Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220606151504-2.jpeg||height="848" width="848"]]
3
4 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image001.png]]
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 1. Introduction
24 11. ​What is LoRaWAN Soil Moisture & EC Sensor
25
26 The Dragino LSE01 is a **LoRaWAN Soil Moisture & EC Sensor** for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
27
28
29 It detects **Soil Moisture**, **Soil Temperature** and **Soil Conductivity**, and uploads the value via wireless to LoRaWAN IoT Server.
30
31
32 The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
33
34
35 LES01 is powered by **4000mA or 8500mAh Li-SOCI2 battery**, It is designed for long term use up to 10 years.
36
37
38 Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
39
40
41 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png]]
42
43
44 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image003.png]]
45
46
47
48 *
49 *1. ​Features
50 * LoRaWAN 1.0.3 Class A
51 * Ultra low power consumption
52 * Monitor Soil Moisture
53 * Monitor Soil Temperature
54 * Monitor Soil Conductivity
55 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
56 * AT Commands to change parameters
57 * Uplink on periodically
58 * Downlink to change configure
59 * IP66 Waterproof Enclosure
60 * 4000mAh or 8500mAh Battery for long term use
61
62 1.
63 11. Specification
64
65 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
66
67 |**Parameter**|**Soil Moisture**|**Soil Conductivity**|**Soil Temperature**
68 |**Range**|**0-100.00%**|(((
69 **0-20000uS/cm**
70
71 **(25℃)(0-20.0EC)**
72 )))|**-40.00℃~85.00℃**
73 |**Unit**|**V/V %,**|**uS/cm,**|**℃**
74 |**Resolution**|**0.01%**|**1 uS/cm**|**0.01℃**
75 |**Accuracy**|(((
76 **±3% (0-53%)**
77
78 **±5% (>53%)**
79 )))|**2%FS,**|(((
80 **-10℃~50℃:<0.3℃**
81
82 **All other: <0.6℃**
83 )))
84 |(((
85 **Measure**
86
87 **Method**
88 )))|**FDR , with temperature &EC compensate**|**Conductivity , with temperature compensate**|**RTD, and calibrate**
89
90 *
91 *1. ​Applications
92 * Smart Agriculture
93
94 1.
95 11. ​Firmware Change log
96
97 **LSE01 v1.0:**
98
99 * Release
100
101 1. Configure LSE01 to connect to LoRaWAN network
102 11. How it works
103
104 The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
105
106
107 In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>path:#_​Using_the_AT]]to set the keys in the LSE01.
108
109
110
111
112 1.
113 11. ​Quick guide to connect to LoRaWAN server (OTAA)
114
115 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
116
117
118 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image003.png]]
119
120
121 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
122
123
124 **Step 1**: Create a device in TTN with the OTAA keys from LSE01.
125
126 Each LSE01 is shipped with a sticker with the default device EUI as below:
127
128
129
130
131 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
132
133
134 **Add APP EUI in the application**
135
136
137 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]]
138
139
140
141 **Add APP KEY and DEV EUI**
142
143
144 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image005.png]]
145
146 |(((
147
148 )))
149
150
151 **Step 2**: Power on LSE01
152
153
154 Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
155
156
157
158 |(((
159
160 )))
161
162 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image006.png]]
163
164
165
166
167
168 **Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
169
170 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]
171
172
173
174
175 1.
176 11. ​Uplink Payload
177 111. MOD=0(Default Mode)
178
179 LSE01 will uplink payload via LoRaWAN with below payload format: 
180
181
182 Uplink payload includes in total 11 bytes.
183
184
185 |(((
186 **Size**
187
188 **(bytes)**
189 )))|**2**|**2**|**2**|**2**|**2**|**1**
190 |**Value**|[[BAT>>path:#bat]]|(((
191 Temperature
192
193 (Reserve, Ignore now)
194 )))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|(((
195 MOD & Digital Interrupt
196
197 (Optional)
198 )))
199
200 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]
201
202
203 1.
204 11.
205 111. MOD=1(Original value)
206
207 This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
208
209 |(((
210 **Size**
211
212 **(bytes)**
213 )))|**2**|**2**|**2**|**2**|**2**|**1**
214 |**Value**|[[BAT>>path:#bat]]|(((
215 Temperature
216
217 (Reserve, Ignore now)
218 )))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|(((
219 MOD & Digital Interrupt
220
221 (Optional)
222 )))
223
224 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image008.png]]
225
226 1.
