Version 57.6 by Xiaoling on 2022/07/08 11:52

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3
4
5
6
7
8
9
10
11
12
13
14 **Table of Contents:**
15
16
17
18
19
20
21 = 1.  Introduction =
22
23 == 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24
25 (((
26
27
28 Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
29
30 It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31
32 The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33
34 NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35
36
37 )))
38
39 [[image:1654503236291-817.png]]
40
41
42 [[image:1657245163077-232.png]]
43
44
45
46 == 1.2 ​Features ==
47
48
49 * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
50 * Monitor Soil Moisture
51 * Monitor Soil Temperature
52 * Monitor Soil Conductivity
53 * AT Commands to change parameters
54 * Uplink on periodically
55 * Downlink to change configure
56 * IP66 Waterproof Enclosure
57 * Ultra-Low Power consumption
58 * AT Commands to change parameters
59 * Micro SIM card slot for NB-IoT SIM
60 * 8500mAh Battery for long term use
61
62 == 1.3  Specification ==
63
64
65 (% style="color:#037691" %)**Common DC Characteristics:**
66
67 * Supply Voltage: 2.1v ~~ 3.6v
68 * Operating Temperature: -40 ~~ 85°C
69
70 (% style="color:#037691" %)**NB-IoT Spec:**
71
72 * - B1 @H-FDD: 2100MHz
73 * - B3 @H-FDD: 1800MHz
74 * - B8 @H-FDD: 900MHz
75 * - B5 @H-FDD: 850MHz
76 * - B20 @H-FDD: 800MHz
77 * - B28 @H-FDD: 700MHz
78
79 (% style="color:#037691" %)**Probe Specification:**
80
81 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
82
83 [[image:image-20220708101224-1.png]]
84
85
86
87 == ​1.4  Applications ==
88
89 * Smart Agriculture
90
91 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
92
93
94 == 1.5  Pin Definitions ==
95
96
97 [[image:1657246476176-652.png]]
98
99
100
101 = 2.  Use NSE01 to communicate with IoT Server =
102
103 == 2.1  How it works ==
104
105
106 (((
107 The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
108 )))
109
110
111 (((
112 The diagram below shows the working flow in default firmware of NSE01:
113 )))
114
115 [[image:image-20220708101605-2.png]]
116
117 (((
118
119 )))
120
121
122
123 == 2.2 ​ Configure the NSE01 ==
124
125
126 === 2.2.1 Test Requirement ===
127
128
129 To use NSE01 in your city, make sure meet below requirements:
130
131 * Your local operator has already distributed a NB-IoT Network there.
132 * The local NB-IoT network used the band that NSE01 supports.
133 * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
134
135 (((
136 Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
137 )))
138
139
140 [[image:1657249419225-449.png]]
141
142
143
144 === 2.2.2 Insert SIM card ===
145
146 Insert the NB-IoT Card get from your provider.
147
148 User need to take out the NB-IoT module and insert the SIM card like below:
149
150
151 [[image:1657249468462-536.png]]
152
153
154
155 === 2.2.3 Connect USB – TTL to NSE01 to configure it ===
156
157 (((
158 (((
159 User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
160 )))
161 )))
162
163
164 **Connection:**
165
166 (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
167
168 (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
169
170 (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
171
172
173 In the PC, use below serial tool settings:
174
175 * Baud:  (% style="color:green" %)**9600**
176 * Data bits:** (% style="color:green" %)8(%%)**
177 * Stop bits: (% style="color:green" %)**1**
178 * Parity:  (% style="color:green" %)**None**
179 * Flow Control: (% style="color:green" %)**None**
180
181 (((
182 Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
183 )))
184
185 [[image:image-20220708110657-3.png]]
186
187 (% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
188
189
190
191 === 2.2.4 Use CoAP protocol to uplink data ===
192
193 (% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
194
195
196 **Use below commands:**
197
198 * (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 * (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
201
202
203 For parameter description, please refer to AT command set
204
205 [[image:1657249793983-486.png]]
206
207
208 After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
209
210 [[image:1657249831934-534.png]]
211
212
213
214 === 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
215
216 This feature is supported since firmware version v1.0.1
217
218
219 * (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
220 * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
221 * (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
222
223 [[image:1657249864775-321.png]]
224
225
226 [[image:1657249930215-289.png]]
227
228
229
230 === 2.2.6 Use MQTT protocol to uplink data ===
231
232 This feature is supported since firmware version v110
233
234
235 * (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
236 * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
237 * (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
238 * (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
239 * (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
240 * (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
241 * (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
242
243 [[image:1657249978444-674.png]]
244
245
246 [[image:1657249990869-686.png]]
247
248
249 (((
250 MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
251 )))
252
253
254
255 === 2.2.7 Use TCP protocol to uplink data ===
256
257 This feature is supported since firmware version v110
258
259
260 * (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
261 * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
262
263 [[image:1657250217799-140.png]]
264
265
266 [[image:1657250255956-604.png]]
