Last modified by Kilight Cao on 2025/07/03 15:34

Show last authors
1 [[image:image-20220523163353-1.jpeg||data-xwiki-image-style-alignment="center" height="604" width="500"]]
2
3
4
5
6
7
8
9 **Table of Contents:**
10
11 {{toc/}}
12
13
14
15
16
17 = 1. Introduction =
18
19 == 1.1 What is the LT-22222-LA I/O Controller? ==
20
21
22 (((
23 (((
24 The Dragino (% style="color:blue" %)**LT-22222-LA I/O Controller**(%%) is an advanced LoRaWAN end device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
25
26 The LT-22222-LA I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
27 )))
28 )))
29
30 (((
31 With the LT-22222-LA I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
32
33 (% style="color:blue" %)**LT-22222-LA I/O Controller**(%%) support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining.
34 )))
35
36 (((
37 You can connect the LT-22222-LA I/O Controller to a LoRaWAN network service provider in several ways:
38
39 * If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Stack Community Network), you can select a network and register the LT-22222-LA I/O controller with it.
40 * If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-LA I/O controller with this network.
41 * Setup your own private LoRaWAN network.
42 )))
43
44 (((
45
46
47 The network diagram below illustrates how the LT-22222-LA communicates with a typical LoRaWAN network.
48 )))
49
50
51 [[image:lorawan-nw.jpg]]
52
53 == 1.2 Specifications ==
54
55
56 (% style="color:#037691" %)**Hardware System:**
57
58 * Power Consumption:
59 ** Idle: 4mA@12V
60 ** 20dB Transmit: 34mA@12V
61 * Operating Temperature: -40 ~~ 85 Degrees, No Dew
62
63 (% style="color:#037691" %)**Interface for Model: LT22222-LA:**
64
65 * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50V, or 220V with optional external resistor)
66 * 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
67 * 2 x Relay Output (5A@250VAC / 30VDC)
68 * 2 x 0~~20mA Analog Input (res:0.01mA)
69 * 2 x 0~~30V Analog Input (res:0.01V)
70 * Power Input 7~~ 24V DC. 
71
72 (% style="color:#037691" %)**LoRa Spec:**
73
74 * Frequency Range:
75 ** Band 1 (HF): 862 ~~ 1020 MHz
76 ** Band 2 (LF): 410 ~~ 528 MHz
77 * 168 dB maximum link budget.
78 * +20 dBm - 100 mW constant RF output vs.
79 * +14 dBm high-efficiency PA.
80 * Programmable bit rate up to 300 kbps.
81 * High sensitivity: down to -148 dBm.
82 * Bullet-proof front end: IIP3 = -12.5 dBm.
83 * Excellent blocking immunity.
84 * Low RX current of 10.3 mA, 200 nA register retention.
85 * Fully integrated synthesizer with a resolution of 61 Hz.
86 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
87 * Built-in bit synchronizer for clock recovery.
88 * Preamble detection.
89 * 127 dB Dynamic Range RSSI.
90 * Automatic RF Sense and CAD with ultra-fast AFC.
91 * Packet engine up to 256 bytes with CRC.
92
93 == 1.3 Features ==
94
95
96 * LoRaWAN Class A & Class C modes
97 * Optional Customized LoRa Protocol
98 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
99 * AT Commands to change parameters
100 * Remotely configure parameters via LoRaWAN Downlink
101 * Support wireless OTA update firmware
102 * Counting
103
104 == 1.4 Applications ==
105
106
107 * Smart buildings & home automation
108 * Logistics and supply chain management
109 * Smart metering
110 * Smart agriculture
111 * Smart cities
112 * Smart factory
113
114 == 1.5 Hardware Variants ==
115
116
117 (% border="1" cellspacing="3" style="width:531.222px" %)
118 |(% style="background-color:#4f81bd; color:white; width:108px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:158px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:261px" %)**Description**
119 |(% style="width:108px" %)**LT-22222-LA**|(% style="width:158px" %)(((
120 [[image:lt33222-l.jpg]]
121 )))|(% style="width:261px" %)(((
122 * 3 x Digital Input (Bi-direction)
123 * 3 x Digital Output
124 * 2 x Relay Output (5A@250VAC / 30VDC)
125 * 2 x 0~~20mA Analog Input (res:0.01mA)
126 * 2 x 0~~30V Analog Input (res:0.01v)
127 * 1 x Counting Port
128 )))
129
130 = 2. Assembling the device =
131
132 == 2.1 Connecting the antenna ==
133
134
135 Connect the LoRa antenna to the antenna connector, **ANT**,** **located on the top right side of the device, next to the upper screw terminal block. Secure the antenna by tightening it clockwise.
136
137 {{warning}}
138 **Warning! Do not power on the device without connecting the antenna.**
139 {{/warning}}
140
141
142 == 2.2 Terminals ==
143
144
145 The  LT-22222-LA has two screw terminal blocks. The upper screw terminal block has 6 screw terminals and the lower screw terminal block has 10 screw terminals.
146
147 **Upper screw terminal block (from left to right):**
148
149 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:381px" %)
150 |=(% style="width: 139px;background-color:#4f81bd;color:white" %)Screw Terminal|=(% style="width: 242px;background-color:#4f81bd;color:white" %)Function
151 |(% style="width:139px" %)GND|(% style="width:242px" %)Ground
152 |(% style="width:139px" %)VIN|(% style="width:242px" %)Input Voltage
153 |(% style="width:139px" %)AVI2|(% style="width:242px" %)Analog Voltage Input Terminal 2
154 |(% style="width:139px" %)AVI1|(% style="width:242px" %)Analog Voltage Input Terminal 1
155 |(% style="width:139px" %)ACI2|(% style="width:242px" %)Analog Current Input Terminal 2
156 |(% style="width:139px" %)ACI1|(% style="width:242px" %)Analog Current Input Terminal 1
157
158 **Lower screw terminal block (from left to right):**
159
160 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:253px" %)
161 |=(% style="width: 125px;background-color:#4f81bd;color:white" %)Screw Terminal|=(% style="width: 128px;background-color:#4f81bd;color:white" %)Function
162 |(% style="width:125px" %)RO1-2|(% style="width:128px" %)Relay Output 1
163 |(% style="width:125px" %)RO1-1|(% style="width:128px" %)Relay Output 1
164 |(% style="width:125px" %)RO2-2|(% style="width:128px" %)Relay Output 2
165 |(% style="width:125px" %)RO2-1|(% style="width:128px" %)Relay Output 2
166 |(% style="width:125px" %)DI2+|(% style="width:128px" %)Digital Input 2
167 |(% style="width:125px" %)DI2-|(% style="width:128px" %)Digital Input 2
168 |(% style="width:125px" %)DI1+|(% style="width:128px" %)Digital Input 1
169 |(% style="width:125px" %)DI1-|(% style="width:128px" %)Digital Input 1
170 |(% style="width:125px" %)DO2|(% style="width:128px" %)Digital Output 2
171 |(% style="width:125px" %)DO1|(% style="width:128px" %)Digital Output 1
172
173 == 2.3 Connecting LT-22222-LA to a Power Source ==
174
175
176 The LT-22222-LA I/O Controller can be powered by a **7–24V DC** power source. Connect your power supply’s **positive wire** to the **VIN** and the **negative wire** to the **GND** screw terminals. The power indicator **(PWR) LED** will turn on when the device is properly powered.
177
178 {{warning}}
179 **We recommend that you power on the LT-22222-LA after adding its registration information to the LoRaWAN network server. Otherwise, the device will continuously send join-request messages to attempt to join a LoRaWAN network but will fail.**
180 {{/warning}}
181
182 [[image:1653297104069-180.png]]
183
184
185
186 = 3. Registering LT-22222-LA with a LoRaWAN Network Server =
187
188
189 The LT-22222-LA supports both OTAA (Over-the-Air Activation) and ABP (Activation By Personalization) methods to activate with a LoRaWAN Network Server. However, OTAA is the most secure method for activating a device with a LoRaWAN Network Server. OTAA regenerates session keys upon initial registration and regenerates new session keys after any subsequent reboots. By default, the LT-22222-LA is configured to operate in LoRaWAN Class C mode.
190
191
192 == 3.1 Prerequisites ==
193
194
195 The LT-22222-LA comes with device registration information such as DevEUI, AppEUI, and AppKey which allows you to register it with a LoRaWAN network. This registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
196
197 {{info}}
198 If you are unable to set the provided root key and other identifiers in the network server, you must generate new keys and identifiers with the network server and configure the device with them using AT commands.
199 {{/info}}
200
201 The following subsections explain how to register the LT-22222-LA with different LoRaWAN network server providers.
202
203 [[image:image-20230425173427-2.png]]
204
205 == 3.2 The Things Stack ==
206
207
208 This section guides you through how to register your LT-22222-LA with The Things Stack Sandbox.
209
210 {{info}}
211 The Things Stack Sandbox was formally called The Things Stack Community Edition.
212 {{/info}}
213
214
215 The network diagram below illustrates the connection between the LT-22222-LA and The Things Stack, as well as how the data can be integrated with the ThingsEye IoT platform.