227 11.
228 111. Battery Info
229
230 Check the battery voltage for LSE01.
231
232 Ex1: 0x0B45 = 2885mV
233
234 Ex2: 0x0B49 = 2889mV
235
236
237
238 1.
239 11.
240 111. Soil Moisture
241
242 Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
243
244 For example, if the data you get from the register is 0x05 0xDC, the moisture content in the soil is
245
246 **05DC(H) = 1500(D) /100 = 15%.**
247
248
249 1.
250 11.
251 111. Soil Temperature
252
253 Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
254
255 **Example**:
256
257 If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
258
259 If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
260
261
262 1.
263 11.
264 111. Soil Conductivity (EC)
265
266 Obtain soluble salt concentration in soil or soluble ion concentration in liquid fertilizer or planting medium,. The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
267
268 For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
269
270
271 Generally, the EC value of irrigation water is less than 800uS / cm.
272
273 1.
274 11.
275 111. MOD
276
277 Firmware version at least v2.1 supports changing mode.
278
279 For example, bytes[10]=90
280
281 mod=(bytes[10]>>7)&0x01=1.
282
283
284 Downlink Command:
285
286 If payload = 0x0A00, workmode=0
287
288 If** **payload =** **0x0A01, workmode=1
289
290
291 1.
292 11.
293 111. ​Decode payload in The Things Network
294
295 While using TTN network, you can add the payload format to decode the payload.
296
297
298 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.png]]
299
300 The payload decoder function for TTN is here:
301
302 LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
303
304
305 1.
306 11. Uplink Interval
307
308 The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
309
310 [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
311
312 1.
313 11. ​Downlink Payload
314
315 By default, LSE50 prints the downlink payload to console port.
316
317 |**Downlink Control Type**|**FPort**|**Type Code**|**Downlink payload size(bytes)**
318 |TDC (Transmit Time Interval)|Any|01|4
319 |RESET|Any|04|2
320 |AT+CFM|Any|05|4
321 |INTMOD|Any|06|4
322 |MOD|Any|0A|2
323
324 **Examples**
325
326
327 **Set TDC**
328
329 If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
330
331 Payload:    01 00 00 1E    TDC=30S
332
333 Payload:    01 00 00 3C    TDC=60S
334
335
336 **Reset**
337
338 If payload = 0x04FF, it will reset the LSE01
339
340
341 **CFM**
342
343 Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
344
345 1.
346 11. ​Show Data in DataCake IoT Server
347
348 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
349
350
351 **Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
352
353 **Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
354
355
356 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]]
357
358
359 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]]
360
361
362
363
364
365 Step 3: Create an account or log in Datacake.
366
367 Step 4: Search the LSE01 and add DevEUI.
368
369
370 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]]
371
372
373
374 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
375
376
377 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]
378
379
380
381 1.
382 11. Frequency Plans
383
384 The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
385
386 1.
387 11.
388 111. EU863-870 (EU868)
389
390 Uplink:
391
392 868.1 - SF7BW125 to SF12BW125
393
394 868.3 - SF7BW125 to SF12BW125 and SF7BW250
395
396 868.5 - SF7BW125 to SF12BW125
397
398 867.1 - SF7BW125 to SF12BW125
399
400 867.3 - SF7BW125 to SF12BW125
401
402 867.5 - SF7BW125 to SF12BW125
403
404 867.7 - SF7BW125 to SF12BW125
405
406 867.9 - SF7BW125 to SF12BW125
407
408 868.8 - FSK
409
410
411 Downlink:
412
413 Uplink channels 1-9 (RX1)
414
415 869.525 - SF9BW125 (RX2 downlink only)
416
417
418 1.
419 11.
420 111. US902-928(US915)
421
422 Used in USA, Canada and South America. Default use CHE=2
423
424 Uplink:
425
426 903.9 - SF7BW125 to SF10BW125
427
428 904.1 - SF7BW125 to SF10BW125
429
430 904.3 - SF7BW125 to SF10BW125
431
432 904.5 - SF7BW125 to SF10BW125
433
434 904.7 - SF7BW125 to SF10BW125
435
436 904.9 - SF7BW125 to SF10BW125
437
438 905.1 - SF7BW125 to SF10BW125
439
440 905.3 - SF7BW125 to SF10BW125
441
442
443 Downlink:
444
445 923.3 - SF7BW500 to SF12BW500
446
447 923.9 - SF7BW500 to SF12BW500
448
449 924.5 - SF7BW500 to SF12BW500
450
451 925.1 - SF7BW500 to SF12BW500
452
453 925.7 - SF7BW500 to SF12BW500
454
455 926.3 - SF7BW500 to SF12BW500
456
457 926.9 - SF7BW500 to SF12BW500
458
459 927.5 - SF7BW500 to SF12BW500
460
461 923.3 - SF12BW500(RX2 downlink only)
462
463
464 1.
