
483 -Downlink:
484 484  
485 -506.7 - SF7BW125 to SF12BW125
486 486  
487 -506.9 - SF7BW125 to SF12BW125
459 +=== 2.4.9  ​+5V Output ===
488 488  
489 -507.1 - SF7BW125 to SF12BW125
461 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
490 490  
491 -507.3 - SF7BW125 to SF12BW125
492 492  
493 -507.5 - SF7BW125 to SF12BW125
464 +The 5V output time can be controlled by AT Command.
494 494  
495 -507.7 - SF7BW125 to SF12BW125
466 +(% style="color:blue" %)**AT+5VT=1000**
496 496  
497 -507.9 - SF7BW125 to SF12BW125
468 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
498 498  
499 -508.1 - SF7BW125 to SF12BW125
500 500  
501 -505.3 - SF12BW125 (RX2 downlink only)
502 502  
472 +== 2.5  Downlink Payload ==
503 503  
504 -1.
505 -11.
506 -111. AU915-928(AU915)
474 +By default, NSE01 prints the downlink payload to console port.
507 507  
508 -Default use CHE=2
476 +[[image:image-20220708133731-5.png]]
509 509  
510 -Uplink:
511 511  
512 -916.8 - SF7BW125 to SF12BW125
479 +(((
480 +(% style="color:blue" %)**Examples:**
481 +)))
513 513  
514 -917.0 - SF7BW125 to SF12BW125
483 +(((
484 +
485 +)))
515 515  
516 -917.2 - SF7BW125 to SF12BW125
487 +* (((
488 +(% style="color:blue" %)**Set TDC**
489 +)))
517 517  
518 -917.4 - SF7BW125 to SF12BW125
491 +(((
492 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
493 +)))
519 519  
520 -917.6 - SF7BW125 to SF12BW125
495 +(((
496 +Payload:    01 00 00 1E    TDC=30S
497 +)))
521 521  
522 -917.8 - SF7BW125 to SF12BW125
499 +(((
500 +Payload:    01 00 00 3C    TDC=60S
501 +)))
523 523  
524 -918.0 - SF7BW125 to SF12BW125
503 +(((
504 +
505 +)))
525 525  
526 -918.2 - SF7BW125 to SF12BW125
507 +* (((
508 +(% style="color:blue" %)**Reset**
509 +)))
527 527  
511 +(((
512 +If payload = 0x04FF, it will reset the NSE01
513 +)))
528 528  
529 -Downlink:
530 530  
531 -923.3 - SF7BW500 to SF12BW500
516 +* (% style="color:blue" %)**INTMOD**
532 532  
533 -923.9 - SF7BW500 to SF12BW500
518 +Downlink Payload: 06000003, Set AT+INTMOD=3
534 534  
535 -924.5 - SF7BW500 to SF12BW500
536 536  
537 -925.1 - SF7BW500 to SF12BW500
538 538  
539 -925.7 - SF7BW500 to SF12BW500
522 +== 2. ​LED Indicator ==
540 540  
541 -926.3 - SF7BW500 to SF12BW500
524 +(((
525 +The NSE01 has an internal LED which is to show the status of different state.
542 542  
543 -926.9 - SF7BW500 to SF12BW500
544 544  
545 -927.5 - SF7BW500 to SF12BW500
528 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
529 +* Then the LED will be on for 1 second means device is boot normally.
530 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
531 +* For each uplink probe, LED will be on for 500ms.
532 +)))
546 546  
547 -923.3 - SF12BW500(RX2 downlink only)
548 548  
549 -1.
550 -11.
551 -111. AS920-923 & AS923-925 (AS923)
552 552  
553 -**Default Uplink channel:**
554 554  
555 -923.2 - SF7BW125 to SF10BW125
537 +== 2.7  Installation in Soil ==
556 556  
557 -923.4 - SF7BW125 to SF10BW125
539 +__**Measurement the soil surface**__
558 558  
541 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
559 559  
560 -**Additional Uplink Channel**:
543 +[[image:1657259653666-883.png]]
561 561  
562 -(OTAA mode, channel added by JoinAccept message)
563 563  
564 -**AS920~~AS923 for Japan, Malaysia, Singapore**:
546 +(((
547 +
565 565  
566 -922.2 - SF7BW125 to SF10BW125
567 -
568 -922.4 - SF7BW125 to SF10BW125
569 -
570 -922.6 - SF7BW125 to SF10BW125
571 -
572 -922.8 - SF7BW125 to SF10BW125
573 -
574 -923.0 - SF7BW125 to SF10BW125
575 -
576 -922.0 - SF7BW125 to SF10BW125
577 -
578 -
579 -**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
580 -
581 -923.6 - SF7BW125 to SF10BW125
582 -
583 -923.8 - SF7BW125 to SF10BW125
584 -
585 -924.0 - SF7BW125 to SF10BW125
586 -
587 -924.2 - SF7BW125 to SF10BW125
588 -
589 -924.4 - SF7BW125 to SF10BW125
590 -
591 -924.6 - SF7BW125 to SF10BW125
592 -
593 -
594 -
595 -**Downlink:**
596 -
597 -Uplink channels 1-8 (RX1)
598 -
599 -923.2 - SF10BW125 (RX2)
600 -
601 -
602 -1.