216
217 [[image:1751523649311-511.png||height="407" width="1378"]]
218
219 {{info}}
220 You can use a LoRaWAN gateway, such as the [[Dragino LPS8N>>https://www.dragino.com/products/lora-lorawan-gateway/item/200-lps8n.html]], to expand or create LoRaWAN coverage in your area.
221 {{/info}}
222
223
224 === 3.2.1 Setting up ===
225
226
227 * Sign up for a free account with [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] if you do not have one yet.
228 * Log in to your The Things Stack Sandbox account.
229 * Create an **application** with The Things Stack if you do not have one yet (E.g., dragino-docs).
230 * Go to your application's page and click on the **End devices** in the left menu.
231 * On the End devices page, click on **+ Register end device**. Two registration options are available:
232
233 ==== 3.2.1.1 Using the LoRaWAN Device Repository ====
234
235
236 * On the **Register end device** page:
237 ** Select the option **Select the end device in the LoRaWAN Device Repository **under **Input method**.
238 ** Select the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)** from the respective dropdown lists.
239 *** **End device brand**: Dragino Technology Co., Limited
240 *** **Model**: LT22222-L I/O Controller
241 *** **Hardware ver**: Unknown
242 *** **Firmware ver**: 1.6.0
243 *** **Profile (Region)**: Select the region that matches your device.
244 ** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
245
246 [[image:lt-22222-l-dev-repo-reg-p1.png]]
247
248
249 * Register end device page continued...
250 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message 'This end device can be registered on the network'.
251 ** In the **DevEUI** field, enter the **DevEUI**.
252 ** In the **AppKey** field, enter the **AppKey.**
253 ** In the **End device ID** field, enter a unique name for your LT-22222-LA within this application.
254 ** Under **After registration**, select the **View registered end device** option.
255 ** Click **Register end device** button.
256
257 [[image:lt-22222-l-dev-repo-reg-p2.png]]
258
259
260 * You will be navigated to the **Device overview** page.
261
262 [[image:lt-22222-device-overview.png]]
263
264
265 ==== 3.2.1.2 Adding device manually ====
266
267
268 * On the **Register end device** page:
269 ** Select the option **Enter end device specifies manually** under **Input method**.
270 ** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
271 ** Select the **LoRaWAN version** as **LoRaWAN Specification 1.0.3**
272 ** Select the **Regional Parameters version** as** RP001 Regional Parameters 1.0.3 revision A**
273 ** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the hidden section.
274 ** Select the option **Over the air activation (OTAA)** under the **Activation mode.**
275 ** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities** dropdown list.
276
277 [[image:lt-22222-l-manually-p1.png]]
278
279
280 * Register end device page continued...
281 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message '//**This end device can be registered on the network**//'
282 ** In the **DevEUI** field, enter the **DevEUI**.
283 ** In the **AppKey** field, enter the **AppKey**.
284 ** In the **End device ID** field, enter a unique name for your LT-22222-LA within this application.
285 ** Under **After registration**, select the **View registered end device** option.
286 ** Click the **Register end device** button.
287
288 [[image:lt-22222-l-manually-p2.png]]
289
290
291 You will be navigated to the **Device overview** page.
292
293 [[image:lt-22222-device-overview.png]]
294
295
296
297 === 3.2.2 Joining ===
298
299
300 On the end device's page (in this case, lt-22222-la), click on **Live data** tab. The Live data panel for your device will display. Initially, it is blank.
301
302 Now power on your LT-22222-LA. The **TX LED** will **fast-blink 5 times** which means the LT-22222-LA will enter the **work mode** and start to **join** The Things Stack network server. The **TX LED** will be on for **5 seconds** after joining the network. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server.
303
304 [[image:lt-22222-l-joining.png]]
305
306
307
308 === 3.2.3 Uplinks ===
309
310
311 After successfully joining, the device will send its first **uplink data message** to The Things Stack application it belongs to (in this example, it is **dragino-docs**). When the LT-22222-LA sends an uplink message to the server, the **TX LED** turns on for **1 second**. By default, you will receive an uplink data message from the device every 10 minutes.
312
313 Click on one of the **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the **decode_payload {}** JSON object.
314
315 [[image:lt-22222-ul-payload-decoded.png]]
316
317
318 If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **Applications > [your application] > End devices** > [**your end device]** > **Payload formatters** > **Uplink**. Then select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes.
319
320 {{info}}
321 The Things Stack provides two levels of payload formatters: application level and device level. The device-level payload formatters **override **the application-level payload formatters.
322 {{/info}}
323
324 [[image:lt-22222-ul-payload-fmt.png]]
325
326
327 We have written a payload formatter that resolves some decoding issues present in The Things Stack Device Repository payload formatter. You can add it under the **Custom JavaScript formatter**. It can be found [[here>>https://github.com/dragino/dragino-end-node-decoder/blob/main/LT22222-L/v1.6_decoder_ttn%20.txt]]:
328
329 [[image:lt-22222-l-js-custom-payload-formatter.png]]
330
331
332 === 3.2.4 Downlinks ===
333
334
335 When the LT-22222-L receives a downlink message from the LoRaWAN Network Server, the **RX LED** turns on for **1 second**.
336
337
338 == 3.3 Working Modes and Uplink Payload formats ==
339
340
341 The LT-22222-LA has 5 **working modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any working mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
342
343 * (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO
344
345 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
346
347 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
348
349 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
350
351 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
352
353 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
354
355 The uplink messages are sent over LoRaWAN FPort=2. By default, an uplink message is sent every 10 minutes.
356
357
358 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
359
360
361 (((
362 This is the default mode.
363
364 The uplink payload is 11 bytes long.
365 (% wfd-invisible="true" style="display:none" %)
366
367 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
368 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
369 |Value|(((
370 AVI1 voltage
371 )))|(((
372 AVI2 voltage
373 )))|(((
374 ACI1 Current
375 )))|(((
376 ACI2 Current
377 )))|**DIDORO***|(((
378 Reserve
379 )))|MOD
380 )))
381
382 (((
383 (% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below.
384
385 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
386 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
387 |RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
388 )))
389
390 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
391 * DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW.
392 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
393
394 (% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-LA**
395
396 For example, if the payload is: [[image:image-20220523175847-2.png]]
397
398
399 **The interface values can be calculated as follows:  **
400
401 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
402
403 AVI2 channel voltage is 0x04AC/1000=1.196V
404
405 ACI1 channel current is 0x1310/1000=4.880mA
406
407 ACI2 channel current is 0x1300/1000=4.864mA
408
409 The last byte 0xAA= **10101010**(b) means,
410
411 * [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
412 * [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
413 * **[1] DI3 - not used for LT-22222-LA.**
414 * [0] DI2 channel input is LOW, and the DI2 LED is OFF.
415 * [1] DI1 channel input state:
416 ** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
417 ** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
418 ** DI1 LED is ON in both cases.
419 * **[0] DO3 - not used for LT-22222-LA.**
420 * [1] DO2 channel output is LOW, and the DO2 LED is ON.
421 * [0] DO1 channel output state:
422 ** DO1 is FLOATING when there is no load between DO1 and V+.
423 ** DO1 is HIGH and there is a load between DO1 and V+.
424 ** DO1 LED is OFF in both cases.
425
426 Reserve = 0
427
428 MOD = 1
429
430
431 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
432
433
434 (((
435 **For LT-22222-LA**: In this mode, **DI1 and DI2** are used as counting pins.
436 )))
437
438 (((
439 The uplink payload is 11 bytes long.
440
441 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
442 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
443 It starts counting again when it reaches the maximum value.**
444
445 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
446 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
447 |Value|COUNT1|COUNT2 |DIDORO*|(((
448 Reserve
449 )))|MOD
450 )))
451
452 (((
453 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, FIRST, Reserve, Reserve, DO3, DO2 and DO1, and its size is 1 byte long as shown below.
454
455 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
456 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
457 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
458
459 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
460 )))
461
462 * FIRST: Indicates that this is the first packet after joining the network.
463 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
464
465 (((
466 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-LA**
467
468
469 )))
470
471 (((
472 **To activate this mode, run the following AT commands:**
473 )))
474
475 (((
476 (% class="box infomessage" %)
477 (((
478 **AT+MOD=2**
479
480 **ATZ**
481 )))
482 )))
483
484 (((
485
486
487 (% style="color:#4f81bd" %)**AT Commands for counting:**
488 )))
489
490 (((
491 **For LT22222-LA:**
492
493 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
494
495 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
496
497 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
498
499 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
500
501 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
502
503 (% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
504 )))
505
506
507
508
509
510
511
512
513
514
515 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
516
517
518 (% style="color:red" %)**Note: The maximum count depends on the bytes it is.
