Version 54.2 by Xiaoling on 2022/07/08 11:13

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3
4
5
6
7
8
9
10
11
12
13
14 **Table of Contents:**
15
16
17
18
19
20
21 = 1.  Introduction =
22
23 == 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24
25 (((
26
27
28 Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
29
30 It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31
32 The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33
34 NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35
36
37 )))
38
39 [[image:1654503236291-817.png]]
40
41
42 [[image:1657245163077-232.png]]
43
44
45
46 == 1.2 ​Features ==
47
48
49 * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
50 * Monitor Soil Moisture
51 * Monitor Soil Temperature
52 * Monitor Soil Conductivity
53 * AT Commands to change parameters
54 * Uplink on periodically
55 * Downlink to change configure
56 * IP66 Waterproof Enclosure
57 * Ultra-Low Power consumption
58 * AT Commands to change parameters
59 * Micro SIM card slot for NB-IoT SIM
60 * 8500mAh Battery for long term use
61
62 == 1.3  Specification ==
63
64
65 (% style="color:#037691" %)**Common DC Characteristics:**
66
67 * Supply Voltage: 2.1v ~~ 3.6v
68 * Operating Temperature: -40 ~~ 85°C
69
70 (% style="color:#037691" %)**NB-IoT Spec:**
71
72 * - B1 @H-FDD: 2100MHz
73 * - B3 @H-FDD: 1800MHz
74 * - B8 @H-FDD: 900MHz
75 * - B5 @H-FDD: 850MHz
76 * - B20 @H-FDD: 800MHz
77 * - B28 @H-FDD: 700MHz
78
79 (% style="color:#037691" %)**Probe Specification:**
80
81 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
82
83 [[image:image-20220708101224-1.png]]
84
85
86
87 == ​1.4  Applications ==
88
89 * Smart Agriculture
90
91 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
92
93
94 == 1.5  Pin Definitions ==
95
96
97 [[image:1657246476176-652.png]]
98
99
100
101 = 2.  Use NSE01 to communicate with IoT Server =
102
103 == 2.1  How it works ==
104
105
106 (((
107 The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
108 )))
109
110
111 (((
112 The diagram below shows the working flow in default firmware of NSE01:
113 )))
114
115 [[image:image-20220708101605-2.png]]
116
117 (((
118
119 )))
120
121
122
123 == 2.2 ​ Configure the NSE01 ==
124
125
126 === 2.2.1 Test Requirement ===
127
128
129 To use NSE01 in your city, make sure meet below requirements:
130
131 * Your local operator has already distributed a NB-IoT Network there.
132 * The local NB-IoT network used the band that NSE01 supports.
133 * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
134
135 (((
136 Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
137 )))
138
139
140 [[image:1657249419225-449.png]]
141
142
143
144 === 2.2.2 Insert SIM card ===
145
146 Insert the NB-IoT Card get from your provider.
147
148 User need to take out the NB-IoT module and insert the SIM card like below:
149
150
151 [[image:1657249468462-536.png]]
152
153
154
155 === 2.2.3 Connect USB – TTL to NSE01 to configure it ===
156
157 (((
158 (((
159 User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
160 )))
161 )))
162
163
164 **Connection:**
165
166 (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
167
168 (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
169
170 (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
171
172
173 In the PC, use below serial tool settings:
174
175 * Baud: (% style="color:green" %)**9600**
176 * Data bits:** (% style="color:green" %)8(%%)**
177 * Stop bits: (% style="color:green" %)**1**
178 * Parity: (% style="color:green" %)**None**
179 * Flow Control: (% style="color:green" %)**None**
180
181 (((
182 Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
183 )))
184
185 [[image:image-20220708110657-3.png]]
186
187 (% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
188
189
190
191 === 2.2.4 Use CoAP protocol to uplink data ===
192
193 (% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/index.php?title=Set_up_CoAP_Server>>url:http://wiki.dragino.com/index.php?title=Set_up_CoAP_Server]]
194
195
196 **Use below commands:**
197
198 * (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 * (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
201
202
203
204 For parameter description, please refer to AT command set
205
206 [[image:1657249793983-486.png]]
207
208
209 After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
210
211 [[image:1657249831934-534.png]]
212
213
214
215 === 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