267
268
269
270 === 2.2.8 Change Update Interval ===
271
272 User can use below command to change the (% style="color:green" %)**uplink interval**.
273
274 * (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
275
276 (((
277 (% style="color:red" %)**NOTE:**
278 )))
279
280 (((
281 (% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
282 )))
283
284
285
286 == 2.3  Uplink Payload ==
287
288 In this mode, uplink payload includes in total 18 bytes
289
290 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
291 |=(% style="width: 50px;" %)(((
292 **Size(bytes)**
293 )))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
294 |(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
295
296 If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
297
298
299 [[image:image-20220708111918-4.png]]
300
301
302 The payload is ASCII string, representative same HEX:
303
304 0x72403155615900640c7817075e0a8c02f900 where:
305
306 * Device ID: 0x 724031556159 = 724031556159
307 * Version: 0x0064=100=1.0.0
308
309 * BAT: 0x0c78 = 3192 mV = 3.192V
310 * Singal: 0x17 = 23
311 * Soil Moisture: 0x075e= 1886 = 18.86  %
312 * Soil Temperature:0x0a8c =2700=27 °C
313 * Soil Conductivity(EC) = 0x02f9 =761 uS /cm
314 * Interrupt: 0x00 = 0
315
316
317
318
319 == 2.4  Payload Explanation and Sensor Interface ==
320
321 === 2.4.1  Device ID ===
322
323 By default, the Device ID equal to the last 6 bytes of IMEI.
324
325 User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
326
327 **Example:**
328
329 AT+DEUI=A84041F15612
330
331 The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
332
333
334
335 === 2.4.2  Version Info ===
336
337 Specify the software version: 0x64=100, means firmware version 1.00.
338
339 For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
340
341
342
343 === 2.4.3  Battery Info ===
344
345 (((
346 Check the battery voltage for LSE01.
347 )))
348
349 (((
350 Ex1: 0x0B45 = 2885mV
351 )))
352
353 (((
354 Ex2: 0x0B49 = 2889mV
355 )))
356
357
358
359 === 2.4.4  Signal Strength ===
360
361 NB-IoT Network signal Strength.
362
363 **Ex1: 0x1d = 29**
364
365 (% style="color:blue" %)**0**(%%)  -113dBm or less
366
367 (% style="color:blue" %)**1**(%%)  -111dBm
368
369 (% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
370
371 (% style="color:blue" %)**31**  (%%) -51dBm or greater
372
373 (% style="color:blue" %)**99**   (%%) Not known or not detectable
374
375
376
377 === 2.4.5  Soil Moisture ===
378
379 (((
380 Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
381 )))
382
383 (((
384 For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
385 )))
386
387 (((
388
389 )))
390
391 (((
392 (% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
393 )))
394
395
396
397 === 2.4.6  Soil Temperature ===
398
399 (((
400 Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
401 )))
402
403 (((
404 **Example**:
405 )))
406
407 (((
408 If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
409 )))
410
411 (((
412 If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
413 )))
414
415
416
417 === 2.4.7  Soil Conductivity (EC) ===
418
419 (((
420 Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
421 )))
422
423 (((
424 For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
425 )))
426
427 (((
428 Generally, the EC value of irrigation water is less than 800uS / cm.
429 )))
430
431 (((
432
433 )))
434
435 (((
436
437 )))
438
439 === 2.4.8  Digital Interrupt ===
440
441
442 Digital Interrupt refers to pin **GPIO_EXTI**, and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
443
444 The command is:
445
446 **AT+INTMOD=3    ~/~/(more info about INMOD please refer **[[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]]**).**
447
448
449 The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
450
451
452 Example:
453
454 0x(00): Normal uplink packet.
