Last modified by Mengting Qiu on 2024/04/02 16:44

From version 12.2
edited by Xiaoling
on 2022/06/06 16:14
Change comment: There is no comment for this version
To version 62.1
edited by Xiaoling
on 2022/07/08 14:13
Change comment: Uploaded new attachment "image-20220708141352-7.jpeg", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="848" width="848"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
... ... @@ -8,758 +8,630 @@
8 8  
9 9  
10 10  
11 -= 1. Introduction =
12 12  
13 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 14  
15 -(((
16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
17 -)))
18 18  
19 -(((
20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
21 -)))
14 +**Table of Contents:**
22 22  
23 -(((
24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
25 -)))
26 26  
27 -(((
28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
29 -)))
30 30  
31 -(((
32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
33 -)))
34 34  
35 35  
36 -[[image:1654503236291-817.png]]
37 37  
21 += 1.  Introduction =
38 38  
39 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image003.png]]
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
40 40  
25 +(((
26 +
41 41  
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
42 42  
43 -*
44 -*1. ​Features
45 -* LoRaWAN 1.0.3 Class A
46 -* Ultra low power consumption
47 -* Monitor Soil Moisture
48 -* Monitor Soil Temperature
49 -* Monitor Soil Conductivity
50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
51 -* AT Commands to change parameters
52 -* Uplink on periodically
53 -* Downlink to change configure
54 -* IP66 Waterproof Enclosure
55 -* 4000mAh or 8500mAh Battery for long term use
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
56 56  
57 -1.
58 -11. Specification
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
59 59  
60 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
61 61  
62 -|**Parameter**|**Soil Moisture**|**Soil Conductivity**|**Soil Temperature**
63 -|**Range**|**0-100.00%**|(((
64 -**0-20000uS/cm**
65 -
66 -**(25℃)(0-20.0EC)**
67 -)))|**-40.00℃~85.00℃**
68 -|**Unit**|**V/V %,**|**uS/cm,**|**℃**
69 -|**Resolution**|**0.01%**|**1 uS/cm**|**0.01℃**
70 -|**Accuracy**|(((
71 -**±3% (0-53%)**
72 -
73 -**±5% (>53%)**
74 -)))|**2%FS,**|(((
75 -**-10℃~50℃:<0.3℃**
76 -
77 -**All other: <0.6℃**
36 +
78 78  )))
79 -|(((
80 -**Measure**
81 81  
82 -**Method**
83 -)))|**FDR , with temperature &EC compensate**|**Conductivity , with temperature compensate**|**RTD, and calibrate**
39 +[[image:1654503236291-817.png]]
84 84  
85 -*
86 -*1. ​Applications
87 -* Smart Agriculture
88 88  
89 -1.
90 -11. ​Firmware Change log
42 +[[image:1657245163077-232.png]]
91 91  
92 -**LSE01 v1.0:**
93 93  
94 -* Release
95 95  
96 -1. Configure LSE01 to connect to LoRaWAN network
97 -11. How it works
46 +== 1.2 ​Features ==
98 98  
99 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
100 100  
49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
50 +* Monitor Soil Moisture
51 +* Monitor Soil Temperature
52 +* Monitor Soil Conductivity
53 +* AT Commands to change parameters
54 +* Uplink on periodically
55 +* Downlink to change configure
56 +* IP66 Waterproof Enclosure
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
59 +* Micro SIM card slot for NB-IoT SIM
60 +* 8500mAh Battery for long term use
101 101  
102 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>path:#_​Using_the_AT]]to set the keys in the LSE01.
62 +== 1.3  Specification ==
103 103  
104 104  
65 +(% style="color:#037691" %)**Common DC Characteristics:**
105 105  
67 +* Supply Voltage: 2.1v ~~ 3.6v
68 +* Operating Temperature: -40 ~~ 85°C
106 106  
107 -1.