216
217 This feature is supported since firmware version v1.0.1
218
219
220 * (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
221 * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
222 * (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
223
224
225
226 [[image:1657249864775-321.png]]
227
228
229
230 [[image:1657249930215-289.png]]
231
232
233
234 === 2.2.6 Use MQTT protocol to uplink data ===
235
236 This feature is supported since firmware version v110
237
238
239 * (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
240 * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
241 * (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
242 * (% style="color:blue" %)**AT+UNAME=UNAME            **(%%)~/~/Set the username of MQTT
243 * (% style="color:blue" %)**AT+PWD=PWD                  **(%%)~/~/Set the password of MQTT
244 * (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB     **(%%)~/~/Set the sending topic of MQTT
245 * (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
246
247 [[image:1657249978444-674.png]]
248
249
250 [[image:1657249990869-686.png]]
251
252 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.jpg]]
253
254
255 MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
256
257
258 === 2.2.7 Use TCP protocol to uplink data ===
259
260
261 This feature is supported since firmware version v110
262
263
264 * (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
265 * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
266
267 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.jpg]]
268
269
270
271 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]]
272
273
274 === 2.2.8 Change Update Interval ===
275
276 User can use below command to change the (% style="color:green" %)**uplink interval**.
277
278 **~ (% style="color:blue" %)AT+TDC=600      (%%)**(% style="color:blue" %) (%%)~/~/ Set Update Interval to 600s
279
280
281 (% style="color:red" %)**NOTE:**
282
283 (% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
284
285
286
287
288
289
290
291 == 2.3 Uplink Payload ==
292
293
294 === 2.3.1 MOD~=0(Default Mode) ===
295
296 LSE01 will uplink payload via LoRaWAN with below payload format: 
297
298 (((
299 Uplink payload includes in total 11 bytes.
300 )))
301
302 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
303 |(((
304 **Size**
305
306 **(bytes)**
307 )))|**2**|**2**|**2**|**2**|**2**|**1**
308 |**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
309 Temperature
310
311 (Reserve, Ignore now)
312 )))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
313 MOD & Digital Interrupt
314
315 (Optional)
316 )))
317
318 === 2.3.2 MOD~=1(Original value) ===
319
320 This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
321
322 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
323 |(((
324 **Size**
325
326 **(bytes)**
327 )))|**2**|**2**|**2**|**2**|**2**|**1**
328 |**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
329 Temperature
330
331 (Reserve, Ignore now)
332 )))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
333 MOD & Digital Interrupt
334
335 (Optional)
336 )))
337
338 === 2.3.3 Battery Info ===
339
340 (((
341 Check the battery voltage for LSE01.
342 )))
343
344 (((
345 Ex1: 0x0B45 = 2885mV
346 )))
347
348 (((
349 Ex2: 0x0B49 = 2889mV
350 )))
351
352
353
354 === 2.3.4 Soil Moisture ===
355
356 (((
357 Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
358 )))
359
360 (((
361 For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
362 )))
363
364 (((
365
366 )))
367
368 (((
369 (% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
370 )))
371
372
373
374 === 2.3.5 Soil Temperature ===
375
376 (((
377 Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
378 )))
379
380 (((
381 **Example**:
382 )))
383
384 (((
385 If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
386 )))
387
388 (((
389 If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
390 )))
391
392
393
394 === 2.3.6 Soil Conductivity (EC) ===
395
396 (((
397 Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
398 )))
399
400 (((
401 For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
402 )))
403
404 (((
405 Generally, the EC value of irrigation water is less than 800uS / cm.
406 )))
407
408 (((
409
410 )))
411
412 (((
413
414 )))
415
416 === 2.3.7 MOD ===
417
418 Firmware version at least v2.1 supports changing mode.
419
420 For example, bytes[10]=90
421
422 mod=(bytes[10]>>7)&0x01=1.