455
456 0x(01): Interrupt Uplink Packet.
457
458
459
460
461 === 2.4.9  ​+5V Output ===
462
463
464 NSE01 will enable +5V output before all sampling and disable the +5v after all sampling.
465
466
467 The 5V output time can be controlled by AT Command.
468
469 **(% style="color:blue" %)AT+5VT=1000**
470
471 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
472
473
474
475 == 2.4 Uplink Interval ==
476
477 The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
478
479
480
481 == 2.5 Downlink Payload ==
482
483 By default, LSE50 prints the downlink payload to console port.
484
485 [[image:image-20220606165544-8.png]]
486
487
488 (((
489 (% style="color:blue" %)**Examples:**
490 )))
491
492 (((
493
494 )))
495
496 * (((
497 (% style="color:blue" %)**Set TDC**
498 )))
499
500 (((
501 If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
502 )))
503
504 (((
505 Payload:    01 00 00 1E    TDC=30S
506 )))
507
508 (((
509 Payload:    01 00 00 3C    TDC=60S
510 )))
511
512 (((
513
514 )))
515
516 * (((
517 (% style="color:blue" %)**Reset**
518 )))
519
520 (((
521 If payload = 0x04FF, it will reset the LSE01
522 )))
523
524
525 * (% style="color:blue" %)**CFM**
526
527 Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
528
529
530
531 == 2.6 ​Show Data in DataCake IoT Server ==
532
533 (((
534 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
535 )))
536
537 (((
538
539 )))
540
541 (((
542 (% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
543 )))
544
545 (((
546 (% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
547 )))
548
549
550 [[image:1654505857935-743.png]]
551
552
553 [[image:1654505874829-548.png]]
554
555
556 (% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
557
558 (% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
559
560
561 [[image:1654505905236-553.png]]
562
563
564 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
565
566 [[image:1654505925508-181.png]]
567
568
569
570 == 2.7 Frequency Plans ==
571
572 The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
573
574
575 === 2.7.1 EU863-870 (EU868) ===
576
577 (% style="color:#037691" %)** Uplink:**
578
579 868.1 - SF7BW125 to SF12BW125
580
581 868.3 - SF7BW125 to SF12BW125 and SF7BW250
582
583 868.5 - SF7BW125 to SF12BW125
584
585 867.1 - SF7BW125 to SF12BW125
586
587 867.3 - SF7BW125 to SF12BW125
588
589 867.5 - SF7BW125 to SF12BW125
590
591 867.7 - SF7BW125 to SF12BW125
592
593 867.9 - SF7BW125 to SF12BW125
594
595 868.8 - FSK
596
597
598 (% style="color:#037691" %)** Downlink:**
599
600 Uplink channels 1-9 (RX1)
601
602 869.525 - SF9BW125 (RX2 downlink only)
603
604
605
606 === 2.7.2 US902-928(US915) ===
607
608 Used in USA, Canada and South America. Default use CHE=2
609
610 (% style="color:#037691" %)**Uplink:**
611
612 903.9 - SF7BW125 to SF10BW125
613
614 904.1 - SF7BW125 to SF10BW125
615
616 904.3 - SF7BW125 to SF10BW125
617
618 904.5 - SF7BW125 to SF10BW125
619
620 904.7 - SF7BW125 to SF10BW125
621
622 904.9 - SF7BW125 to SF10BW125
623
624 905.1 - SF7BW125 to SF10BW125
625
626 905.3 - SF7BW125 to SF10BW125
627
628
629 (% style="color:#037691" %)**Downlink:**
630
631 923.3 - SF7BW500 to SF12BW500
632
633 923.9 - SF7BW500 to SF12BW500
634
635 924.5 - SF7BW500 to SF12BW500
636
637 925.1 - SF7BW500 to SF12BW500
638
639 925.7 - SF7BW500 to SF12BW500
640
641 926.3 - SF7BW500 to SF12BW500
642
643 926.9 - SF7BW500 to SF12BW500
644
645 927.5 - SF7BW500 to SF12BW500
646
647 923.3 - SF12BW500(RX2 downlink only)
648
649
650
651 === 2.7.3 CN470-510 (CN470) ===
652
653 Used in China, Default use CHE=1
654
655 (% style="color:#037691" %)**Uplink:**