519 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
520 It starts counting again when it reaches the maximum value.**
521
522 **LT22222-LA**: In this mode, the DI1 is used as a counting pin.
523
524 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
525 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
526 |Value|COUNT1|(((
527 ACI1 Current
528 )))|(((
529 ACI2 Current
530 )))|DIDORO*|Reserve|MOD
531
532 (((
533 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
534
535 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
536 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
537 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
538 )))
539
540 * RO is for the relay. ROx=1: closed, ROx=0 always open.
541 * FIRST: Indicates that this is the first packet after joining the network.
542 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
543
544 (((
545 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-LA.**
546 )))
547
548
549
550
551
552
553
554
555
556
557 (((
558 **To activate this mode, run the following AT commands:**
559 )))
560
561 (((
562 (% class="box infomessage" %)
563 (((
564 **AT+MOD=3**
565
566 **ATZ**
567 )))
568 )))
569
570 (((
571 AT Commands for counting:
572
573 The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
574 )))
575
576
577 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
578
579
580 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
581 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
582 It starts counting again when it reaches the maximum value.**
583
584
585 (((
586 **LT22222-LA**: In this mode, the DI1 is used as a counting pin.
587 )))
588
589 (((
590 The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
591
592 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
593 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
594 |Value|COUNT1|AVI1 Counting|DIDORO*|(((
595 Reserve
596 )))|MOD
597 )))
598
599 (((
600 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
601
602 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
603 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
604 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
605 )))
606
607 * RO is for the relay. ROx=1: closed, ROx=0 always open.
608 * FIRST: Indicates that this is the first packet after joining the network.
609 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
610
611 (((
612 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
613
614
615 )))
616
617 (((
618 **To activate this mode, run the following AT commands:**
619 )))
620
621 (((
622 (% class="box infomessage" %)
623 (((
624 **AT+MOD=4**
625
626 **ATZ**
627 )))
628 )))
629
630 (((
631 AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
632 )))
633
634 (((
635 **In addition to that, below are the commands for AVI1 Counting:**
636
637 (% style="color:blue" %)**AT+SETCNT=3,60 **(%%)**(Sets AVI1 Count to 60)**
638
639 (% style="color:blue" %)**AT+VOLMAX=20000 **(%%)**(If the AVI1 voltage is higher than VOLMAX (20000mV =20V), the counter increases by 1)**
640
641 (% style="color:blue" %)**AT+VOLMAX=20000,0 **(%%)**(If the AVI1 voltage is lower than VOLMAX (20000mV =20V), counter increases by 1)**
642
643 (% style="color:blue" %)**AT+VOLMAX=20000,1 **(%%)**(If the AVI1 voltage is higher than VOLMAX (20000mV =20V), counter increases by 1)**
644 )))
645
646
647
648
649
650
651
652
653
654
655 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
656
657
658 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
659 The maximum count for four bytes is FFFF (hex) = 65535 (dec).
660 It starts counting again when it reaches the maximum value.**
661
662
663 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
664
665 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
666 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
667 |Value|(((
668 AVI1 voltage
669 )))|(((
670 AVI2 voltage
671 )))|(((
672 ACI1 Current
673 )))|COUNT1|DIDORO*|(((
674 Reserve
675 )))|MOD
676
677 (((
678 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
679
680 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
681 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
682 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
683 )))
684
685 * RO is for the relay. ROx=1: closed, ROx=0 always open.
686 * FIRST: Indicates that this is the first packet after joining the network.
687 * (((
688 DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
689 )))
690
691 (((
692 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-LA.**
693 )))
694
695 (((
696 **To activate this mode, run the following AT commands:**
697 )))
698
699 (((
700 (% class="box infomessage" %)
701 (((
702 **AT+MOD=5**
703
704 **ATZ**
705 )))
706 )))
707
708 (((
709 Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
710 )))
711
712
713
714
715
716
717
718
719
720
721 === 3.3.6 AT+ADDMOD~=6 (Trigger Mode, Optional) ===
722
723
724 (% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate __alongside__ with other modes.**
725
726 For example, if you configure the following commands:
727
728 * **AT+MOD=1 ** **~-~->**  Sets the default working mode
729 * **AT+ADDMOD6=1**   **~-~->**  Enables trigger mode
730
731 The LT-22222-LA will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. It will send uplink packets in two cases:
732
733 1. Periodic uplink: Based on TDC time. The payload is the same as in normal mode (MOD=1 as set above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
734 1. (((
735 Trigger uplink: sent when a trigger condition is met. In this case, LT will send two packets
736
737 * The first uplink uses the payload specified in trigger mode (MOD=6).
738 * The second packet uses the normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**confirmed uplinks.**
739 )))
740
741 (% style="color:#037691" %)**AT Commands to set Trigger Conditions**:
742
743 (% style="color:#4f81bd" %)**Trigger based on voltage**:
744
745 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
746
747
748 **Example:**
749
750 AT+AVLIM=3000,6000,0,2000 (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
751
752 AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0 for parameters that are not in use)
753
754
755 (% style="color:#4f81bd" %)**Trigger based on current**:
756
757 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
758
759
760 **Example:**
761
762 AT+ACLIM=10000,15000,0,0 (triggers an uplink if AC1 current is lower than 10mA or higher than 15mA)
763
764
765 (% style="color:#4f81bd" %)**Trigger based on DI status**:
766
767 DI status triggers Flag.
768
769 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
770
771
772 **Example:**
773
774 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
775
776
777 (% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
778
779 **Type Code**: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
780
781 **Format**: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
782
783 AA: Type Code for this downlink Command:
784
785 xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
786
787 yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
788
789 yy2 yy2: AC1 or AV1 HIGH limit.
790
791 yy3 yy3: AC2 or AV2 LOW limit.
792
793 Yy4 yy4: AC2 or AV2 HIGH limit.
794
795
796 **Example 1**: AA 00 13 88 00 00 00 00 00 00
797
798 Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
799
800
801 **Example 2**: AA 02 01 00
802
803 Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
804
805
806 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
807
808 MOD6 Payload: a total of 11 bytes
809
810 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
811 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
812 |Value|(((
813 TRI_A FLAG
814 )))|(((
815 TRI_A Status
816 )))|(((
817 TRI_DI FLAG+STA
818 )))|Reserve|Enable/Disable MOD6|(((
819 MOD(6)
820 )))
821
822 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Total 1 byte as below.
823
824 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
825 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
826 |(((
827 AV1_LOW
828 )))|(((
829 AV1_HIGH
830 )))|(((
831 AV2_LOW
832 )))|(((
833 AV2_HIGH
834 )))|(((
835 AC1_LOW
836 )))|(((
837 AC1_HIGH
838 )))|(((
839 AC2_LOW
840 )))|(((
841 AC2_HIGH
842 )))
843
844 * Each bit shows if the corresponding trigger has been configured.
845
846 **Example:**
847
848 10100000: This means the system is configured to use the triggers AV1_LOW and AV2_LOW.
849
850
851 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is triggered. Total 1 byte as below.
852
853 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
854 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
855 |(((
856 AV1_LOW
857 )))|(((
858 AV1_HIGH
859 )))|(((
860 AV2_LOW
861 )))|(((
862 AV2_HIGH
863 )))|(((
864 AC1_LOW
865 )))|(((
866 AC1_HIGH
867 )))|(((
868 AC2_LOW
869 )))|(((
870 AC2_HIGH
871 )))
872
873 * Each bit shows which status has been triggered on this uplink.
874
875 **Example:**
876
877 10000000: The uplink is triggered by AV1_LOW, indicating that the voltage is too low.
878
879
880 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is triggered. Total 1 byte as below.
881
882 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
883 |(% style="width:50px" %)**bit 7**|(% style="width:50px" %)**bit 6**|(% style="width:50px" %)**bit 5**|(% style="width:50px" %)**bit 4**|(% style="width:90px" %)**bit 3**|(% style="width:80px" %)**bit 2**|(% style="width:90px" %)**bit 1**|(% style="width:95px" %)**bit 0**
884 |(% style="width:49px" %)N/A|(% style="width:53px" %)N/A|(% style="width:53px" %)N/A|(% style="width:55px" %)N/A|(% style="width:99px" %)DI2_STATUS|(% style="width:83px" %)DI2_FLAG|(% style="width:98px" %)DI1_STATUS|(% style="width:85px" %)DI1_FLAG
885
886 * Each bit shows which status has been triggered on this uplink.
887
888 **Example:**
889
890 00000111: This means both DI1 and DI2 triggers are enabled, and this packet is triggered by DI1.
891
892 00000101: This means both DI1 and DI2 triggers are enabled.
893
894
895 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enabled. 0x00: MOD6 is disabled.