603 -11.
604 -111. KR920-923 (KR920)
605 -
606 -Default channel:
607 -
608 -922.1 - SF7BW125 to SF12BW125
609 -
610 -922.3 - SF7BW125 to SF12BW125
611 -
612 -922.5 - SF7BW125 to SF12BW125
613 -
614 -
615 -Uplink: (OTAA mode, channel added by JoinAccept message)
616 -
617 -922.1 - SF7BW125 to SF12BW125
618 -
619 -922.3 - SF7BW125 to SF12BW125
620 -
621 -922.5 - SF7BW125 to SF12BW125
622 -
623 -922.7 - SF7BW125 to SF12BW125
624 -
625 -922.9 - SF7BW125 to SF12BW125
626 -
627 -923.1 - SF7BW125 to SF12BW125
628 -
629 -923.3 - SF7BW125 to SF12BW125
630 -
631 -
632 -Downlink:
633 -
634 -Uplink channels 1-7(RX1)
635 -
636 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
637 -
638 -
639 -1.
640 -11.
641 -111. IN865-867 (IN865)
642 -
643 -Uplink:
644 -
645 -865.0625 - SF7BW125 to SF12BW125
646 -
647 -865.4025 - SF7BW125 to SF12BW125
648 -
649 -865.9850 - SF7BW125 to SF12BW125
650 -
651 -
652 -Downlink:
653 -
654 -Uplink channels 1-3 (RX1)
655 -
656 -866.550 - SF10BW125 (RX2)
657 -
658 -
659 -1.
660 -11. LED Indicator
661 -
662 -The LSE01 has an internal LED which is to show the status of different state.
663 -
664 -
665 -* Blink once when device power on.
666 -* Solid ON for 5 seconds once device successful Join the network.
667 -* Blink once when device transmit a packet.
668 -
669 -1.
670 -11. Installation in Soil
671 -
672 -**Measurement the soil surface**
673 -
674 -
675 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] ​
676 -
677 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
678 -
679 -
680 -
681 -
682 -
683 -
684 -
685 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
686 -
687 -
688 -
549 +(((
689 689  Dig a hole with diameter > 20CM.
551 +)))
690 690  
553 +(((
691 691  Horizontal insert the probe to the soil and fill the hole for long term measurement.
555 +)))
556 +)))
692 692  
558 +[[image:1654506665940-119.png]]
693 693  
560 +(((
561 +
562 +)))
694 694  
695 695  
696 -1.
697 -11. ​Firmware Change Log
565 +== 2.8  ​Firmware Change Log ==
698 698  
699 -**Firmware download link:**
700 700  
701 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
568 +Download URL & Firmware Change log
702 702  
570 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
703 703  
704 -**Firmware Upgrade Method:**
705 705  
706 -[[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]]
573 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
707 707  
708 708  
709 -**V1.0.**
710 710  
711 -Release
577 +== 2.9  ​Battery Analysis ==
712 712  
579 +=== 2.9.1  ​Battery Type ===
713 713  
714 714  
715 -1.
716 -11. ​Battery Analysis
717 -111. ​Battery Type
582 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
718 718  
719 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
720 720  
585 +The battery is designed to last for several years depends on the actually use environment and update interval. 
721 721  
722 -The battery is designed to last for more than 5 years for the LSN50.
723 723  
724 -
725 725  The battery related documents as below:
726 726  
727 -* [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
728 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]]
729 -* [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
590 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
591 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
592 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
730 730  
731 -|(((
732 -JST-XH-2P connector
594 +(((
595 +[[image:image-20220708140453-6.png]]
733 733  )))
734 734  
735 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
736 736  
737 737  
600 +=== 2.9.2  Power consumption Analyze ===
738 738  
739 -1.
740 -11.
741 -111. ​Battery Note
602 +(((
603 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
604 +)))
742 742  
743 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
744 744  
607 +(((
608 +Instruction to use as below:
609 +)))
745 745  
746 -1.
747 -11.
748 -111. ​Replace the battery
611 +(((
612 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
613 +)))
749 749  
750 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
751 751  
616 +(((
617 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
618 +)))
752 752  
753 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
620 +* (((
621 +Product Model
622 +)))
623 +* (((
624 +Uplink Interval
625 +)))
626 +* (((
627 +Working Mode
628 +)))
754 754  
630 +(((
631 +And the Life expectation in difference case will be shown on the right.