423
424
425 **Downlink Command:**
426
427 If payload = 0x0A00, workmode=0
428
429 If** **payload =** **0x0A01, workmode=1
430
431
432
433 === 2.3.8 ​Decode payload in The Things Network ===
434
435 While using TTN network, you can add the payload format to decode the payload.
436
437
438 [[image:1654505570700-128.png]]
439
440 (((
441 The payload decoder function for TTN is here:
442 )))
443
444 (((
445 LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
446 )))
447
448
449 == 2.4 Uplink Interval ==
450
451 The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
452
453
454
455 == 2.5 Downlink Payload ==
456
457 By default, LSE50 prints the downlink payload to console port.
458
459 [[image:image-20220606165544-8.png]]
460
461
462 (((
463 (% style="color:blue" %)**Examples:**
464 )))
465
466 (((
467
468 )))
469
470 * (((
471 (% style="color:blue" %)**Set TDC**
472 )))
473
474 (((
475 If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
476 )))
477
478 (((
479 Payload:    01 00 00 1E    TDC=30S
480 )))
481
482 (((
483 Payload:    01 00 00 3C    TDC=60S
484 )))
485
486 (((
487
488 )))
489
490 * (((
491 (% style="color:blue" %)**Reset**
492 )))
493
494 (((
495 If payload = 0x04FF, it will reset the LSE01
496 )))
497
498
499 * (% style="color:blue" %)**CFM**
500
501 Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
502
503
504
505 == 2.6 ​Show Data in DataCake IoT Server ==
506
507 (((
508 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
509 )))
510
511 (((
512
513 )))
514
515 (((
516 (% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
517 )))
518
519 (((
520 (% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
521 )))
522
523
524 [[image:1654505857935-743.png]]
525
526
527 [[image:1654505874829-548.png]]
528
529
530 (% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
531
532 (% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
533
534
535 [[image:1654505905236-553.png]]
536
537
538 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
539
540 [[image:1654505925508-181.png]]
541
542
543
544 == 2.7 Frequency Plans ==
545
546 The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
547
548
549 === 2.7.1 EU863-870 (EU868) ===
550
551 (% style="color:#037691" %)** Uplink:**
552
553 868.1 - SF7BW125 to SF12BW125
554
555 868.3 - SF7BW125 to SF12BW125 and SF7BW250
556
557 868.5 - SF7BW125 to SF12BW125
558
559 867.1 - SF7BW125 to SF12BW125
560
561 867.3 - SF7BW125 to SF12BW125
562
563 867.5 - SF7BW125 to SF12BW125
564
565 867.7 - SF7BW125 to SF12BW125
566
567 867.9 - SF7BW125 to SF12BW125
568
569 868.8 - FSK
570
571
572 (% style="color:#037691" %)** Downlink:**
573
574 Uplink channels 1-9 (RX1)
575
576 869.525 - SF9BW125 (RX2 downlink only)
577
578
579
580 === 2.7.2 US902-928(US915) ===
581
582 Used in USA, Canada and South America. Default use CHE=2
583
584 (% style="color:#037691" %)**Uplink:**
585
586 903.9 - SF7BW125 to SF10BW125
587
588 904.1 - SF7BW125 to SF10BW125
589
590 904.3 - SF7BW125 to SF10BW125
591
592 904.5 - SF7BW125 to SF10BW125
593
594 904.7 - SF7BW125 to SF10BW125
595
596 904.9 - SF7BW125 to SF10BW125
597
598 905.1 - SF7BW125 to SF10BW125
599
600 905.3 - SF7BW125 to SF10BW125
601
602
603 (% style="color:#037691" %)**Downlink:**
604
605 923.3 - SF7BW500 to SF12BW500
606
607 923.9 - SF7BW500 to SF12BW500
608
609 924.5 - SF7BW500 to SF12BW500
610
611 925.1 - SF7BW500 to SF12BW500
612
613 925.7 - SF7BW500 to SF12BW500
614
615 926.3 - SF7BW500 to SF12BW500
616
617 926.9 - SF7BW500 to SF12BW500
618
619 927.5 - SF7BW500 to SF12BW500
620
621 923.3 - SF12BW500(RX2 downlink only)
622
623
624
625 === 2.7.3 CN470-510 (CN470) ===
626
627 Used in China, Default use CHE=1