108 -11. ​Quick guide to connect to LoRaWAN server (OTAA)
70 +(% style="color:#037691" %)**NB-IoT Spec:**
109 109  
110 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
72 +* - B1 @H-FDD: 2100MHz
73 +* - B3 @H-FDD: 1800MHz
74 +* - B8 @H-FDD: 900MHz
75 +* - B5 @H-FDD: 850MHz
76 +* - B20 @H-FDD: 800MHz
77 +* - B28 @H-FDD: 700MHz
111 111  
79 +(% style="color:#037691" %)**Probe Specification:**
112 112  
113 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image003.png]]
81 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
114 114  
83 +[[image:image-20220708101224-1.png]]
115 115  
116 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
117 117  
118 118  
119 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
87 +== 1.4  Applications ==
120 120  
121 -Each LSE01 is shipped with a sticker with the default device EUI as below:
89 +* Smart Agriculture
122 122  
91 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
92 +​
123 123  
94 +== 1.5  Pin Definitions ==
124 124  
125 125  
126 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
97 +[[image:1657246476176-652.png]]
127 127  
128 128  
129 -**Add APP EUI in the application**
130 130  
101 += 2.  Use NSE01 to communicate with IoT Server =
131 131  
132 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]]
103 +== 2.1  How it works ==
133 133  
134 134  
106 +(((
107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
108 +)))
135 135  
136 -**Add APP KEY and DEV EUI**
137 137  
138 -
139 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image005.png]]
140 -
141 -|(((
142 -
111 +(((
112 +The diagram below shows the working flow in default firmware of NSE01:
143 143  )))
144 144  
145 -**Step 2**: Power on LSE01
115 +[[image:image-20220708101605-2.png]]
146 146  
147 -
148 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
149 -
150 -
151 -
152 -|(((
117 +(((
153 153  
154 154  )))
155 155  
156 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image006.png]]
157 157  
158 158  
123 +== 2.2 ​ Configure the NSE01 ==
159 159  
160 160  
126 +=== 2.2.1 Test Requirement ===
161 161  
162 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
163 163  
164 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]
129 +To use NSE01 in your city, make sure meet below requirements:
165 165  
131 +* Your local operator has already distributed a NB-IoT Network there.
132 +* The local NB-IoT network used the band that NSE01 supports.
133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
166 166  
135 +(((
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
137 +)))
167 167  
168 168  
169 -1.
170 -11. ​Uplink Payload
171 -111. MOD=0(Default Mode)
140 +[[image:1657249419225-449.png]]
172 172  
173 -LSE01 will uplink payload via LoRaWAN with below payload format: 
174 174  
175 175  
176 -Uplink payload includes in total 11 bytes.
177 -
144 +=== 2.2.2 Insert SIM card ===
178 178  
179 -|(((
180 -**Size**
146 +Insert the NB-IoT Card get from your provider.
181 181  
182 -**(bytes)**
183 -)))|**2**|**2**|**2**|**2**|**2**|**1**
184 -|**Value**|[[BAT>>path:#bat]]|(((
185 -Temperature
148 +User need to take out the NB-IoT module and insert the SIM card like below:
186 186  
187 -(Reserve, Ignore now)
188 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|(((
189 -MOD & Digital Interrupt
190 190  
191 -(Optional)
192 -)))
151 +[[image:1657249468462-536.png]]
193 193  
194 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]
195 195  
196 196  
197 -1.
198 -11.
199 -111. MOD=1(Original value)
155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
200 200  
201 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
202 -
203 -|(((
204 -**Size**
205 -
206 -**(bytes)**
207 -)))|**2**|**2**|**2**|**2**|**2**|**1**
208 -|**Value**|[[BAT>>path:#bat]]|(((
209 -Temperature
210 -
211 -(Reserve, Ignore now)
212 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|(((
213 -MOD & Digital Interrupt
214 -
215 -(Optional)
157 +(((
158 +(((
159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
216 216  )))
161 +)))
217 217  
218 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image008.png]]
219 219  
220 -1.
221 -11.
222 -111. Battery Info
164 +**Connection:**
223 223  
224 -Check the battery voltage for LSE01.
166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
225 225  
226 -Ex1: 0x0B45 = 2885mV
168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
227 227  
228 -Ex2: 0x0B49 = 2889mV
170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
229 229  
230 230  
173 +In the PC, use below serial tool settings:
231 231  
232 -1.
233 -11.
234 -111. Soil Moisture
175 +* Baud:  (% style="color:green" %)**9600**
176 +* Data bits:** (% style="color:green" %)8(%%)**
177 +* Stop bits: (% style="color:green" %)**1**
178 +* Parity:  (% style="color:green" %)**None**
179 +* Flow Control: (% style="color:green" %)**None**
235 235  
236 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
181 +(((
182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
183 +)))
237 237  
238 -For example, if the data you get from the register is 0x05 0xDC, the moisture content in the soil is
185 +[[image:image-20220708110657-3.png]]
239 239  
240 -**05DC(H) = 1500(D) /100 = 15%.**
187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
241 241  
242 242  
243 -1.