632 +)))
755 755  
756 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
634 +[[image:image-20220708141352-7.jpeg]]
757 757  
758 758  
759 759  
638 +=== 2.9.3  ​Battery Note ===
760 760  
640 +(((
641 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
642 +)))
761 761  
762 762  
763 -= 3. ​Using the AT Commands =
764 764  
765 -== 3.1 Access AT Commands ==
646 +=== 2.9.4  Replace the battery ===
766 766  
648 +(((
649 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
650 +)))
767 767  
768 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
769 769  
770 -[[image:1654501986557-872.png]]
771 771  
654 += 3. ​ Access NB-IoT Module =
772 772  
773 -Or if you have below board, use below connection:
656 +(((
657 +Users can directly access the AT command set of the NB-IoT module.
658 +)))
774 774  
660 +(((
661 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
662 +)))
775 775  
776 -[[image:1654502005655-729.png]]
664 +[[image:1657261278785-153.png]]
777 777  
778 778  
779 779  
780 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
668 += 4.  Using the AT Commands =
781 781  
670 +== 4.1  Access AT Commands ==
782 782  
783 - [[image:1654502050864-459.png]]
672 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
784 784  
785 785  
786 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
675 +AT+<CMD>?  : Help on <CMD>
787 787  
677 +AT+<CMD>         : Run <CMD>
788 788  
789 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
679 +AT+<CMD>=<value> : Set the value
790 790  
791 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
681 +AT+<CMD>=?  : Get the value
792 792  
793 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
794 794  
795 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
796 -
797 -
798 798  (% style="color:#037691" %)**General Commands**(%%)      
799 799  
800 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
686 +AT  : Attention       
801 801  
802 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
688 +AT?  : Short Help     
803 803  
804 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
690 +ATZ  : MCU Reset    
805 805  
806 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
692 +AT+TDC  : Application Data Transmission Interval
807 807  
694 +AT+CFG  : Print all configurations
808 808  
809 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
696 +AT+CFGMOD           : Working mode selection
810 810  
811 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
698 +AT+INTMOD            : Set the trigger interrupt mode
812 812  
813 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
700 +AT+5VT  : Set extend the time of 5V power  
814 814  
815 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
702 +AT+PRO  : Choose agreement
816 816  
817 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
704 +AT+WEIGRE  : Get weight or set weight to 0
818 818  
819 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
706 +AT+WEIGAP  : Get or Set the GapValue of weight
820 820  
821 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
708 +AT+RXDL  : Extend the sending and receiving time
822 822  
823 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
710 +AT+CNTFAC  : Get or set counting parameters
824 824  
825 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
712 +AT+SERVADDR  : Server Address
826 826  
827 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
828 828  
829 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
715 +(% style="color:#037691" %)**COAP Management**      
830 830  
831 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
717 +AT+URI            : Resource parameters
832 832  
833 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
834 834  
835 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
720 +(% style="color:#037691" %)**UDP Management**
836 836  
837 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
722 +AT+CFM          : Upload confirmation mode (only valid for UDP)
838 838  
839 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
840 840  
841 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
725 +(% style="color:#037691" %)**MQTT Management**
842 842  
727 +AT+CLIENT               : Get or Set MQTT client
843 843  
844 -(% style="color:#037691" %)**LoRa Network Management**
729 +AT+UNAME  : Get or Set MQTT Username
845 845  
846 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
731 +AT+PWD                  : Get or Set MQTT password
847 847  
848 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
733 +AT+PUBTOPI : Get or Set MQTT publish topic
849 849  
850 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
735 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
851 851  
852 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
853 853  
854 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
738 +(% style="color:#037691" %)**Information**          
855 855  
856 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
740 +AT+FDR  : Factory Data Reset
857 857  
858 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
742 +AT+PWOR : Serial Access Password
859 859  
860 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
861 861  
862 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
863 863  
864 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
746 += ​5.  FAQ =
865 865  
866 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
748 +== 5.1 How to Upgrade Firmware ==
867 867  
868 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
869 869  
870 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
751 +(((
752 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
753 +)))
871 871  
872 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
873 -
874 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
875 -
876 -
877 -(% style="color:#037691" %)**Information** 
878 -
879 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
880 -
881 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
882 -
883 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
884 -
885 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
886 -
887 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
888 -
889 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
890 -
891 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
892 -
893 -
894 -= ​4. FAQ =
895 -
896 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
897 -
898 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]].