656
657 486.3 - SF7BW125 to SF12BW125
658
659 486.5 - SF7BW125 to SF12BW125
660
661 486.7 - SF7BW125 to SF12BW125
662
663 486.9 - SF7BW125 to SF12BW125
664
665 487.1 - SF7BW125 to SF12BW125
666
667 487.3 - SF7BW125 to SF12BW125
668
669 487.5 - SF7BW125 to SF12BW125
670
671 487.7 - SF7BW125 to SF12BW125
672
673
674 (% style="color:#037691" %)**Downlink:**
675
676 506.7 - SF7BW125 to SF12BW125
677
678 506.9 - SF7BW125 to SF12BW125
679
680 507.1 - SF7BW125 to SF12BW125
681
682 507.3 - SF7BW125 to SF12BW125
683
684 507.5 - SF7BW125 to SF12BW125
685
686 507.7 - SF7BW125 to SF12BW125
687
688 507.9 - SF7BW125 to SF12BW125
689
690 508.1 - SF7BW125 to SF12BW125
691
692 505.3 - SF12BW125 (RX2 downlink only)
693
694
695
696 === 2.7.4 AU915-928(AU915) ===
697
698 Default use CHE=2
699
700 (% style="color:#037691" %)**Uplink:**
701
702 916.8 - SF7BW125 to SF12BW125
703
704 917.0 - SF7BW125 to SF12BW125
705
706 917.2 - SF7BW125 to SF12BW125
707
708 917.4 - SF7BW125 to SF12BW125
709
710 917.6 - SF7BW125 to SF12BW125
711
712 917.8 - SF7BW125 to SF12BW125
713
714 918.0 - SF7BW125 to SF12BW125
715
716 918.2 - SF7BW125 to SF12BW125
717
718
719 (% style="color:#037691" %)**Downlink:**
720
721 923.3 - SF7BW500 to SF12BW500
722
723 923.9 - SF7BW500 to SF12BW500
724
725 924.5 - SF7BW500 to SF12BW500
726
727 925.1 - SF7BW500 to SF12BW500
728
729 925.7 - SF7BW500 to SF12BW500
730
731 926.3 - SF7BW500 to SF12BW500
732
733 926.9 - SF7BW500 to SF12BW500
734
735 927.5 - SF7BW500 to SF12BW500
736
737 923.3 - SF12BW500(RX2 downlink only)
738
739
740
741 === 2.7.5 AS920-923 & AS923-925 (AS923) ===
742
743 (% style="color:#037691" %)**Default Uplink channel:**
744
745 923.2 - SF7BW125 to SF10BW125
746
747 923.4 - SF7BW125 to SF10BW125
748
749
750 (% style="color:#037691" %)**Additional Uplink Channel**:
751
752 (OTAA mode, channel added by JoinAccept message)
753
754 (% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
755
756 922.2 - SF7BW125 to SF10BW125
757
758 922.4 - SF7BW125 to SF10BW125
759
760 922.6 - SF7BW125 to SF10BW125
761
762 922.8 - SF7BW125 to SF10BW125
763
764 923.0 - SF7BW125 to SF10BW125
765
766 922.0 - SF7BW125 to SF10BW125
767
768
769 (% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
770
771 923.6 - SF7BW125 to SF10BW125
772
773 923.8 - SF7BW125 to SF10BW125
774
775 924.0 - SF7BW125 to SF10BW125
776
777 924.2 - SF7BW125 to SF10BW125
778
779 924.4 - SF7BW125 to SF10BW125
780
781 924.6 - SF7BW125 to SF10BW125
782
783
784 (% style="color:#037691" %)** Downlink:**
785
786 Uplink channels 1-8 (RX1)
787
788 923.2 - SF10BW125 (RX2)
789
790
791
792 === 2.7.6 KR920-923 (KR920) ===
793
794 Default channel:
795
796 922.1 - SF7BW125 to SF12BW125
797
798 922.3 - SF7BW125 to SF12BW125
799
800 922.5 - SF7BW125 to SF12BW125
801
802
803 (% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
804
805 922.1 - SF7BW125 to SF12BW125
806
807 922.3 - SF7BW125 to SF12BW125
808
809 922.5 - SF7BW125 to SF12BW125
810
811 922.7 - SF7BW125 to SF12BW125
812
813 922.9 - SF7BW125 to SF12BW125
814
815 923.1 - SF7BW125 to SF12BW125
816
817 923.3 - SF7BW125 to SF12BW125
818
819
820 (% style="color:#037691" %)**Downlink:**
821
822 Uplink channels 1-7(RX1)
823
824 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
825
826
827
828 === 2.7.7 IN865-867 (IN865) ===
829
830 (% style="color:#037691" %)** Uplink:**
831
832 865.0625 - SF7BW125 to SF12BW125
833
834 865.4025 - SF7BW125 to SF12BW125
835
836 865.9850 - SF7BW125 to SF12BW125
837
838
839 (% style="color:#037691" %) **Downlink:**
840
841 Uplink channels 1-3 (RX1)
842
843 866.550 - SF10BW125 (RX2)