896
897 Downlink command to poll/request MOD6 status:
898
899 **AB 06**
900
901 When the device receives this command, it will send the MOD6 payload.
902
903
904 === 3.3.7 Payload Decoder ===
905
906 (((
907
908
909 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder/tree/main/LT22222-L]]
910 )))
911
912
913 == 3.4 ​Configure LT-22222-LA via AT Commands or Downlinks ==
914
915
916 (((
917 You can configure LT-22222-LA I/O Controller via AT Commands or LoRaWAN Downlinks.
918 )))
919
920 (((
921 (((
922 There are two types of commands:
923 )))
924 )))
925
926 * (% style="color:blue" %)**Common commands**(%%):
927
928 * (% style="color:blue" %)**Sensor-related commands**(%%):
929
930 === 3.4.1 Common commands ===
931
932
933 (((
934 These are available for each sensor and include actions such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]s.
935
936
937 )))
938
939 === 3.4.2 Sensor-related commands ===
940
941
942 These commands are specially designed for the LT-22222-LA. Commands can be sent to the device using options such as an AT command or a LoRaWAN downlink payload.
943
944
945 ==== 3.4.2.1 Set Transmit/Uplink Interval ====
946
947
948 Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes.
949
950 (% style="color:#037691" %)**AT command**
951
952 (% border="2" style="width:500px" %)
953 |**Command**|AT+TDC=<time>
954 |**Parameters**|**time **: uplink interval in milliseconds
955 |**Get**|AT+TDC=?
956 |**Response**|(((
957 current uplink interval
958
959 OK
960 )))
961 |**Set**|AT+TDC=<time>
962 |**Response**|OK
963 |**Example**|(((
964 AT+TDC=30000
965
966 Sets the uplink interval to **30 seconds** (30000 milliseconds)
967 )))
968
969 (% style="color:#037691" %)**Downlink payload**
970
971 (% border="2" style="width:500px" %)
972 |**Payload**|(((
973 <prefix><time>
974 )))
975 |**Parameters**|(((
976 **prefix** : 0x01
977
978 **time** : uplink interval in **seconds**, represented by **3  bytes** in **hexadecimal**.
979 )))
980 |**Example**|(((
981 01 **00 00 1E**
982
983 Sets the uplink interval to **30 seconds**
984
985 Conversion: 30 (dec) = 00 00 1E (hex)
986
987 See [[RapidTables>>https://www.rapidtables.com/convert/number/decimal-to-hex.html?x=30]]
988
989 [[image:Screenshot%202024-11-23%20at%2018.27.11.png||alt="Screenshot 2024-11-23 at 18.27.11.png"]]
990 )))
991
992 ==== 3.4.2.2 Set the Working Mode (AT+MOD) ====
993
994
995 Sets the working mode.
996
997 (% style="color:#037691" %)**AT command**
998
999 (% border="2" style="width:500px" %)
1000 |(% style="width:97px" %)**Command**|(% style="width:413px" %)AT+MOD=<working_mode>
1001 |(% style="width:97px" %)**Parameters**|(% style="width:413px" %)(((
1002 **working_mode** :
1003
1004 1 = (Default mode/factory set):  2ACI + 2AVI + DI + DO + RO
1005
1006 2 = Double DI Counting + DO + RO
1007
1008 3 = Single DI Counting + 2 x ACI + DO + RO
1009
1010 4 = Single DI Counting + 1 x Voltage Counting + DO + RO
1011
1012 5 = Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
1013
1014 6 = Trigger Mode, Optional, used together with MOD1 ~~ MOD5
1015 )))
1016 |(% style="width:97px" %)**Get**|(% style="width:413px" %)AT+MOD=?
1017 |(% style="width:97px" %)**Response**|(% style="width:413px" %)(((
1018 Current working mode
1019
1020 OK
1021 )))
1022 |(% style="width:97px" %)**Set**|(% style="width:413px" %)AT+MOD=<working_mode>
1023 |(% style="width:97px" %)**Response**|(% style="width:413px" %)(((
1024 Attention:Take effect after ATZ
1025
1026 OK
1027 )))
1028 |(% style="width:97px" %)**Example**|(% style="width:413px" %)(((
1029 AT+MOD=2
1030
1031 Sets the device to working mode 2 (Double DI Counting + DO + RO)
1032 )))
1033
1034 (% class="wikigeneratedid" %)
1035 (% style="color:#037691" %)**Downlink payload**
1036
1037 (% border="2" style="width:500px" %)
1038 |(% style="width:98px" %)**Payload**|(% style="width:400px" %)<prefix><working_mode>
1039 |(% style="width:98px" %)**Parameters**|(% style="width:400px" %)(((
1040 **prefix** : 0x0A
1041
1042 **working_mode** : Working mode, represented by 1 byte in hexadecimal.
1043 )))
1044 |(% style="width:98px" %)**Example**|(% style="width:400px" %)(((
1045 0A **02**
1046
1047 Sets the device to working mode 2 (Double DI Counting + DO + RO)
1048 )))
1049
1050 ==== 3.4.2.3 Request an uplink from the device ====
1051
1052
1053 Requests an uplink from LT-22222-LA. The content of the uplink payload varies based on the device's current working mode.
1054
1055 (% style="color:#037691" %)**AT command**
1056
1057 There is no AT Command available for this feature.
1058
1059 (% style="color:#037691" %)**Downlink payload**
1060
1061 (% border="2" style="width:500px" %)
1062 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix>FF
1063 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)**prefix** : 0x08
1064 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1065 08 **FF**
1066
1067 Requests an uplink from LT-22222-L.
1068 )))
1069
1070 ==== 3.4.2.4 Enable/Disable Trigger Mode ====
1071
1072
1073 Enable or disable the trigger mode for the current working mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D628TriggerMode2COptional29"]]).
1074
1075 (% style="color:#037691" %)**AT Command**
1076
1077 (% border="2" style="width:500px" %)
1078 |(% style="width:95px" %)**Command**|(% style="width:403px" %)AT+ADDMOD6=<enable/disable trigger_mode>
1079 |(% style="width:95px" %)**Response**|(% style="width:403px" %)
1080 |(% style="width:95px" %)**Parameters**|(% style="width:403px" %)(((
1081 **enable/disable trigger_mode** :
1082
1083 1 = enable trigger mode
1084
1085 0 = disable trigger mode
1086 )))
1087 |(% style="width:95px" %)**Example**|(% style="width:403px" %)(((
1088 AT+ADDMOD6=1
1089
1090 Enable trigger mode for the current working mode
1091 )))
1092
1093 (% style="color:#037691" %)**Downlink payload**
1094
1095 (% border="2" style="width:500px" %)
1096 |(% style="width:97px" %)**Payload**|(% style="width:401px" %)<prefix><enable/disable trigger_mode>
1097 |(% style="width:97px" %)**Parameters**|(% style="width:401px" %)(((
1098 **prefix** : 0x0A 06 (two bytes in hexadecimal)
1099
1100 **enable/disable trigger_mode** : enable (1) or disable (0), represented by 1 byte in hexadecimal.
1101 )))
1102 |(% style="width:97px" %)**Example**|(% style="width:401px" %)(((
1103 0A 06 **01**
1104
1105 Enable trigger mode for the current working mode
1106 )))
1107
1108 ==== 3.4.2.5 Request trigger settings ====
1109
1110
1111 Requests the trigger settings.
1112
1113 (% style="color:#037691" %)**AT Command:**
1114
1115 There is no AT Command available for this feature.
1116
1117 (% style="color:#037691" %)**Downlink Payload**
1118
1119 (% border="2" style="width:500px" %)
1120 |(% style="width:95px" %)**Payload**|(% style="width:403px" %)<prefix>
1121 |(% style="width:95px" %)**Parameters**|(% style="width:403px" %)**prefix **: AB 06 (two bytes in hexadecimal)
1122 |(% style="width:95px" %)**Example**|(% style="width:403px" %)(((
1123 AB 06
1124
1125 Uplink the trigger settings.
1126 )))
1127
1128 ==== 3.4.2.6 Enable/Disable DI1/DI2/DI3 as a trigger ====
1129
1130
1131 Enable or disable DI1/DI2/DI3 as a trigger.
1132
1133 (% style="color:#037691" %)**AT Command**
1134
1135 (% border="2" style="width:500px" %)
1136 |(% style="width:98px" %)**Command**|(% style="width:400px" %)AT+DTRI=<DI1_trigger>,<DI2_trigger>
1137 |(% style="width:98px" %)**Response**|(% style="width:400px" %)
1138 |(% style="width:98px" %)**Parameters**|(% style="width:400px" %)(((
1139 **DI1_trigger:**
1140
1141 1 = enable DI1 trigger
1142
1143 0 = disable DI1 trigger
1144
1145 **DI2 _trigger**
1146
1147 1 = enable DI2 trigger
1148
1149 0 = disable DI2 trigger
1150 )))
1151 |(% style="width:98px" %)**Example**|(% style="width:400px" %)(((
1152 AT+DTRI=1,0
1153
1154 Enable DI1 trigger, disable DI2 trigger
1155 )))
1156
1157 (% class="wikigeneratedid" %)
1158 (% style="color:#037691" %)**Downlink Payload**
1159
1160 (% border="2" style="width:500px" %)
1161 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix><DI1_trigger><DI2_trigger>
1162 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1163 **prefix :** AA 02 (two bytes in hexadecimal)
1164
1165 **DI1_trigger:**
1166
1167 1 = enable DI1 trigger, represented by 1 byte in hexadecimal.