465 11.
466 111. CN470-510 (CN470)
467
468 Used in China, Default use CHE=1
469
470 Uplink:
471
472 486.3 - SF7BW125 to SF12BW125
473
474 486.5 - SF7BW125 to SF12BW125
475
476 486.7 - SF7BW125 to SF12BW125
477
478 486.9 - SF7BW125 to SF12BW125
479
480 487.1 - SF7BW125 to SF12BW125
481
482 487.3 - SF7BW125 to SF12BW125
483
484 487.5 - SF7BW125 to SF12BW125
485
486 487.7 - SF7BW125 to SF12BW125
487
488
489 Downlink:
490
491 506.7 - SF7BW125 to SF12BW125
492
493 506.9 - SF7BW125 to SF12BW125
494
495 507.1 - SF7BW125 to SF12BW125
496
497 507.3 - SF7BW125 to SF12BW125
498
499 507.5 - SF7BW125 to SF12BW125
500
501 507.7 - SF7BW125 to SF12BW125
502
503 507.9 - SF7BW125 to SF12BW125
504
505 508.1 - SF7BW125 to SF12BW125
506
507 505.3 - SF12BW125 (RX2 downlink only)
508
509
510 1.
511 11.
512 111. AU915-928(AU915)
513
514 Default use CHE=2
515
516 Uplink:
517
518 916.8 - SF7BW125 to SF12BW125
519
520 917.0 - SF7BW125 to SF12BW125
521
522 917.2 - SF7BW125 to SF12BW125
523
524 917.4 - SF7BW125 to SF12BW125
525
526 917.6 - SF7BW125 to SF12BW125
527
528 917.8 - SF7BW125 to SF12BW125
529
530 918.0 - SF7BW125 to SF12BW125
531
532 918.2 - SF7BW125 to SF12BW125
533
534
535 Downlink:
536
537 923.3 - SF7BW500 to SF12BW500
538
539 923.9 - SF7BW500 to SF12BW500
540
541 924.5 - SF7BW500 to SF12BW500
542
543 925.1 - SF7BW500 to SF12BW500
544
545 925.7 - SF7BW500 to SF12BW500
546
547 926.3 - SF7BW500 to SF12BW500
548
549 926.9 - SF7BW500 to SF12BW500
550
551 927.5 - SF7BW500 to SF12BW500
552
553 923.3 - SF12BW500(RX2 downlink only)
554
555 1.
556 11.
557 111. AS920-923 & AS923-925 (AS923)
558
559 **Default Uplink channel:**
560
561 923.2 - SF7BW125 to SF10BW125
562
563 923.4 - SF7BW125 to SF10BW125
564
565
566 **Additional Uplink Channel**:
567
568 (OTAA mode, channel added by JoinAccept message)
569
570 **AS920~~AS923 for Japan, Malaysia, Singapore**:
571
572 922.2 - SF7BW125 to SF10BW125
573
574 922.4 - SF7BW125 to SF10BW125
575
576 922.6 - SF7BW125 to SF10BW125
577
578 922.8 - SF7BW125 to SF10BW125
579
580 923.0 - SF7BW125 to SF10BW125
581
582 922.0 - SF7BW125 to SF10BW125
583
584
585 **AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
586
587 923.6 - SF7BW125 to SF10BW125
588
589 923.8 - SF7BW125 to SF10BW125
590
591 924.0 - SF7BW125 to SF10BW125
592
593 924.2 - SF7BW125 to SF10BW125
594
595 924.4 - SF7BW125 to SF10BW125
596
597 924.6 - SF7BW125 to SF10BW125
598
599
600
601 **Downlink:**
602
603 Uplink channels 1-8 (RX1)
604
605 923.2 - SF10BW125 (RX2)
606
607
608 1.
609 11.