628
629 (% style="color:#037691" %)**Uplink:**
630
631 486.3 - SF7BW125 to SF12BW125
632
633 486.5 - SF7BW125 to SF12BW125
634
635 486.7 - SF7BW125 to SF12BW125
636
637 486.9 - SF7BW125 to SF12BW125
638
639 487.1 - SF7BW125 to SF12BW125
640
641 487.3 - SF7BW125 to SF12BW125
642
643 487.5 - SF7BW125 to SF12BW125
644
645 487.7 - SF7BW125 to SF12BW125
646
647
648 (% style="color:#037691" %)**Downlink:**
649
650 506.7 - SF7BW125 to SF12BW125
651
652 506.9 - SF7BW125 to SF12BW125
653
654 507.1 - SF7BW125 to SF12BW125
655
656 507.3 - SF7BW125 to SF12BW125
657
658 507.5 - SF7BW125 to SF12BW125
659
660 507.7 - SF7BW125 to SF12BW125
661
662 507.9 - SF7BW125 to SF12BW125
663
664 508.1 - SF7BW125 to SF12BW125
665
666 505.3 - SF12BW125 (RX2 downlink only)
667
668
669
670 === 2.7.4 AU915-928(AU915) ===
671
672 Default use CHE=2
673
674 (% style="color:#037691" %)**Uplink:**
675
676 916.8 - SF7BW125 to SF12BW125
677
678 917.0 - SF7BW125 to SF12BW125
679
680 917.2 - SF7BW125 to SF12BW125
681
682 917.4 - SF7BW125 to SF12BW125
683
684 917.6 - SF7BW125 to SF12BW125
685
686 917.8 - SF7BW125 to SF12BW125
687
688 918.0 - SF7BW125 to SF12BW125
689
690 918.2 - SF7BW125 to SF12BW125
691
692
693 (% style="color:#037691" %)**Downlink:**
694
695 923.3 - SF7BW500 to SF12BW500
696
697 923.9 - SF7BW500 to SF12BW500
698
699 924.5 - SF7BW500 to SF12BW500
700
701 925.1 - SF7BW500 to SF12BW500
702
703 925.7 - SF7BW500 to SF12BW500
704
705 926.3 - SF7BW500 to SF12BW500
706
707 926.9 - SF7BW500 to SF12BW500
708
709 927.5 - SF7BW500 to SF12BW500
710
711 923.3 - SF12BW500(RX2 downlink only)
712
713
714
715 === 2.7.5 AS920-923 & AS923-925 (AS923) ===
716
717 (% style="color:#037691" %)**Default Uplink channel:**
718
719 923.2 - SF7BW125 to SF10BW125
720
721 923.4 - SF7BW125 to SF10BW125
722
723
724 (% style="color:#037691" %)**Additional Uplink Channel**:
725
726 (OTAA mode, channel added by JoinAccept message)
727
728 (% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
729
730 922.2 - SF7BW125 to SF10BW125
731
732 922.4 - SF7BW125 to SF10BW125
733
734 922.6 - SF7BW125 to SF10BW125
735
736 922.8 - SF7BW125 to SF10BW125
737
738 923.0 - SF7BW125 to SF10BW125
739
740 922.0 - SF7BW125 to SF10BW125
741
742
743 (% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
744
745 923.6 - SF7BW125 to SF10BW125
746
747 923.8 - SF7BW125 to SF10BW125
748
749 924.0 - SF7BW125 to SF10BW125
750
751 924.2 - SF7BW125 to SF10BW125
752
753 924.4 - SF7BW125 to SF10BW125
754
755 924.6 - SF7BW125 to SF10BW125
756
757
758 (% style="color:#037691" %)** Downlink:**
759
760 Uplink channels 1-8 (RX1)
761
762 923.2 - SF10BW125 (RX2)
763
764
765
766 === 2.7.6 KR920-923 (KR920) ===
767
768 Default channel:
769
770 922.1 - SF7BW125 to SF12BW125
771
772 922.3 - SF7BW125 to SF12BW125
773
774 922.5 - SF7BW125 to SF12BW125
775
776
777 (% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
778
779 922.1 - SF7BW125 to SF12BW125
780
781 922.3 - SF7BW125 to SF12BW125
782
783 922.5 - SF7BW125 to SF12BW125
784
785 922.7 - SF7BW125 to SF12BW125
786
787 922.9 - SF7BW125 to SF12BW125
788
789 923.1 - SF7BW125 to SF12BW125
790
791 923.3 - SF7BW125 to SF12BW125
792
793
794 (% style="color:#037691" %)**Downlink:**
795
796 Uplink channels 1-7(RX1)
797
798 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
799
800
801
802 === 2.7.7 IN865-867 (IN865) ===
803
804 (% style="color:#037691" %)** Uplink:**
805
806 865.0625 - SF7BW125 to SF12BW125
807
808 865.4025 - SF7BW125 to SF12BW125
809
810 865.9850 - SF7BW125 to SF12BW125
811
812
813 (% style="color:#037691" %) **Downlink:**
814
815 Uplink channels 1-3 (RX1)
816
817 866.550 - SF10BW125 (RX2)