1168
1169 0 = disable DI1 trigger, represented by 1 byte in hexadecimal.
1170
1171 **DI2 _trigger**
1172
1173 1 = enable DI2 trigger, represented by 1 byte in hexadecimal.
1174
1175 0 = disable DI2 trigger, represented by 1 byte in hexadecimal.
1176 )))
1177 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1178 AA 02 **01 00**
1179
1180 Enable DI1 trigger, disable DI2 trigger
1181 )))
1182
1183 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as a trigger ====
1184
1185
1186 Sets DI1 or DI3 (for LT-33222-L) as a trigger.
1187
1188 (% style="color:#037691" %)**AT Command**
1189
1190 (% border="2" style="width:500px" %)
1191 |(% style="width:101px" %)**Command**|(% style="width:397px" %)AT+TRIG1=<interrupt_mode>,<minimum_signal_duration>
1192 |(% style="width:101px" %)**Response**|(% style="width:397px" %)
1193 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1194 **interrupt_mode** :  0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
1195
1196 **minimum_signal_duration** : the **minimum signal duration** required for the DI1 port to recognize a valid trigger.
1197 )))
1198 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1199 AT+TRIG1=1,100
1200
1201 Set the DI1 port to trigger on a rising edge; the valid signal duration is 100 ms.
1202 )))
1203
1204 (% class="wikigeneratedid" %)
1205 (% style="color:#037691" %)**Downlink Payload**
1206
1207 (% border="2" style="width:500px" %)
1208 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix><interrupt_mode><minimum_signal_duration>
1209 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1210 **prefix** : 09 01 (hexadecimal)
1211
1212 **interrupt_mode** : 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1), represented by 1 byte in hexadecimal.
1213
1214 **minimum_signal_duration** : in milliseconds, represented two bytes in hexadecimal.
1215 )))
1216 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1217 09 01 **01 00 64**
1218
1219 Set the DI1 port to trigger on a rising edge; the valid signal duration is 100 ms.
1220 )))
1221
1222 ==== 3.4.2.8 Trigger2 – Set DI2 as a trigger ====
1223
1224
1225 Sets DI2 as a trigger.
1226
1227 (% style="color:#037691" %)**AT Command**
1228
1229 (% border="2" style="width:500px" %)
1230 |(% style="width:94px" %)**Command**|(% style="width:404px" %)AT+TRIG2=<interrupt_mode>,<minimum_signal_duration>
1231 |(% style="width:94px" %)**Response**|(% style="width:404px" %)
1232 |(% style="width:94px" %)**Parameters**|(% style="width:404px" %)(((
1233 **interrupt_mode **:  0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
1234
1235 **minimum_signal_duration** : the **minimum signal duration** required for the DI1 port to recognize a valid trigger.
1236 )))
1237 |(% style="width:94px" %)**Example**|(% style="width:404px" %)(((
1238 AT+TRIG2=0,100
1239
1240 Set the DI1 port to trigger on a falling edge; the valid signal duration is 100 ms.
1241 )))
1242
1243 (% style="color:#037691" %)**Downlink Payload**
1244
1245 (% border="2" style="width:500px" %)
1246 |(% style="width:96px" %)**Payload**|(% style="width:402px" %)<prefix><interrupt_mode><minimum_signal_duration>
1247 |(% style="width:96px" %)**Parameters**|(% style="width:402px" %)(((
1248 **prefix** : 09 02 (hexadecimal)
1249
1250 **interrupt_mode **: 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1), represented by 1 byte in hexadecimal.
1251
1252 **minimum_signal_duration** : in milliseconds, represented two bytes in hexadecimal
1253 )))
1254 |(% style="width:96px" %)**Example**|(% style="width:402px" %)09 02 **00 00 64**
1255
1256 ==== 3.4.2.9 Trigger – Set AC (current) as a trigger ====
1257
1258
1259 Sets the current trigger based on the AC port. See also [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D628TriggerMode2COptional29"]]
1260
1261 (% style="color:#037691" %)**AT Command**
1262
1263 (% border="2" style="width:500px" %)
1264 |(% style="width:104px" %)**Command**|(% style="width:394px" %)(((
1265 AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
1266 )))
1267 |(% style="width:104px" %)**Response**|(% style="width:394px" %)
1268 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1269 **AC1_LIMIT_LOW** : lower limit of the current to be checked
1270
1271 **AC1_LIMIT_HIGH **: higher limit of the current to be checked
1272
1273 **AC2_LIMIT_HIGH **: lower limit of the current to be checked
1274
1275 **AC2_LIMIT_LOW** : higher limit of the current to be checked
1276 )))
1277 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1278 AT+ACLIM=10000,15000,0,0
1279
1280 Triggers an uplink if AC1 current is lower than 10mA or higher than 15mA
1281 )))
1282 |(% style="width:104px" %)Note|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D628TriggerMode2COptional29"]]
1283
1284 (% style="color:#037691" %)**Downlink Payload**
1285
1286 (% border="2" style="width:500px" %)
1287 |(% style="width:104px" %)**Payload**|(% style="width:394px" %)<prefix><AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
1288 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1289 **prefix **: AA 01 (hexadecimal)
1290
1291 **AC1_LIMIT_LOW** : lower limit of the current to be checked, two bytes in hexadecimal
1292
1293 **AC1_LIMIT_HIGH **: higher limit of the current to be checked, two bytes in hexadecimal
1294
1295 **AC2_LIMIT_HIGH **: lower limit of the current to be checked, two bytes in hexadecimal
1296
1297 **AC2_LIMIT_LOW** : higher limit of the current to be checked, two bytes in hexadecimal
1298 )))
1299 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1300 AA 01 **27** **10 3A** **98** 00 00 00 00
1301
1302 Triggers an uplink if AC1 current is lower than 10mA or higher than 15mA. Set all values to zero for AC2 limits because we are only checking AC1 limits.
1303 )))
1304 |(% style="width:104px" %)Note|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D628TriggerMode2COptional29"]]
1305
1306 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
1307
1308
1309 Sets the current trigger based on the AV port. See also [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D628TriggerMode2COptional29"]]
1310
1311 (% style="color:#037691" %)**AT Command**
1312
1313 (% border="2" style="width:500px" %)
1314 |(% style="width:104px" %)**Command**|(% style="width:387px" %)AT+AVLIM= AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
1315 |(% style="width:104px" %)**Response**|(% style="width:387px" %)
1316 |(% style="width:104px" %)**Parameters**|(% style="width:387px" %)(((
1317 **AC1_LIMIT_LOW** : lower limit of the current to be checked
1318
1319 **AC1_LIMIT_HIGH **: higher limit of the current to be checked
1320
1321 **AC2_LIMIT_HIGH **: lower limit of the current to be checked
1322
1323 **AC2_LIMIT_LOW** : higher limit of the current to be checked
1324 )))
1325 |(% style="width:104px" %)**Example**|(% style="width:387px" %)(((
1326 AT+AVLIM=3000,6000,0,2000
1327
1328 Triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V
1329 )))
1330 |(% style="width:104px" %)**Note**|(% style="width:387px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D628TriggerMode2COptional29"]]
1331
1332 (% style="color:#037691" %)**Downlink Payload**
1333
1334 (% border="2" style="width:500px" %)
1335 |(% style="width:104px" %)**Payload**|(% style="width:394px" %)<prefix><AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
1336 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1337 **prefix **: AA 00 (hexadecimal)
1338
1339 **AV1_LIMIT_LOW** : lower limit of the voltage to be checked, two bytes in hexadecimal
1340
1341 **AV1_LIMIT_HIGH **: higher limit of the voltage to be checked, two bytes in hexadecimal
1342
1343 **AV2_LIMIT_HIGH **: lower limit of the voltage to be checked, two bytes in hexadecimal
1344
1345 **AV2_LIMIT_LOW** : higher limit of the voltage to be checked, two bytes in hexadecimal
1346 )))
1347 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1348 AA 00 **0B B8 17 70 00 00 07 D0**
1349
1350 Triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V.
1351 )))
1352 |(% style="width:104px" %)**Note**|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D628TriggerMode2COptional29"]]
1353
1354 ==== 3.4.2.11 Trigger – Set the minimum interval ====
1355
1356
1357 Sets the AV and AC trigger minimum interval. The device won't respond to a second trigger within this set time after the first trigger.