610 111. KR920-923 (KR920)
611
612 Default channel:
613
614 922.1 - SF7BW125 to SF12BW125
615
616 922.3 - SF7BW125 to SF12BW125
617
618 922.5 - SF7BW125 to SF12BW125
619
620
621 Uplink: (OTAA mode, channel added by JoinAccept message)
622
623 922.1 - SF7BW125 to SF12BW125
624
625 922.3 - SF7BW125 to SF12BW125
626
627 922.5 - SF7BW125 to SF12BW125
628
629 922.7 - SF7BW125 to SF12BW125
630
631 922.9 - SF7BW125 to SF12BW125
632
633 923.1 - SF7BW125 to SF12BW125
634
635 923.3 - SF7BW125 to SF12BW125
636
637
638 Downlink:
639
640 Uplink channels 1-7(RX1)
641
642 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
643
644
645 1.
646 11.
647 111. IN865-867 (IN865)
648
649 Uplink:
650
651 865.0625 - SF7BW125 to SF12BW125
652
653 865.4025 - SF7BW125 to SF12BW125
654
655 865.9850 - SF7BW125 to SF12BW125
656
657
658 Downlink:
659
660 Uplink channels 1-3 (RX1)
661
662 866.550 - SF10BW125 (RX2)
663
664
665 1.
666 11. LED Indicator
667
668 The LSE01 has an internal LED which is to show the status of different state.
669
670
671 * Blink once when device power on.
672 * Solid ON for 5 seconds once device successful Join the network.
673 * Blink once when device transmit a packet.
674
675 1.
676 11. Installation in Soil
677
678 **Measurement the soil surface**
679
680
681 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] ​
682
683 Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
684
685
686
687
688
689
690
691 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
692
693
694
695 Dig a hole with diameter > 20CM.
696
697 Horizontal insert the probe to the soil and fill the hole for long term measurement.
698
699
700
701
702 1.
703 11. ​Firmware Change Log
704
705 **Firmware download link:**
706
707 [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
708
709
710 **Firmware Upgrade Method:**
711
712 [[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]]
713
714
715 **V1.0.**
716
717 Release
718
719
720
721 1.
722 11. ​Battery Analysis
723 111. ​Battery Type
724
725 The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
726
727
728 The battery is designed to last for more than 5 years for the LSN50.
729
730
731 The battery related documents as below:
732
733 * [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
734 * [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]]
735 * [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
736
737 |(((
738 JST-XH-2P connector
739 )))
740
741 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
742
743
744
745 1.
746 11.
747 111. ​Battery Note
748
749 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
750
751
752 1.
753 11.
754 111. ​Replace the battery
755
756 If Battery is lower than 2.7v, user should replace the battery of LSE01.
757
758
759 You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
760
761
762 The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
763
764
765
766
767
768
769 1. ​Using the AT Commands
770 11. ​Access AT Commands
771
772 LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
773
774 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
775
776
777 Or if you have below board, use below connection:
778
779
780 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.png]]
781
782
783
784 In the PC, you need to set the serial baud rate to **9600** to access the serial console for LSE01. LSE01 will output system info once power on as below:
785
786
787 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
788
789
790 Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
791
792
793 AT+<CMD>?        : Help on <CMD>
794
795 AT+<CMD>         : Run <CMD>
796
797 AT+<CMD>=<value> : Set the value
798
799 AT+<CMD>=?       : Get the value
800
801
802 **General Commands**      
803
804 AT                    : Attention       
805
806 AT?                            : Short Help     
807
808 ATZ                            : MCU Reset    
809
810 AT+TDC           : Application Data Transmission Interval 
811
812
813 **Keys, IDs and EUIs management**
814
815 AT+APPEUI              : Application EUI      
816
817 AT+APPKEY              : Application Key     
818
819 AT+APPSKEY            : Application Session Key
820
821 AT+DADDR              : Device Address     
822
823 AT+DEUI                   : Device EUI     
824