818
819
820
821
822 == 2.8 LED Indicator ==
823
824 The LSE01 has an internal LED which is to show the status of different state.
825
826 * Blink once when device power on.
827 * Solid ON for 5 seconds once device successful Join the network.
828 * Blink once when device transmit a packet.
829
830 == 2.9 Installation in Soil ==
831
832 **Measurement the soil surface**
833
834
835 [[image:1654506634463-199.png]] ​
836
837 (((
838 (((
839 Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
840 )))
841 )))
842
843
844
845 [[image:1654506665940-119.png]]
846
847 (((
848 Dig a hole with diameter > 20CM.
849 )))
850
851 (((
852 Horizontal insert the probe to the soil and fill the hole for long term measurement.
853 )))
854
855
856 == 2.10 ​Firmware Change Log ==
857
858 (((
859 **Firmware download link:**
860 )))
861
862 (((
863 [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
864 )))
865
866 (((
867
868 )))
869
870 (((
871 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
872 )))
873
874 (((
875
876 )))
877
878 (((
879 **V1.0.**
880 )))
881
882 (((
883 Release
884 )))
885
886
887 == 2.11 ​Battery Analysis ==
888
889 === 2.11.1 ​Battery Type ===
890
891 (((
892 The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
893 )))
894
895 (((
896 The battery is designed to last for more than 5 years for the LSN50.
897 )))
898
899 (((
900 (((
901 The battery-related documents are as below:
902 )))
903 )))
904
905 * (((
906 [[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
907 )))
908 * (((
909 [[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
910 )))
911 * (((
912 [[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
913 )))
914
915 [[image:image-20220610172436-1.png]]
916
917
918
919 === 2.11.2 ​Battery Note ===
920
921 (((
922 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
923 )))
924
925
926
927 === 2.11.3 Replace the battery ===
928
929 (((
930 If Battery is lower than 2.7v, user should replace the battery of LSE01.
931 )))
932
933 (((
934 You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
935 )))
936
937 (((
938 The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
939 )))
940
941
942
943 = 3. ​Using the AT Commands =
944
945 == 3.1 Access AT Commands ==
946
947
948 LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
949
950 [[image:1654501986557-872.png||height="391" width="800"]]
951
952
953 Or if you have below board, use below connection:
954
955
956 [[image:1654502005655-729.png||height="503" width="801"]]
957
958
959
960 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
961
962
963 [[image:1654502050864-459.png||height="564" width="806"]]
964
965
966 Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
967
968
969 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
970
971 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
972
973 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
974
975 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
976
977
978 (% style="color:#037691" %)**General Commands**(%%)      
979
980 (% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
981
982 (% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
983
984 (% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
985
986 (% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
987
988
989 (% style="color:#037691" %)**Keys, IDs and EUIs management**
990
991 (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
992
993 (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
994
995 (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
996
997 (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
998
999 (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
1000
1001 (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
1002
1003 (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
1004
1005 (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
1006
1007 (% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
1008
1009 (% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
1010
1011 (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
1012
1013 (% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
1014
1015 (% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
1016
1017 (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
1018
1019 (% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
1020
1021 (% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
1022
1023
1024 (% style="color:#037691" %)**LoRa Network Management**
1025
1026 (% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
1027
1028 (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
1029
1030 (% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Setting 
1031
1032 (% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
1033
1034 (% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
1035
1036 (% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
1037
1038 (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
1039
1040 (% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