844
845
846
847
848 == 2.8 LED Indicator ==
849
850 The LSE01 has an internal LED which is to show the status of different state.
851
852 * Blink once when device power on.
853 * Solid ON for 5 seconds once device successful Join the network.
854 * Blink once when device transmit a packet.
855
856 == 2.9 Installation in Soil ==
857
858 **Measurement the soil surface**
859
860
861 [[image:1654506634463-199.png]] ​
862
863 (((
864 (((
865 Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
866 )))
867 )))
868
869
870
871 [[image:1654506665940-119.png]]
872
873 (((
874 Dig a hole with diameter > 20CM.
875 )))
876
877 (((
878 Horizontal insert the probe to the soil and fill the hole for long term measurement.
879 )))
880
881
882 == 2.10 ​Firmware Change Log ==
883
884 (((
885 **Firmware download link:**
886 )))
887
888 (((
889 [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
890 )))
891
892 (((
893
894 )))
895
896 (((
897 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
898 )))
899
900 (((
901
902 )))
903
904 (((
905 **V1.0.**
906 )))
907
908 (((
909 Release
910 )))
911
912
913 == 2.11 ​Battery Analysis ==
914
915 === 2.11.1 ​Battery Type ===
916
917 (((
918 The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
919 )))
920
921 (((
922 The battery is designed to last for more than 5 years for the LSN50.
923 )))
924
925 (((
926 (((
927 The battery-related documents are as below:
928 )))
929 )))
930
931 * (((
932 [[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
933 )))
934 * (((
935 [[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
936 )))
937 * (((
938 [[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
939 )))
940
941 [[image:image-20220610172436-1.png]]
942
943
944
945 === 2.11.2 ​Battery Note ===
946
947 (((
948 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
949 )))
950
951
952
953 === 2.11.3 Replace the battery ===
954
955 (((
956 If Battery is lower than 2.7v, user should replace the battery of LSE01.
957 )))
958
959 (((
960 You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
961 )))
962
963 (((
964 The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
965 )))
966
967
968
969 = 3. ​Using the AT Commands =
970
971 == 3.1 Access AT Commands ==
972
973
974 LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
975
976 [[image:1654501986557-872.png||height="391" width="800"]]
977
978
979 Or if you have below board, use below connection:
980
981
982 [[image:1654502005655-729.png||height="503" width="801"]]
983
984
985
986 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
987
988
989 [[image:1654502050864-459.png||height="564" width="806"]]
990
991
992 Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
993
994
995 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
996
997 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
998
999 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
1000
1001 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
1002
1003
1004 (% style="color:#037691" %)**General Commands**(%%)      
1005
1006 (% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
1007
1008 (% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
1009
1010 (% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
1011
1012 (% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
1013
1014
1015 (% style="color:#037691" %)**Keys, IDs and EUIs management**
1016
1017 (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
1018
1019 (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
1020
1021 (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
1022
1023 (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
1024
1025 (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
1026
1027 (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
1028
1029 (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
1030
1031 (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
1032
1033 (% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
1034
1035 (% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
1036
1037 (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
1038
1039 (% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
1040
1041 (% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
1042
1043 (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
1044
1045 (% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
1046
1047 (% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
1048
1049
1050 (% style="color:#037691" %)**LoRa Network Management**
1051
1052 (% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
1053
1054 (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
1055
1056 (% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Setting 
1057
1058 (% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
1059
1060 (% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
1061
1062 (% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
1063
1064 (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
1065