825 AT+NWKID               : Network ID (You can enter this command change only after successful network connection) 
826
827 AT+NWKSKEY          : Network Session Key Joining and sending date on LoRa network  
828
829 AT+CFM          : Confirm Mode       
830
831 AT+CFS                     : Confirm Status       
832
833 AT+JOIN          : Join LoRa? Network       
834
835 AT+NJM          : LoRa? Network Join Mode    
836
837 AT+NJS                     : LoRa? Network Join Status    
838
839 AT+RECV                  : Print Last Received Data in Raw Format
840
841 AT+RECVB                : Print Last Received Data in Binary Format      
842
843 AT+SEND                  : Send Text Data      
844
845 AT+SENB                  : Send Hexadecimal Data
846
847
848 **LoRa Network Management**
849
850 AT+ADR          : Adaptive Rate
851
852 AT+CLASS                : LoRa Class(Currently only support class A
853
854 AT+DCS           : Duty Cycle Setting 
855
856 AT+DR                      : Data Rate (Can Only be Modified after ADR=0)     
857
858 AT+FCD           : Frame Counter Downlink       
859
860 AT+FCU           : Frame Counter Uplink   
861
862 AT+JN1DL                : Join Accept Delay1
863
864 AT+JN2DL                : Join Accept Delay2
865
866 AT+PNM                   : Public Network Mode   
867
868 AT+RX1DL                : Receive Delay1      
869
870 AT+RX2DL                : Receive Delay2      
871
872 AT+RX2DR               : Rx2 Window Data Rate 
873
874 AT+RX2FQ               : Rx2 Window Frequency
875
876 AT+TXP           : Transmit Power
877
878 AT+ MOD                 : Set work mode
879
880
881 **Information** 
882
883 AT+RSSI           : RSSI of the Last Received Packet   
884
885 AT+SNR           : SNR of the Last Received Packet   
886
887 AT+VER           : Image Version and Frequency Band       
888
889 AT+FDR           : Factory Data Reset
890
891 AT+PORT                  : Application Port    
892
893 AT+CHS           : Get or Set Frequency (Unit: Hz) for Single Channel Mode
894
895 AT+CHE                   : Get or Set eight channels mode, Only for US915, AU915, CN470
896
897
898
899
900
901
902
903 = ​4. FAQ =
904
905 == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
906
907 You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]].
908 When downloading the images, choose the required image file for download. ​
909
910
911
912 How to set up LSE01 to work in 8 channel mode
913
914 By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
915
916
917 You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
918
919
920
921 For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
922
923
924 (% border="1" cellspacing="10" style="background-color:#f7faff" %)
925 |=(% style="width: 56px;" %)CHE|=(% colspan="9" style="width: 1433px;" %)US915 Uplink Channels(125KHz,4/5,Unit:MHz,CHS=0)
926 |(% style="width:56px" %)0|(% colspan="9" style="width:1433px" %)ENABLE Channel 0-63
927 |(% style="width:56px" %)1|(% style="width:63px" %)902.3|(% style="width:70px" %)902.5|(% style="width:68px" %)902.7|(% style="width:70px" %)902.9|(% style="width:464px" %)903.1|903.3|903.5|903.7|Channel 0-7
928 |(% style="width:56px" %)2|(% style="width:63px" %)903.9|(% style="width:70px" %)904.1|(% style="width:68px" %)904.3|(% style="width:70px" %)904.5|(% style="width:464px" %)904.7|904.9|905.1|905.3|Channel 8-15
929 |(% style="width:56px" %)3|(% style="width:63px" %)905.5|(% style="width:70px" %)905.7|(% style="width:68px" %)905.9|(% style="width:70px" %)906.1|(% style="width:464px" %)906.3|906.5|906.7|906.9|Channel 16-23
930 |(% style="width:56px" %)4|(% style="width:63px" %)907.1|(% style="width:70px" %)907.3|(% style="width:68px" %)907.5|(% style="width:70px" %)907.7|(% style="width:464px" %)907.9|908.1|908.3|908.5|Channel 24-31
931 |(% style="width:56px" %)5|(% style="width:63px" %)908.7|(% style="width:70px" %)908.9|(% style="width:68px" %)909.1|(% style="width:70px" %)909.3|(% style="width:464px" %)909.5|909.7|909.9|910.1|Channel 32-39
932 |(% style="width:56px" %)6|(% style="width:63px" %)910.3|(% style="width:70px" %)910.5|(% style="width:68px" %)910.7|(% style="width:70px" %)910.9|(% style="width:464px" %)911.1|911.3|911.5|911.7|Channel 40-47