1041
1042 (% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
1043
1044 (% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
1045
1046 (% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
1047
1048 (% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
1049
1050 (% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
1051
1052 (% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
1053
1054 (% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
1055
1056
1057 (% style="color:#037691" %)**Information** 
1058
1059 (% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
1060
1061 (% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
1062
1063 (% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
1064
1065 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
1066
1067 (% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
1068
1069 (% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
1070
1071 (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
1072
1073
1074 = ​4. FAQ =
1075
1076 == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
1077
1078 (((
1079 You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
1080 When downloading the images, choose the required image file for download. ​
1081 )))
1082
1083 (((
1084
1085 )))
1086
1087 (((
1088 How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
1089 )))
1090
1091 (((
1092
1093 )))
1094
1095 (((
1096 You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
1097 )))
1098
1099 (((
1100
1101 )))
1102
1103 (((
1104 For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
1105 )))
1106
1107 [[image:image-20220606154726-3.png]]
1108
1109
1110 When you use the TTN network, the US915 frequency bands use are:
1111
1112 * 903.9 - SF7BW125 to SF10BW125
1113 * 904.1 - SF7BW125 to SF10BW125
1114 * 904.3 - SF7BW125 to SF10BW125
1115 * 904.5 - SF7BW125 to SF10BW125
1116 * 904.7 - SF7BW125 to SF10BW125
1117 * 904.9 - SF7BW125 to SF10BW125
1118 * 905.1 - SF7BW125 to SF10BW125
1119 * 905.3 - SF7BW125 to SF10BW125
1120 * 904.6 - SF8BW500
1121
1122 (((
1123 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1124
1125 * (% style="color:#037691" %)**AT+CHE=2**
1126 * (% style="color:#037691" %)**ATZ**
1127 )))
1128
1129 (((
1130
1131
1132 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1133 )))
1134
1135 (((
1136
1137 )))
1138
1139 (((
1140 The **AU915** band is similar. Below are the AU915 Uplink Channels.
1141 )))
1142
1143 [[image:image-20220606154825-4.png]]
1144
1145
1146 == 4.2 ​Can I calibrate LSE01 to different soil types? ==
1147
1148 LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1149
1150
1151 = 5. Trouble Shooting =
1152
1153 == 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1154
1155 It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1156
1157
1158 == 5.2 AT Command input doesn't work ==
1159
1160 (((
1161 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1162 )))
1163
1164
1165 == 5.3 Device rejoin in at the second uplink packet ==
1166
1167 (% style="color:#4f81bd" %)**Issue describe as below:**
1168
1169 [[image:1654500909990-784.png]]
1170
1171
1172 (% style="color:#4f81bd" %)**Cause for this issue:**
1173
1174 (((
1175 The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1176 )))
1177
1178
1179 (% style="color:#4f81bd" %)**Solution: **
1180
1181 All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1182
1183 [[image:1654500929571-736.png||height="458" width="832"]]
1184
1185
1186 = 6. ​Order Info =
1187
1188
1189 Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1190
1191
1192 (% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1193
1194 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1195 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1196 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1197 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1198 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1199 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1200 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1201 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1202
1203 (% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1204
1205 * (% style="color:red" %)**4**(%%): 4000mAh battery
1206 * (% style="color:red" %)**8**(%%): 8500mAh battery
1207
1208 (% class="wikigeneratedid" %)
1209 (((
1210
1211 )))
1212
1213 = 7. Packing Info =
1214
1215 (((
1216
1217
1218 (% style="color:#037691" %)**Package Includes**:
1219 )))
1220
1221 * (((
1222 LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
1223 )))
1224
1225 (((
1226
1227
1228 (% style="color:#037691" %)**Dimension and weight**:
1229 )))
1230
1231 * (((
1232 Device Size: cm
1233 )))
1234 * (((
1235 Device Weight: g
1236 )))
1237 * (((
1238 Package Size / pcs : cm
1239 )))
1240 * (((
1241 Weight / pcs : g
1242
1243
1244 )))
1245
1246 = 8. Support =
1247
1248 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1249 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]