244 -11.
245 -111. Soil Temperature
246 246  
247 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
191 +=== 2.2.4 Use CoAP protocol to uplink data ===
248 248  
249 -**Example**:
193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
250 250  
251 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
252 252  
253 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
196 +**Use below commands:**
254 254  
198 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
255 255  
256 -1.
257 -11.
258 -111. Soil Conductivity (EC)
202 +For parameter description, please refer to AT command set
259 259  
260 -Obtain soluble salt concentration in soil or soluble ion concentration in liquid fertilizer or planting medium,. The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
204 +[[image:1657249793983-486.png]]
261 261  
262 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
263 263  
207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
264 264  
265 -Generally, the EC value of irrigation water is less than 800uS / cm.
209 +[[image:1657249831934-534.png]]
266 266  
267 -1.
268 -11.
269 -111. MOD
270 270  
271 -Firmware version at least v2.1 supports changing mode.
272 272  
273 -For example, bytes[10]=90
213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
274 274  
275 -mod=(bytes[10]>>7)&0x01=1.
215 +This feature is supported since firmware version v1.0.1
276 276  
277 277  
278 -Downlink Command:
218 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
220 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
279 279  
280 -If payload = 0x0A00, workmode=0
222 +[[image:1657249864775-321.png]]
281 281  
282 -If** **payload =** **0x0A01, workmode=1
283 283  
225 +[[image:1657249930215-289.png]]
284 284  
285 -1.
286 -11.
287 -111. ​Decode payload in The Things Network
288 288  
289 -While using TTN network, you can add the payload format to decode the payload.
290 290  
229 +=== 2.2.6 Use MQTT protocol to uplink data ===
291 291  
292 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.png]]
231 +This feature is supported since firmware version v110
293 293  
294 -The payload decoder function for TTN is here:
295 295  
296 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
234 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
237 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
238 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
297 297  
242 +[[image:1657249978444-674.png]]
298 298  
299 -1.
300 -11. Uplink Interval
301 301  
302 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
245 +[[image:1657249990869-686.png]]
303 303  
304 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
305 305  
306 -1.
307 -11. ​Downlink Payload
248 +(((
249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
250 +)))
308 308  
309 -By default, LSE50 prints the downlink payload to console port.
310 310  
311 -|**Downlink Control Type**|**FPort**|**Type Code**|**Downlink payload size(bytes)**
312 -|TDC (Transmit Time Interval)|Any|01|4
313 -|RESET|Any|04|2
314 -|AT+CFM|Any|05|4
315 -|INTMOD|Any|06|4
316 -|MOD|Any|0A|2
317 317  
318 -**Examples**
254 +=== 2.2.7 Use TCP protocol to uplink data ===
319 319  
256 +This feature is supported since firmware version v110
320 320  
321 -**Set TDC**
322 322  
323 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
259 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
324 324  
325 -Payload:    01 00 00 1E    TDC=30S
262 +[[image:1657250217799-140.png]]
326 326  
327 -Payload:    01 00 00 3C    TDC=60S
328 328  
265 +[[image:1657250255956-604.png]]
329 329  
330 -**Reset**
331 331  
332 -If payload = 0x04FF, it will reset the LSE01
333 333  
269 +=== 2.2.8 Change Update Interval ===
334 334  
335 -**CFM**
271 +User can use below command to change the (% style="color:green" %)**uplink interval**.
336 336  
337 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
273 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
338 338  
339 -1.
340 -11. ​Show Data in DataCake IoT Server
275 +(((
276 +(% style="color:red" %)**NOTE:**
277 +)))
341 341  
342 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
279 +(((
280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
281 +)))
343 343  
344 344  
345 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
346 346  
347 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
285 +== 2.3  Uplink Payload ==
348 348  
287 +In this mode, uplink payload includes in total 18 bytes
349 349  
350 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]]
289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
290 +|=(% style="width: 50px;" %)(((
291 +**Size(bytes)**
292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
351 351  
295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
352 352  
353 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]]
354 354  
298 +[[image:image-20220708111918-4.png]]
355 355  
356 356  
301 +The payload is ASCII string, representative same HEX:
357 357  
303 +0x72403155615900640c7817075e0a8c02f900 where:
358 358  
359 -Step 3: Create an account or log in Datacake.