1358
1359 (% style="color:#037691" %)**AT Command**
1360
1361 (% border="2" style="width:500px" %)
1362 |(% style="width:113px" %)**Command**|(% style="width:385px" %)AT+ATDC=<time>
1363 |(% style="width:113px" %)**Response**|(% style="width:385px" %)
1364 |(% style="width:113px" %)**Parameters**|(% style="width:385px" %)(((
1365 **time** : in minutes
1366 )))
1367 |(% style="width:113px" %)**Example**|(% style="width:385px" %)(((
1368 AT+ATDC=5
1369
1370 The device won't respond to the second trigger within 5 minutes after the first trigger.
1371 )))
1372 |(% style="width:113px" %)**Note**|(% style="width:385px" %)(% style="color:red" %)**The time must be greater than 5 minutes.**
1373
1374 (% style="color:#037691" %)**Downlink Payload**
1375
1376 (% border="2" style="width:500px" %)
1377 |(% style="width:112px" %)**Payload**|(% style="width:386px" %)<prefix><time>
1378 |(% style="width:112px" %)**Parameters**|(% style="width:386px" %)(((
1379 **prefix** : AC (hexadecimal)
1380
1381 **time **: in minutes (two bytes in hexadecimal)
1382 )))
1383 |(% style="width:112px" %)**Example**|(% style="width:386px" %)(((
1384 AC **00 05**
1385
1386 The device won't respond to the second trigger within 5 minutes after the first trigger.
1387 )))
1388 |(% style="width:112px" %)**Note**|(% style="width:386px" %)(% style="color:red" %)**The time must be greater than 5 minutes.**
1389
1390 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1391
1392
1393 Controls the digital outputs DO1, DO2, and DO3
1394
1395 (% style="color:#037691" %)**AT Command**
1396
1397 There is no AT Command to control the Digital Output.
1398
1399
1400 (% style="color:#037691" %)**Downlink Payload**
1401
1402 (% border="2" style="width:500px" %)
1403 |(% style="width:115px" %)**Payload**|(% style="width:383px" %)<prefix><DO1><DO2><DO3>
1404 |(% style="width:115px" %)**Parameters**|(% style="width:383px" %)(((
1405 **prefix** : 02 (hexadecimal)
1406
1407 **DOI** : 01: Low,  00: High, 11: No action (1 byte in hex)
1408
1409 **DO2** : 01: Low,  00: High, 11: No action (1 byte in hex)
1410
1411 **DO3 **: 01: Low,  00: High, 11: No action (1 byte in hex)
1412 )))
1413 |(% style="width:115px" %)**Examples**|(% style="width:383px" %)(((
1414 02 **01 00 01**
1415
1416 If there is a load between V+ and DOx, it means DO1 is set to low, DO2 is set to high, and DO3 is set to low.
1417
1418 **More examples:**
1419
1420 (((
1421 01: Low,  00: High,  11: No action
1422
1423 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:383px" %)
1424 |(% style="background-color:#4f81bd; color:white; width:126px" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white; width:85px" %)**DO1**|(% style="background-color:#4f81bd; color:white; width:86px" %)**DO2**|(% style="background-color:#4f81bd; color:white; width:86px" %)**DO3**
1425 |(% style="width:126px" %)02  01  00  11|(% style="width:85px" %)Low|(% style="width:86px" %)High|(% style="width:86px" %)No Action
1426 |(% style="width:126px" %)02  00  11  01|(% style="width:85px" %)High|(% style="width:86px" %)No Action|(% style="width:86px" %)Low
1427 |(% style="width:126px" %)02  11  01  00|(% style="width:85px" %)No Action|(% style="width:86px" %)Low|(% style="width:86px" %)High
1428 )))
1429
1430 (((
1431 (((
1432 (% style="color:red" %)**Note: For the LT-22222-L, there is no DO3; the last byte can have any value.**
1433 )))
1434
1435 (((
1436 (% style="color:red" %)**The device will upload a packet if downlink code executes successfully.**
1437 )))
1438 )))
1439 )))
1440
1441 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1442
1443
1444 (% style="color:#037691" %)**AT command**
1445
1446 There is no AT command to control the digital output.
1447
1448
1449 (% style="color:#037691" %)**Downlink payload**
1450
1451 (% border="2" style="width:500px" %)
1452 |(% style="width:116px" %)**Prefix**|(% style="width:382px" %)0xA9
1453 |(% style="width:116px" %)**Parameters**|(% style="width:382px" %)(((
1454 **inverter_mode**: 1 byte in hex.
1455
1456 **01:** DO pins revert to their original state after the timeout.
1457 **00:** DO pins switch to an inverted state after the timeout.
1458
1459
1460 **DO1_control_method_and_port_status **- 1 byte in hex
1461
1462 0x01 : DO1 set to low
1463
1464 0x00 : DO1 set to high
1465
1466 0x11 : DO1 NO action
1467
1468
1469 **DO2_control_method_and_port_status** - 1 byte in hex
1470
1471 0x01 : DO2 set to low
1472
1473 0x00 : DO2 set to high
1474
1475 0x11 : DO2 NO action
1476
1477
1478 **DO3_control_method_and_port_status **- 1 byte in hex
1479
1480 0x01 : DO3 set to low
1481
1482 0x00 : DO3 set to high
1483
1484 0x11 : DO3 NO action
1485
1486
1487 **latching_time** : 4 bytes in hex
1488
1489 (% style="color:red" %)**Note: **
1490
1491 Since firmware v1.6.0, the latch time supports 4 bytes or 2 bytes
1492
1493 Before firmware v1.6.0, the latch time only supported 2 bytes.
1494
1495 (% style="color:red" %)**The device will uplink a packet if the downlink code executes successfully.**
1496 )))
1497 |(% style="width:116px" %)**Payload format**|(% style="width:382px" %)<prefix><inverter_mode><DO1_control_method_and_port_status><DO2_control_method_and_port_status><DO2_control_method_and_port_status><latching_time>
1498 |(% style="width:116px" %)**Example**|(% style="width:382px" %)(((
1499 **A9 01 01 01 01 07 D0**
1500
1501 DO1 pin, DO2 pin, and DO3 pin will be set to low, last for 2 seconds, and then revert to their original state.
1502
1503
1504 **A9 01 00 01 11 07 D0**
1505
1506 DO1 pin is set to high, DO2 pin is set to low, and DO3 pin takes no action. This lasts for 2 seconds and then reverts to the original state.
1507
1508
1509 **A9 00 00 00 00 07 D0**
1510
1511 DO1 pin, DO2 pin, and DO3 pin will be set to high, last for 2 seconds, and then all change to low.
1512
1513
1514 **A9 00 11 01 00 07 D0**
1515
1516 DO1 pin takes no action, DO2 pin is set to low, and DO3 pin is set to high. This lasts for 2 seconds, after which the DO1 pin takes no action, the DO2 pin is set to high, and the DO3 pin is set to low.
1517 )))
1518
1519 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1520
1521
1522 (% style="color:#037691" %)**AT Command:**
1523
1524 There is no AT Command to control the Relay Output.
1525
1526
1527 (% style="color:#037691" %)**Downlink Payload**
1528
1529 (% border="2" style="width:500px" %)
1530 |(% style="width:113px" %)**Prefix**|(% style="width:384px" %)0x03
1531 |(% style="width:113px" %)**Parameters**|(% style="width:384px" %)(((
1532 **RO1_status** : 1 byte in hex
1533
1534 00: Open
1535
1536 01: Close
1537
1538 11: No action
1539
1540
1541 **RO2_status** : 1 byte in hex
1542
1543 00: Open
1544
1545 01: Close
1546
1547 11: No action
1548 )))
1549 |(% style="width:113px" %)**Payload format**|(% style="width:384px" %)<prefix><RO1_status><RO2_status>
1550 |(% style="width:113px" %)**Example**|(% style="width:384px" %)(((
1551 (% border="2" %)
1552 |=Payload|=RO1|=RO2
1553 |03  00  11|Open|No action
1554 |03  01  11|Close|No action
1555 |03 11  00|No action|Open
1556 |03 11  01|No action|Close
1557 |03 00 00|Open|Open
1558 |03 01 01|Close|Close
1559 |03 01 00|Close|Open
1560 |03 00 01|Open|Close
1561
1562 (% style="color:red" %)**The device will transmit an uplink packet if the downlink payload is executed successfully.**
1563 )))
1564
1565 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1566
1567
1568 Controls the relay output time.
1569
1570
1571 (% style="color:#037691" %)**AT Command:**
1572
1573 There is no AT Command to control the Relay Output
1574
1575
1576 (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1577
1578 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Sets RO1/RO2 relays with time control
1579
1580
1581 This controls the relay output time and includes 4 bytes:
1582
1583 (% style="color:#4f81bd" %)**First byte **(%%)**:** Type code (0x05)
1584
1585 (% style="color:#4f81bd" %)**Second byte (aa)**(%%): Inverter Mode
1586
1587 01: Relays will change back to their original state after a timeout.
1588
1589 00: Relays will change to the inverter state after a timeout.