933 |(% style="width:56px" %)7|(% style="width:63px" %)911.9|(% style="width:70px" %)912.1|(% style="width:68px" %)912.3|(% style="width:70px" %)912.5|(% style="width:464px" %)912.7|912.9|913.1|913.3|Channel 48-55
934 |(% style="width:56px" %)8|(% style="width:63px" %)913.5|(% style="width:70px" %)913.7|(% style="width:68px" %)913.9|(% style="width:70px" %)914.1|(% style="width:464px" %)914.3|914.5|914.7|914.9|Channel 56-63
935 |(% colspan="10" %)Channels(500KHz,4/5,Unit:MHz,CHS=0)
936 |(% style="width:56px" %) |(% style="width:63px" %)903|(% style="width:70px" %)904.6|(% style="width:68px" %)906.2|(% style="width:70px" %)907.8|(% style="width:464px" %)909.4|911|912.6|914.2|Channel 64-71
937
938 When you use the TTN network, the US915 frequency bands use are:
939
940 * 903.9 - SF7BW125 to SF10BW125
941 * 904.1 - SF7BW125 to SF10BW125
942 * 904.3 - SF7BW125 to SF10BW125
943 * 904.5 - SF7BW125 to SF10BW125
944 * 904.7 - SF7BW125 to SF10BW125
945 * 904.9 - SF7BW125 to SF10BW125
946 * 905.1 - SF7BW125 to SF10BW125
947 * 905.3 - SF7BW125 to SF10BW125
948 * 904.6 - SF8BW500
949
950 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
951
952 **AT+CHE=2**
953
954 **ATZ**
955
956 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
957
958
959 The **AU915** band is similar. Below are the AU915 Uplink Channels.
960
961
962 |CHE|(% colspan="9" %)AU915 Uplink Channels(125KHz,4/5,Unit:MHz,CHS=0)
963 |0|(% colspan="9" %)ENABLE Channel 0-63
964 |1|915.2|915.4|915.6|915.8|916|916.2|916.4|916.6|Channel 0-7
965 |2|916.8|917|917.2|917.4|917.6|917.8|918|918.2|Channel 8-15
966 |3|918.4|918.6|918.8|919|919.2|919.4|919.6|919.8|Channel 16-23
967 |4|920|920.2|920.4|920.6|920.8|921|921.2|921.4|Channel 24-31
968 |5|921.6|921.8|922|922.2|922.4|922.6|922.8|923|Channel 32-39
969 |6|923.2|923.4|923.6|923.8|924|924.2|924.4|924.6|Channel 40-47
970 |7|924.8|925|925.2|925.4|925.6|925.8|926|926.2|Channel 48-55
971 |8|926.4|926.6|926.8|927|927.2|927.4|927.6|927.8|Channel 56-63
972 |(% colspan="10" %)Channels(500KHz,4/5,Unit:MHz,CHS=0)
973 | |915.9|917.5|919.1|920.7|922.3|923.9|925.5|927.1|Channel 64-71
974
975
976
977 = 5. Trouble Shooting =
978
979
980 == 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
981
982 It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
983
984
985 == 5.2 AT Command input doesn’t work ==
986
987 In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
988
989
990 == 5.3 Device rejoin in at the second uplink packet ==
991
992 (% style="color:#4f81bd" %)**Issue describe as below:**
993
994 [[image:1654500909990-784.png]]
995
996
997 (% style="color:#4f81bd" %)**Cause for this issue:**
998
999 The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1000
1001
1002 (% style="color:#4f81bd" %)**Solution: **
1003
1004 All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1005
1006 [[image:1654500929571-736.png]]
1007
1008
1009 = 6. ​Order Info =
1010
1011
1012 Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1013
1014
1015 (% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1016
1017 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1018 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1019 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1020 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1021 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1022 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1023 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1024 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1025
1026 (% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1027
1028 * (% style="color:red" %)**4**(%%): 4000mAh battery
1029 * (% style="color:red" %)**8**(%%): 8500mAh battery
1030
1031 = 7. Packing Info =
1032
1033 (((
1034 **Package Includes**:
1035 )))
1036
1037 * (((
1038 LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
1039 )))
1040
1041 (((
1042
1043 )))
1044
1045 (((
1046 **Dimension and weight**:
1047 )))
1048
1049 * (((
1050 Device Size: cm
1051 )))
1052 * (((
1053 Device Weight: g
1054 )))
1055 * (((
1056 Package Size / pcs : cm
1057 )))
1058 * (((
1059 Weight / pcs : g
1060 )))
1061
1062 = 8. Support =
1063
1064 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1065 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1066
1067
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0