305 +* Device ID: 0x 724031556159 = 724031556159
306 +* Version: 0x0064=100=1.0.0
360 360  
361 -Step 4: Search the LSE01 and add DevEUI.
308 +* BAT: 0x0c78 = 3192 mV = 3.192V
309 +* Singal: 0x17 = 23
310 +* Soil Moisture: 0x075e= 1886 = 18.86  %
311 +* Soil Temperature:0x0a8c =2700=27 °C
312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
313 +* Interrupt: 0x00 = 0
362 362  
315 +== 2.4  Payload Explanation and Sensor Interface ==
363 363  
364 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]]
365 365  
318 +=== 2.4.1  Device ID ===
366 366  
320 +By default, the Device ID equal to the last 6 bytes of IMEI.
367 367  
368 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
369 369  
324 +**Example:**
370 370  
371 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]
326 +AT+DEUI=A84041F15612
372 372  
328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
373 373  
374 374  
375 -1.
376 -11. Frequency Plans
377 377  
378 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
332 +=== 2.4.2  Version Info ===
379 379  
380 -1.
381 -11.
382 -111. EU863-870 (EU868)
334 +Specify the software version: 0x64=100, means firmware version 1.00.
383 383  
384 -Uplink:
336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
385 385  
386 -868.1 - SF7BW125 to SF12BW125
387 387  
388 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
389 389  
390 -868.5 - SF7BW125 to SF12BW125
340 +=== 2.4.3  Battery Info ===
391 391  
392 -867.1 - SF7BW125 to SF12BW125
342 +(((
343 +Check the battery voltage for LSE01.
344 +)))
393 393  
394 -867.3 - SF7BW125 to SF12BW125
346 +(((
347 +Ex1: 0x0B45 = 2885mV
348 +)))
395 395  
396 -867.5 - SF7BW125 to SF12BW125
350 +(((
351 +Ex2: 0x0B49 = 2889mV
352 +)))
397 397  
398 -867.7 - SF7BW125 to SF12BW125
399 399  
400 -867.9 - SF7BW125 to SF12BW125
401 401  
402 -868.8 - FSK
356 +=== 2.4.4  Signal Strength ===
403 403  
358 +NB-IoT Network signal Strength.
404 404  
405 -Downlink:
360 +**Ex1: 0x1d = 29**
406 406  
407 -Uplink channels 1-9 (RX1)
362 +(% style="color:blue" %)**0**(%%)  -113dBm or less
408 408  
409 -869.525 - SF9BW125 (RX2 downlink only)
364 +(% style="color:blue" %)**1**(%%)  -111dBm
410 410  
366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
411 411  
412 -1.
413 -11.
414 -111. US902-928(US915)
368 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
415 415  
416 -Used in USA, Canada and South America. Default use CHE=2
370 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
417 417  
418 -Uplink:
419 419  
420 -903.9 - SF7BW125 to SF10BW125
421 421  
422 -904.1 - SF7BW125 to SF10BW125
374 +=== 2.4. Soil Moisture ===
423 423  
424 -904.3 - SF7BW125 to SF10BW125
376 +(((
377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
378 +)))
425 425  
426 -904.5 - SF7BW125 to SF10BW125
380 +(((
381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
382 +)))
427 427  
428 -904.7 - SF7BW125 to SF10BW125
384 +(((
385 +
386 +)))
429 429  
430 -904.9 - SF7BW125 to SF10BW125
388 +(((
389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
390 +)))
431 431  
432 -905.1 - SF7BW125 to SF10BW125
433 433  
434 -905.3 - SF7BW125 to SF10BW125
435 435  
394 +=== 2.4.6  Soil Temperature ===
436 436  
437 -Downlink:
396 +(((
397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
398 +)))
438 438  
439 -923.3 - SF7BW500 to SF12BW500
400 +(((
401 +**Example**:
402 +)))
440 440  
441 -923.9 - SF7BW500 to SF12BW500
404 +(((
405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
406 +)))
442 442  
443 -924.5 - SF7BW500 to SF12BW500
408 +(((
409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
410 +)))
444 444  
445 -925.1 - SF7BW500 to SF12BW500
446 446  
447 -925.7 - SF7BW500 to SF12BW500
448 448  
449 -926.3 - SF7BW500 to SF12BW500
414 +=== 2.4.7  Soil Conductivity (EC) ===
450 450  
451 -926.9 - SF7BW500 to SF12BW500
416 +(((
417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
418 +)))
452 452  
453 -927.5 - SF7BW500 to SF12BW500
420 +(((
421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
422 +)))
454 454  
455 -923.3 - SF12BW500(RX2 downlink only)
424 +(((
425 +Generally, the EC value of irrigation water is less than 800uS / cm.