1590
1591
1592 (% style="color:#4f81bd" %)**Third byte (bb)**(%%): Control Method and Ports status:
1593
1594 [[image:image-20221008095908-1.png]]
1595
1596
1597 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh bytes (cc)**(%%): Latching time. Unit: ms
1598
1599
1600 (% style="color:red" %)**Note:**
1601
1602 Since firmware v1.6.0, the latch time supports both 4 bytes and 2 bytes.
1603
1604 Before firmware v1.6.0, the latch time only supported 2 bytes.
1605
1606
1607 (% style="color:red" %)**The device will uplink a packet if the downlink code executes successfully.**
1608
1609
1610 **Example payload:**
1611
1612 **~1. 05 01 11 07 D0**
1613
1614 Relay1 and Relay2 will be set to NC, lasting 2 seconds, then revert to their original state
1615
1616 **2. 05 01 10 07 D0**
1617
1618 Relay1 will change to NC, Relay2 will change to NO, lasting 2 seconds, and then both will revert to their original state.
1619
1620 **3. 05 00 01 07 D0**
1621
1622 Relay1 will change to NO, Relay2 will change to NC, lasting 2 seconds, then Relay1 will change to NC, and Relay2 will change to NO.
1623
1624 **4. 05 00 00 07 D0**
1625
1626 Relay1 and Relay2 will change to NO, lasting 2 seconds, then both will change to NC.
1627
1628
1629
1630 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1631
1632
1633 When the voltage exceeds the threshold, counting begins. For details, see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1634
1635 (% style="color:#037691" %)**AT Command**
1636
1637 (% border="2" style="width:500px" %)
1638 |(% style="width:137px" %)**Command**|(% style="width:361px" %)AT+VOLMAX=<voltage>,<logic>
1639 |(% style="width:137px" %)**Response**|(% style="width:361px" %)
1640 |(% style="width:137px" %)**Parameters**|(% style="width:361px" %)(((
1641 **voltage** : voltage threshold in mV
1642
1643 **logic**:
1644
1645 **0** : lower than
1646
1647 **1**: higher than
1648
1649 if you leave the logic parameter blank, it is considered 0
1650 )))
1651 |(% style="width:137px" %)**Examples**|(% style="width:361px" %)(((
1652 AT+VOLMAX=20000
1653
1654 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1655
1656 AT+VOLMAX=20000,0
1657
1658 If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1
1659
1660 AT+VOLMAX=20000,1
1661
1662 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1663 )))
1664
1665 (% style="color:#037691" %)**Downlink Payload**
1666
1667 (% border="2" style="width:500px" %)
1668 |(% style="width:140px" %)**Payload**|(% style="width:358px" %)<prefix><voltage><logic>
1669 |(% style="width:140px" %)**Parameters**|(% style="width:358px" %)(((
1670 **prefix** : A5 (hex)
1671
1672 **voltage** : voltage threshold in mV (2 bytes in hex)
1673
1674 **logic**: (1 byte in hexadecimal)
1675
1676 **0** : lower than
1677
1678 **1**: higher than
1679
1680 if you leave the logic parameter blank, it is considered 1 (higher than)
1681 )))
1682 |(% style="width:140px" %)**Example**|(% style="width:358px" %)(((
1683 A5 **4E 20**
1684
1685 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1686
1687 A5 **4E 20 00**
1688
1689 If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1
1690
1691 A5 **4E 20 01**
1692
1693 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1694 )))
1695
1696 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1697
1698
1699 This command allows users to pre-configure specific count numbers for various counting parameters such as Count1, Count2, or AVI1 Count. Use the AT command to set the desired count number for each configuration.
1700
1701 (% style="color:#037691" %)**AT Command**
1702
1703 (% border="2" style="width:500px" %)
1704 |(% style="width:134px" %)**Command**|(% style="width:364px" %)AT+SETCNT=<counting_parameter>,<number>
1705 |(% style="width:134px" %)**Response**|(% style="width:364px" %)
1706 |(% style="width:134px" %)**Parameters**|(% style="width:364px" %)(((
1707 **counting_parameter** :
1708
1709 1: COUNT1
1710
1711 2: COUNT2
1712
1713 3: AVI1 Count
1714
1715 **number** : Start number
1716 )))
1717 |(% style="width:134px" %)**Example**|(% style="width:364px" %)(((
1718 AT+SETCNT=1,10
1719
1720 Sets the COUNT1 to 10.
1721 )))
1722
1723 (% style="color:#037691" %)**Downlink Payload**
1724
1725 (% border="2" style="width:500px" %)
1726 |(% style="width:135px" %)**Payload**|(% style="width:363px" %)<prefix><counting_parameter><number>
1727 |(% style="width:135px" %)**Parameters**|(% style="width:363px" %)(((
1728 prefix : A8 (hex)
1729
1730 **counting_parameter** : (1 byte in hexadecimal)
1731
1732 1: COUNT1
1733
1734 2: COUNT2
1735
1736 3: AVI1 Count
1737
1738 **number** : Start number, 4 bytes in hexadecimal
1739 )))
1740 |(% style="width:135px" %)**Example**|(% style="width:363px" %)(((
1741 A8 **01 00 00 00 0A**
1742
1743 Sets the COUNT1 to 10.
1744 )))
1745
1746 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1747
1748
1749 This command clears the counting in counting mode.
1750
1751 (% style="color:#037691" %)**AT Command**
1752
1753 (% border="2" style="width:500px" %)
1754 |(% style="width:142px" %)**Command**|(% style="width:356px" %)AT+CLRCOUNT
1755 |(% style="width:142px" %)**Response**|(% style="width:356px" %)-
1756
1757 (% style="color:#037691" %)**Downlink Payload**
1758
1759 (% border="2" style="width:500px" %)
1760 |(% style="width:141px" %)**Payload**|(% style="width:357px" %)<prefix><clear?>
1761 |(% style="width:141px" %)**Parameters**|(% style="width:357px" %)(((
1762 prefix : A6 (hex)
1763
1764 clear? : 01 (hex)
1765 )))
1766 |(% style="width:141px" %)**Example**|(% style="width:357px" %)A6 **01**
1767
1768 ==== 3.4.2.19 Set the save intervals of the counting results, RO (Relay Output), and DO (Digital Output) states ====
1769
1770 This command configures the device to periodically save the counting results, RO (Relay Output), and DO (Digital Output) states to internal flash memory at a user-defined interval. By setting a save interval, the device ensures that critical data (counting values and output states) is preserved in case of power loss.
1771 The save interval can be adjusted to the user's needs, with a minimum value of (% style="color:blue" %)**30**(%%) seconds.
1772 The saved RO/DO states can be restored after a device reset by combining this function with the (% style="color:blue" %)**AT+RODORESET**(%%) command.
1773
1774 (% style="color:#037691" %)**AT Command**
1775
1776 (% border="2" style="width:500px" %)
1777 |(% style="width:124px" %)**Command**|(% style="width:374px" %)AT+COUTIME=<time>
1778 |(% style="width:124px" %)**Response**|(% style="width:374px" %)
1779 |(% style="width:124px" %)**Parameters**|(% style="width:374px" %)time : seconds (0 to 16777215)
1780 |(% style="width:124px" %)**Example**|(% style="width:374px" %)(((
1781 AT+COUTIME=60
1782
1783 Sets the device to save its counting results, RO and DO states to the memory every 60 seconds.
1784 )))
1785
1786 (% style="color:#037691" %)**Downlink Payload**
1787
1788 (% border="2" style="width:500px" %)
1789 |(% style="width:123px" %)**Payload**|(% style="width:375px" %)<prefix><time>
1790 |(% style="width:123px" %)**Parameters**|(% style="width:375px" %)(((
1791 prefix : A7
1792
1793 time : seconds, 3 bytes in hexadecimal
1794 )))
1795 |(% style="width:123px" %)**Example**|(% style="width:375px" %)(((
1796 A7 **00 00 3C**
1797
1798 SSets the device to save its counting results, RO and DO states to the memory every 60 seconds.
1799 )))
1800
1801 ==== 3.4.2.20 Reset saved RO and DO states ====
1802
1803
1804 This command allows you to reset the saved relay output (RO) and digital output (DO) states when the device joins the network. By configuring this setting, you can control whether the device should retain or reset the relay states after a reset and rejoin to the network.
1805
1806 (% style="color:#037691" %)**AT Command**
1807
1808 (% border="2" style="width:500px" %)
1809 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+RODORESET=<state>
1810 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1811 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1812 **state** :
1813
1814 **0** : RODO will close when the device joins the network. (default)
1815
1816 **1**: After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1817 )))
1818 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1819 (% style="color:blue" %)**AT+RODORESET=1 **
1820
1821 RODO will close when the device joins the network. (default)
1822
1823 (% style="color:blue" %)**AT+RODORESET=0 **
1824
1825 After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1826 )))
1827
1828 (% style="color:#037691" %)**Downlink Payload**
1829
1830 (% border="2" style="width:500px" %)
1831 |(% style="width:127px" %)**Payload**|(% style="width:371px" %)<prefix><state>
1832 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1833 **prefix** : AD
1834
1835 **state** :
1836
1837 **0** : RODO will close when the device joins the network. (default), represents as 1 byte in hexadecimal.