899 -When downloading the images, choose the required image file for download. ​
900 -
901 -
902 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
903 -
904 -
905 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
906 -
907 -
908 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
909 -
910 -[[image:image-20220606154726-3.png]]
911 -
912 -When you use the TTN network, the US915 frequency bands use are:
913 -
914 -* 903.9 - SF7BW125 to SF10BW125
915 -* 904.1 - SF7BW125 to SF10BW125
916 -* 904.3 - SF7BW125 to SF10BW125
917 -* 904.5 - SF7BW125 to SF10BW125
918 -* 904.7 - SF7BW125 to SF10BW125
919 -* 904.9 - SF7BW125 to SF10BW125
920 -* 905.1 - SF7BW125 to SF10BW125
921 -* 905.3 - SF7BW125 to SF10BW125
922 -* 904.6 - SF8BW500
923 -
924 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
925 -
926 -(% class="box infomessage" %)
927 927  (((
928 -**AT+CHE=2**
756 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
929 929  )))
930 930  
931 -(% class="box infomessage" %)
932 932  (((
933 -**ATZ**
760 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
934 934  )))
935 935  
936 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
937 937  
938 938  
939 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
765 += 6.  Trouble Shooting =
940 940  
941 -[[image:image-20220606154825-4.png]]
767 +== 6.1  ​Connection problem when uploading firmware ==
942 942  
943 943  
770 +(% class="wikigeneratedid" %)
771 +(((
772 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]]
773 +)))
944 944  
945 -= 5. Trouble Shooting =
946 946  
947 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
948 948  
949 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
777 +== 6. AT Command input doesn't work ==
950 950  
779 +(((
780 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
781 +)))
951 951  
952 -== 5.2 AT Command input doesn’t work ==
953 953  
954 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
955 955  
785 += 7. ​ Order Info =
956 956  
957 -== 5.3 Device rejoin in at the second uplink packet ==
958 958  
959 -(% style="color:#4f81bd" %)**Issue describe as below:**
788 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
960 960  
961 -[[image:1654500909990-784.png]]
962 962  
791 +(% class="wikigeneratedid" %)
792 +(((
793 +
794 +)))
963 963  
964 -(% style="color:#4f81bd" %)**Cause for this issue:**
796 += 8 Packing Info =
965 965  
966 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
798 +(((
799 +
967 967  
801 +(% style="color:#037691" %)**Package Includes**:
968 968  
969 -(% style="color:#4f81bd" %)**Solution: **
970 970  
971 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
804 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
805 +* External antenna x 1
806 +)))
972 972  
973 -[[image:1654500929571-736.png]]
808 +(((
809 +
974 974  
811 +(% style="color:#037691" %)**Dimension and weight**:
975 975  
976 -= 6. ​Order Info =
977 977  
978 -
979 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
980 -
981 -
982 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
983 -
984 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
985 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
986 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
987 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
988 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
989 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
990 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
991 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
992 -
993 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
994 -
995 -* (% style="color:red" %)**4**(%%): 4000mAh battery
996 -* (% style="color:red" %)**8**(%%): 8500mAh battery
997 -
998 -= 7. Packing Info =
999 -
1000 -(((
1001 -**Package Includes**:
814 +* Size: 195 x 125 x 55 mm
815 +* Weight:   420g
1002 1002  )))
1003 1003  
1004 -* (((
1005 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
1006 -)))
1007 -
1008 1008  (((
1009 1009  
1010 -)))
1011 1011  
1012 -(((
1013 -**Dimension and weight**:
1014 -)))
1015 1015  
1016 -* (((
1017 -Device Size: cm
822 +
1018 1018  )))
1019 -* (((
1020 -Device Weight: g
1021 -)))
1022 -* (((
1023 -Package Size / pcs : cm
1024 -)))
1025 -* (((
1026 -Weight / pcs : g
1027 -)))
1028 1028  
1029 -= 8. Support =
825 += 9.  Support =
1030 1030  
1031 1031  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1032 1032  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1033 -
1034 -
1654503992078-669.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1654504596150-405.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +66.7 KB
Content
1654504683289-357.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +94.0 KB
Content
1654504778294-788.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +119.4 KB
Content
1654504881641-514.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +119.4 KB
Content
1654504907647-967.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +54.7 KB
Content
1654505570700-128.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +59.2 KB
Content
1654505857935-743.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +86.0 KB
Content
1654505874829-548.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +129.9 KB
Content
1654505905236-553.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +92.0 KB
Content
1654505925508-181.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +69.5 KB
Content
1654506634463-199.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1654506665940-119.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +423.3 KB
Content
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
image-20220606162220-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +23.0 KB
Content
image-20220606163732-6.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +16.5 KB
Content
image-20220606163915-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +94.8 KB
Content
image-20220606165544-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +11.6 KB
Content
image-20220606171726-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +171.0 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content