426 +)))
456 456  
428 +(((
429 +
430 +)))
457 457  
458 -1.
459 -11.
460 -111. CN470-510 (CN470)
432 +(((
433 +
434 +)))
461 461  
462 -Used in China, Default use CHE=1
436 +=== 2.4.8  Digital Interrupt ===
463 463  
464 -Uplink:
438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
465 465  
466 -486.3 - SF7BW125 to SF12BW125
440 +The command is:
467 467  
468 -486.5 - SF7BW125 to SF12BW125
442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
469 469  
470 -486.7 - SF7BW125 to SF12BW125
471 471  
472 -486.9 - SF7BW125 to SF12BW125
445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
473 473  
474 -487.1 - SF7BW125 to SF12BW125
475 475  
476 -487.3 - SF7BW125 to SF12BW125
448 +Example:
477 477  
478 -487.5 - SF7BW125 to SF12BW125
450 +0x(00): Normal uplink packet.
479 479  
480 -487.7 - SF7BW125 to SF12BW125
452 +0x(01): Interrupt Uplink Packet.
481 481  
482 482  
483 -Downlink:
484 484  
485 -506.7 - SF7BW125 to SF12BW125
456 +=== 2.4.9  ​+5V Output ===
486 486  
487 -506.9 - SF7BW125 to SF12BW125
458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
488 488  
489 -507.1 - SF7BW125 to SF12BW125
490 490  
491 -507.3 - SF7BW125 to SF12BW125
461 +The 5V output time can be controlled by AT Command.
492 492  
493 -507.5 - SF7BW125 to SF12BW125
463 +(% style="color:blue" %)**AT+5VT=1000**
494 494  
495 -507.7 - SF7BW125 to SF12BW125
465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
496 496  
497 -507.9 - SF7BW125 to SF12BW125
498 498  
499 -508.1 - SF7BW125 to SF12BW125
500 500  
501 -505.3 - SF12BW125 (RX2 downlink only)
469 +== 2.5  Downlink Payload ==
502 502  
471 +By default, NSE01 prints the downlink payload to console port.
503 503  
504 -1.
505 -11.
506 -111. AU915-928(AU915)
473 +[[image:image-20220708133731-5.png]]
507 507  
508 -Default use CHE=2
509 509  
510 -Uplink:
511 511  
512 -916.8 - SF7BW125 to SF12BW125
477 +(((
478 +(% style="color:blue" %)**Examples:**
479 +)))
513 513  
514 -917.0 - SF7BW125 to SF12BW125
481 +(((
482 +
483 +)))
515 515  
516 -917.2 - SF7BW125 to SF12BW125
485 +* (((
486 +(% style="color:blue" %)**Set TDC**
487 +)))
517 517  
518 -917.4 - SF7BW125 to SF12BW125
489 +(((
490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
491 +)))
519 519  
520 -917.6 - SF7BW125 to SF12BW125
493 +(((
494 +Payload:    01 00 00 1E    TDC=30S
495 +)))
521 521  
522 -917.8 - SF7BW125 to SF12BW125
497 +(((
498 +Payload:    01 00 00 3C    TDC=60S
499 +)))
523 523  
524 -918.0 - SF7BW125 to SF12BW125
501 +(((
502 +
503 +)))
525 525  
526 -918.2 - SF7BW125 to SF12BW125
505 +* (((
506 +(% style="color:blue" %)**Reset**
507 +)))
527 527  
509 +(((
510 +If payload = 0x04FF, it will reset the NSE01
511 +)))
528 528  
529 -Downlink:
530 530  
531 -923.3 - SF7BW500 to SF12BW500
514 +* (% style="color:blue" %)**INTMOD**
532 532  
533 -923.9 - SF7BW500 to SF12BW500
516 +Downlink Payload: 06000003, Set AT+INTMOD=3
534 534  
535 -924.5 - SF7BW500 to SF12BW500
536 536  
537 -925.1 - SF7BW500 to SF12BW500
538 538  
539 -925.7 - SF7BW500 to SF12BW500
520 +== 2. ​LED Indicator ==
540 540  
541 -926.3 - SF7BW500 to SF12BW500
522 +(((
523 +The NSE01 has an internal LED which is to show the status of different state.