1066 (% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
1067
1068 (% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
1069
1070 (% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
1071
1072 (% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
1073
1074 (% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
1075
1076 (% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
1077
1078 (% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
1079
1080 (% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
1081
1082
1083 (% style="color:#037691" %)**Information** 
1084
1085 (% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
1086
1087 (% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
1088
1089 (% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
1090
1091 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
1092
1093 (% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
1094
1095 (% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
1096
1097 (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
1098
1099
1100 = ​4. FAQ =
1101
1102 == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
1103
1104 (((
1105 You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
1106 When downloading the images, choose the required image file for download. ​
1107 )))
1108
1109 (((
1110
1111 )))
1112
1113 (((
1114 How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
1115 )))
1116
1117 (((
1118
1119 )))
1120
1121 (((
1122 You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
1123 )))
1124
1125 (((
1126
1127 )))
1128
1129 (((
1130 For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
1131 )))
1132
1133 [[image:image-20220606154726-3.png]]
1134
1135
1136 When you use the TTN network, the US915 frequency bands use are:
1137
1138 * 903.9 - SF7BW125 to SF10BW125
1139 * 904.1 - SF7BW125 to SF10BW125
1140 * 904.3 - SF7BW125 to SF10BW125
1141 * 904.5 - SF7BW125 to SF10BW125
1142 * 904.7 - SF7BW125 to SF10BW125
1143 * 904.9 - SF7BW125 to SF10BW125
1144 * 905.1 - SF7BW125 to SF10BW125
1145 * 905.3 - SF7BW125 to SF10BW125
1146 * 904.6 - SF8BW500
1147
1148 (((
1149 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1150
1151 * (% style="color:#037691" %)**AT+CHE=2**
1152 * (% style="color:#037691" %)**ATZ**
1153 )))
1154
1155 (((
1156
1157
1158 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1159 )))
1160
1161 (((
1162
1163 )))
1164
1165 (((
1166 The **AU915** band is similar. Below are the AU915 Uplink Channels.
1167 )))
1168
1169 [[image:image-20220606154825-4.png]]
1170
1171
1172 == 4.2 ​Can I calibrate LSE01 to different soil types? ==
1173
1174 LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1175
1176
1177 = 5. Trouble Shooting =
1178
1179 == 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1180
1181 It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1182
1183
1184 == 5.2 AT Command input doesn't work ==
1185
1186 (((
1187 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1188 )))
1189
1190
1191 == 5.3 Device rejoin in at the second uplink packet ==
1192
1193 (% style="color:#4f81bd" %)**Issue describe as below:**
1194
1195 [[image:1654500909990-784.png]]
1196
1197
1198 (% style="color:#4f81bd" %)**Cause for this issue:**
1199
1200 (((
1201 The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1202 )))
1203
1204
1205 (% style="color:#4f81bd" %)**Solution: **
1206
1207 All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1208
1209 [[image:1654500929571-736.png||height="458" width="832"]]
1210
1211
1212 = 6. ​Order Info =
1213
1214
1215 Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1216
1217
1218 (% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1219
1220 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1221 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1222 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1223 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1224 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1225 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1226 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1227 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1228
1229 (% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1230
1231 * (% style="color:red" %)**4**(%%): 4000mAh battery
1232 * (% style="color:red" %)**8**(%%): 8500mAh battery
1233
1234 (% class="wikigeneratedid" %)
1235 (((
1236
1237 )))
1238
1239 = 7. Packing Info =
1240
1241 (((
1242
1243
1244 (% style="color:#037691" %)**Package Includes**:
1245 )))
1246
1247 * (((
1248 LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
1249 )))
1250
1251 (((
1252
1253
1254 (% style="color:#037691" %)**Dimension and weight**:
1255 )))
1256
1257 * (((
1258 Device Size: cm
1259 )))
1260 * (((
1261 Device Weight: g
1262 )))
1263 * (((
1264 Package Size / pcs : cm
1265 )))
1266 * (((
1267 Weight / pcs : g
1268
1269
1270 )))
1271
1272 = 8. Support =
1273
1274 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1275 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]