542 542  
543 -926.9 - SF7BW500 to SF12BW500
544 544  
545 -927.5 - SF7BW500 to SF12BW500
526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
527 +* Then the LED will be on for 1 second means device is boot normally.
528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
529 +* For each uplink probe, LED will be on for 500ms.
530 +)))
546 546  
547 -923.3 - SF12BW500(RX2 downlink only)
548 548  
549 -1.
550 -11.
551 -111. AS920-923 & AS923-925 (AS923)
552 552  
553 -**Default Uplink channel:**
554 554  
555 -923.2 - SF7BW125 to SF10BW125
535 +== 2.7  Installation in Soil ==
556 556  
557 -923.4 - SF7BW125 to SF10BW125
537 +__**Measurement the soil surface**__
558 558  
539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
559 559  
560 -**Additional Uplink Channel**:
541 +[[image:1657259653666-883.png]]
561 561  
562 -(OTAA mode, channel added by JoinAccept message)
563 563  
564 -**AS920~~AS923 for Japan, Malaysia, Singapore**:
544 +(((
545 +
565 565  
566 -922.2 - SF7BW125 to SF10BW125
547 +(((
548 +Dig a hole with diameter > 20CM.
549 +)))
567 567  
568 -922.4 - SF7BW125 to SF10BW125
551 +(((
552 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
553 +)))
554 +)))
569 569  
570 -922.6 - SF7BW125 to SF10BW125
556 +[[image:1654506665940-119.png]]
571 571  
572 -922.8 - SF7BW125 to SF10BW125
558 +(((
559 +
560 +)))
573 573  
574 -923.0 - SF7BW125 to SF10BW125
575 575  
576 -922.0 - SF7BW125 to SF10BW125
563 +== 2. Firmware Change Log ==
577 577  
578 578  
579 -**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
566 +Download URL & Firmware Change log
580 580  
581 -923.6 - SF7BW125 to SF10BW125
568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
582 582  
583 -923.8 - SF7BW125 to SF10BW125
584 584  
585 -924.0 - SF7BW125 to SF10BW125
571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
586 586  
587 -924.2 - SF7BW125 to SF10BW125
588 588  
589 -924.4 - SF7BW125 to SF10BW125
590 590  
591 -924.6 - SF7BW125 to SF10BW125
575 +== 2. Battery Analysis ==
592 592  
577 +=== 2.9.1  ​Battery Type ===
593 593  
594 594  
595 -**Downlink:**
580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
596 596  
597 -Uplink channels 1-8 (RX1)
598 598  
599 -923.2 - SF10BW125 (RX2)
583 +The battery is designed to last for several years depends on the actually use environment and update interval.
600 600  
601 601  
602 -1.
603 -11.
604 -111. KR920-923 (KR920)
586 +The battery related documents as below:
605 605  
606 -Default channel:
588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
607 607  
608 -922.1 - SF7BW125 to SF12BW125
592 +(((
593 +[[image:image-20220708140453-6.png]]
594 +)))
609 609  
610 -922.3 - SF7BW125 to SF12BW125
611 611  
612 -922.5 - SF7BW125 to SF12BW125
613 613  
598 +2.9.2 
614 614  
615 -Uplink: (OTAA mode, channel added by JoinAccept message)
600 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
616 616  
617 -922.1 - SF7BW125 to SF12BW125
618 618  
619 -922.3 - SF7BW125 to SF12BW125
603 +Instruction to use as below:
620 620  
621 -922.5 - SF7BW125 to SF12BW125
622 622  
623 -922.7 - SF7BW125 to SF12BW125
606 +Step 1: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
624 624  
625 -922.9 - SF7BW125 to SF12BW125
608 +[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
626 626  
627 -923.1 - SF7BW125 to SF12BW125
628 628  
629 -923.3 - SF7BW125 to SF12BW125
611 +Step 2: Open it and choose
630 630  
613 +* Product Model
614 +* Uplink Interval
615 +* Working Mode
631 631  
632 -Downlink:
617 +And the Life expectation in difference case will be shown on the right.
633 633  
634 -Uplink channels 1-7(RX1)
635 635  
636 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
637 637  
621 +=== 2.9.3  ​Battery Note ===
638 638  
639 -1.
640 -11.
641 -111. IN865-867 (IN865)
642 -
643 -Uplink:
644 -
645 -865.0625 - SF7BW125 to SF12BW125
646 -
647 -865.4025 - SF7BW125 to SF12BW125
648 -
649 -865.9850 - SF7BW125 to SF12BW125
650 -
651 -
652 -Downlink:
653 -
654 -Uplink channels 1-3 (RX1)
655 -
656 -866.550 - SF10BW125 (RX2)
657 -
658 -
659 -1.
660 -11. LED Indicator
661 -
662 -The LSE01 has an internal LED which is to show the status of different state.
663 -
664 -
665 -* Blink once when device power on.
666 -* Solid ON for 5 seconds once device successful Join the network.
667 -* Blink once when device transmit a packet.
668 -
669 -1.
670 -11. Installation in Soil
671 -
672 -**Measurement the soil surface**
673 -
674 -
675 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] ​
676 -
677 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
678 -
679 -
680 -
681 -
682 -
683 -
684 -
685 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
686 -
687 -
688 -
689 -Dig a hole with diameter > 20CM.
690 -
691 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
692 -
693 -
694 -
695 -
696 -1.
697 -11. ​Firmware Change Log
698 -
699 -**Firmware download link:**
700 -
701 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
702 -
703 -
704 -**Firmware Upgrade Method:**
705 -
706 -[[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]]
707 -
708 -
709 -**V1.0.**
710 -
711 -Release
712 -
713 -
714 -
715 -1.
716 -11. ​Battery Analysis
717 -111. ​Battery Type
718 -
719 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
720 -
721 -
722 -The battery is designed to last for more than 5 years for the LSN50.
723 -
724 -
725 -The battery related documents as below:
726 -
727 -* [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
728 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]]
729 -* [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
730 -
731 -|(((
732 -JST-XH-2P connector
623 +(((
624 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
733 733  )))
734 734  
735 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
736 736  
737 737  
629 +=== 2.9.4  Replace the battery ===
738 738  
739 -1.
740 -11.
741 -111. ​Battery Note
631 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
742 742  
743 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
744 744  
745 745  
746 -1.
747 -11.
748 -111. ​Replace the battery
749 -
750 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
751 -
752 -
753 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
754 -
755 -
756 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
757 -
758 -
759 -
760 -
761 -
762 -
763 763  = 3. ​Using the AT Commands =
764 764  
765 765  == 3.1 Access AT Commands ==
... ... @@ -767,13 +767,13 @@
767 767  
768 768  LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
769 769  
770 -[[image:1654501986557-872.png]]
642 +[[image:1654501986557-872.png||height="391" width="800"]]
771 771  
772 772  
773 773  Or if you have below board, use below connection:
774 774  
775 775  
776 -[[image:1654502005655-729.png]]
648 +[[image:1654502005655-729.png||height="503" width="801"]]
777 777  
778 778  
779 779  
... ... @@ -780,10 +780,10 @@
780 780  In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
781 781  
782 782  
783 - [[image:1654502050864-459.png]]
655 + [[image:1654502050864-459.png||height="564" width="806"]]
784 784  
785 785  
786 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
658 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
787 787  
788 788  
789 789  (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
... ... @@ -895,20 +895,38 @@
895 895  
896 896  == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
897 897  
898 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]].
770 +(((
771 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
899 899  When downloading the images, choose the required image file for download. ​
773 +)))
900 900  
775 +(((
776 +
777 +)))
901 901  
779 +(((
902 902  How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
781 +)))
903 903  
783 +(((
784 +
785 +)))
904 904  
787 +(((
905 905  You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
789 +)))
906 906  
791 +(((
792 +
793 +)))
907 907  
795 +(((
908 908  For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
797 +)))
909 909  
910 910  [[image:image-20220606154726-3.png]]
911 911  
801 +
912 912  When you use the TTN network, the US915 frequency bands use are:
913 913  
914 914  * 903.9 - SF7BW125 to SF10BW125
... ... @@ -921,37 +921,47 @@
921 921  * 905.3 - SF7BW125 to SF10BW125
922 922  * 904.6 - SF8BW500
923 923  
814 +(((
924 924  Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
925 925  
926 -(% class="box infomessage" %)
927 -(((
928 -**AT+CHE=2**
817 +* (% style="color:#037691" %)**AT+CHE=2**
818 +* (% style="color:#037691" %)**ATZ**
929 929  )))
930 930  
931 -(% class="box infomessage" %)
932 932  (((
933 -**ATZ**
934 -)))
822 +
935 935  
936 936  to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
825 +)))
937 937  
827 +(((
828 +
829 +)))
938 938  
831 +(((
939 939  The **AU915** band is similar. Below are the AU915 Uplink Channels.
833 +)))
940 940  
941 941  [[image:image-20220606154825-4.png]]
942 942  
943 943  
838 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
944 944  
840 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
841 +
842 +
945 945  = 5. Trouble Shooting =
946 946  
947 -== 5.1 ​Why I cant join TTN in US915 / AU915 bands? ==
845 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
948 948  
949 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
847 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
950 950  
951 951  
952 -== 5.2 AT Command input doesnt work ==
850 +== 5.2 AT Command input doesn't work ==
953 953  
954 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
852 +(((
853 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
854 +)))
955 955  
956 956  
957 957  == 5.3 Device rejoin in at the second uplink packet ==
... ... @@ -963,7 +963,9 @@
963 963  
964 964  (% style="color:#4f81bd" %)**Cause for this issue:**
965 965  
866 +(((
966 966  The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
868 +)))
967 967  
968 968  
969 969  (% style="color:#4f81bd" %)**Solution: **
... ... @@ -970,7 +970,7 @@
970 970  
971 971  All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
972 972  
973 -[[image:1654500929571-736.png]]
875 +[[image:1654500929571-736.png||height="458" width="832"]]
974 974  
975 975  
976 976  = 6. ​Order Info =
... ... @@ -995,10 +995,17 @@
995 995  * (% style="color:red" %)**4**(%%): 4000mAh battery
996 996  * (% style="color:red" %)**8**(%%): 8500mAh battery
997 997  
900 +(% class="wikigeneratedid" %)
901 +(((
902 +
903 +)))
904 +
998 998  = 7. Packing Info =
999 999  
1000 1000  (((
1001 -**Package Includes**:
908 +
909 +
910 +(% style="color:#037691" %)**Package Includes**:
1002 1002  )))
1003 1003  
1004 1004  * (((
... ... @@ -1007,10 +1007,8 @@
1007 1007  
1008 1008  (((
1009 1009  
1010 -)))
1011 1011  
1012 -(((
1013 -**Dimension and weight**:
920 +(% style="color:#037691" %)**Dimension and weight**:
1014 1014  )))
1015 1015  
1016 1016  * (((
... ... @@ -1024,6 +1024,8 @@
1024 1024  )))
1025 1025  * (((
1026 1026  Weight / pcs : g
934 +
935 +
1027 1027  )))
1028 1028  
1029 1029  = 8. Support =
... ... @@ -1030,5 +1030,3 @@
1030 1030  
1031 1031  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1032 1032  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1033 -
1034 -
1654503265560-120.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1654503992078-669.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1654504596150-405.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +66.7 KB
Content
1654504683289-357.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +94.0 KB
Content
1654504778294-788.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +119.4 KB
Content
1654504881641-514.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +119.4 KB
Content
1654504907647-967.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +54.7 KB
Content
1654505570700-128.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +59.2 KB
Content
1654505857935-743.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +86.0 KB
Content
1654505874829-548.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +129.9 KB
Content
1654505905236-553.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +92.0 KB
Content
1654505925508-181.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +69.5 KB
Content
1654506634463-199.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1654506665940-119.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +423.3 KB
Content
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
image-20220606162220-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +23.0 KB
Content
image-20220606163732-6.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +16.5 KB
Content
image-20220606163915-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +94.8 KB
Content
image-20220606165544-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +11.6 KB
Content
image-20220606171726-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +171.0 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content