1838
1839 **1**: After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network. - represents as 1 byte in hexadecimal
1840 )))
1841 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1842 AD **01**
1843
1844 RODO will close when the device joins the network. (default)
1845
1846 AD **00**
1847
1848 After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1849 )))
1850
1851 ==== 3.4.2.21 Encrypted payload ====
1852
1853
1854 This command allows you to configure whether the device should upload data in an encrypted format or in plaintext. By default, the device encrypts the payload before uploading. You can toggle this setting to either upload encrypted data or transmit it without encryption.
1855
1856 (% style="color:#037691" %)**AT Command:**
1857
1858 (% border="2" style="width:500px" %)
1859 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+DECRYPT=<state>
1860 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1861 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1862 **state** :
1863
1864 **1** : The payload is uploaded without encryption
1865
1866 **0** : The payload is encrypted when uploaded (default)
1867 )))
1868 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1869 AT+DECRYPT=1
1870
1871 The payload is uploaded without encryption
1872
1873 AT+DECRYPT=0
1874
1875 The payload is encrypted when uploaded (default)
1876 )))
1877
1878 There is no downlink payload for this configuration.
1879
1880
1881 ==== 3.4.2.22 Get sensor value ====
1882
1883
1884 This command allows you to retrieve and optionally uplink sensor readings through the serial port.
1885
1886 (% style="color:#037691" %)**AT Command**
1887
1888 (% border="2" style="width:500px" %)
1889 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+GETSENSORVALUE=<state>
1890 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1891 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1892 **state** :
1893
1894 **0 **: Retrieves the current sensor reading via the serial port.
1895
1896 **1 **: Retrieves and uploads the current sensor reading via the serial port.
1897 )))
1898 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1899 AT+GETSENSORVALUE=0
1900
1901 Retrieves the current sensor reading via the serial port.
1902
1903 AT+GETSENSORVALUE=1
1904
1905 Retrieves and uplinks the current sensor reading via the serial port.
1906 )))
1907
1908 There is no downlink payload for this configuration.
1909
1910
1911 ==== 3.4.2.23 Resetting the downlink packet count ====
1912
1913
1914 This command manages how the node handles mismatched downlink packet counts. It offers two modes: one disables the reception of further downlink packets if discrepancies occur, while the other resets the downlink packet count to align with the server, ensuring continued communication.
1915
1916 (% style="color:#037691" %)**AT Command**
1917
1918 (% border="2" style="width:500px" %)
1919 |(% style="width:130px" %)**Command**|(% style="width:368px" %)AT+DISFCNTCHECK=<state>
1920 |(% style="width:130px" %)**Response**|(% style="width:368px" %)(((
1921
1922 )))
1923 |(% style="width:130px" %)**Parameters**|(% style="width:368px" %)(((
1924 **state **:
1925
1926 **0** : When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node stops receiving further downlink packets (default).
1927
1928
1929 **1** : When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node resets its downlink packet count to match the server's, ensuring consistency.
1930 )))
1931 |(% style="width:130px" %)**Example**|(% style="width:368px" %)(((
1932 AT+DISFCNTCHECK=0
1933
1934 When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node stops receiving further downlink packets (default).
1935
1936 AT+DISFCNTCHECK=1
1937
1938 When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node resets its downlink packet count to match the server's, ensuring consistency.
1939 )))
1940
1941 There is no downlink payload for this configuration.
1942
1943
1944 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1945
1946
1947 This command controls the behavior of the node when the combined size of the MAC commands (MACANS) from the server and the payload exceed the allowed byte limit for the current data rate (DR). The command provides two modes: one enables splitting the data into batches to ensure compliance with the byte limit, while the other prioritizes the payload and ignores the MACANS in cases of overflow.
1948
1949 (% style="color:#037691" %)**AT Command**
1950
1951 (% border="2" style="width:500px" %)
1952 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+DISMACANS=<state>
1953 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1954 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1955 **state** :
1956
1957 **0** : When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1958
1959 **1** : When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1960 )))
1961 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1962 AT+DISMACANS=0
1963
1964 When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1965
1966 AT+DISMACANS=1
1967
1968 When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1969 )))
1970
1971 (% style="color:#037691" %)**Downlink Payload**
1972
1973 (% border="2" style="width:500px" %)
1974 |(% style="width:126px" %)**Payload**|(% style="width:372px" %)<prefix><state>
1975 |(% style="width:126px" %)**Parameters**|(% style="width:372px" %)(((
1976 **prefix** : 21
1977
1978 **state** : (2 bytes in hexadecimal)
1979
1980 **0** : When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1981
1982 **1 **: When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1983 )))
1984 |(% style="width:126px" %)**Example**|(% style="width:372px" %)(((
1985 21 **00 01**
1986
1987 Set DISMACANS=1
1988 )))
1989
1990 ==== 3.4.2.25 Copy downlink to uplink ====
1991
1992
1993 This command enables the device to immediately uplink the payload of a received downlink packet back to the server. The command allows for quick data replication from downlink to uplink, with a fixed port number of 100.
1994
1995 (% style="color:#037691" %)**AT Command**(%%)**:**
1996
1997 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving a downlink payload from the server, the device will immediately uplink the payload back to the server using port number 100.
1998
1999 Example:**aa xx xx xx xx**         ~/~/ **aa** indicates whether the configuration has changed: **00** means YES, and **01** means NO. **xx xx xx xx** are the bytes uplinked back.
2000
2001
2002 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
2003
2004 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
2005
2006 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
2007
2008 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
2009
2010
2011 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
2012
2013 There is no downlink option available for this feature.
2014
2015
2016 ==== 3.4.2.26 Query firmware version, frequency band, subband, and TDC time ====
2017
2018
2019 This command is used to query key information about the device, including its firmware version, frequency band, subband, and TDC time. By sending the specified payload as a downlink, the server can retrieve this essential data from the device.
2020
2021 * (((
2022 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
2023
2024 (% style="color:blue" %)**26 01  ** (%%) ~/~/  The downlink payload 26 01 is used to query the device's firmware version, frequency band, subband, and TDC time.
2025
2026
2027 )))
2028
2029 **Example:**
2030
2031 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
2032
2033
2034 == 3.5 Integrating with ThingsEye.io ==
2035
2036
2037 The Things Stack application supports integration with ThingsEye.io. Once integrated, ThingsEye.io acts as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
2038
2039
2040 === 3.5.1 Configuring The Things Stack ===
2041
2042
2043 We use The Things Stack Sandbox in this example:
2044
2045 * In **The Things Stack Sandbox**, go to the **Application **for the LT-22222-LA you added.
2046 * Select **MQTT** under **Integrations** in the left menu.
2047 * In the **Connection information **section, under **Connection credentials**, The Things Stack displays an auto-generated **username**. You can use it or provide a new one.
2048 * Click the **Generate new API key** button to generate a password. You can view it by clicking on the **visibility toggle/eye** icon. The API key works as the password.
2049
2050 {{info}}
2051 The username and  password (API key) you created here are required in the next section.
2052 {{/info}}
2053
2054 [[image:tts-mqtt-integration.png]]
2055
2056
2057 === 3.5.2 Configuring ThingsEye.io ===
2058
2059
2060 The ThingsEye.io IoT platform is not open for self-registration at the moment. If you are interested in testing the platform, please send your project information to admin@thingseye.io, and we will create an account for you.
2061
2062 * Login to your [[ThingsEye.io >>https://thingseye.io]]account.
2063 * Under the **Integrations center**, click **Integrations**.
2064 * Click the **Add integration** button (the button with the **+** symbol).
2065
2066 [[image:thingseye-io-step-1.png]]
2067
2068
2069 On the **Add integration** window, configure the following:
2070
2071 **Basic settings:**
2072
2073 * Select **The Things Stack Community** from the **Integration type** list.
2074 * Enter a suitable name for your integration in the **Name **text** **box or keep the default name.
2075 * Ensure the following options are turned on.
2076 ** Enable integration
2077 ** Debug mode
2078 ** Allow creating devices or assets
2079 * Click the **Next** button. you will be navigated to the **Uplink data converter** tab.
2080
2081 [[image:thingseye-io-step-2.png]]
2082
2083
2084 **Uplink data converter:**
2085
2086 * Click the **Create new** button if it is not selected by default.
2087 * Enter a suitable name for the uplink data converter in the **Name **text** **box or keep the default name.
2088 * Click the **JavaScript** button.
2089 * Paste the uplink decoder function into the text area (first, delete the default code). The demo uplink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]].
2090 * Click the **Next** button. You will be navigated to the **Downlink data converter **tab.
2091
2092 [[image:thingseye-io-step-3.png]]
2093
2094
2095 **Downlink data converter (this is an optional step):**
2096
2097 * Click the **Create new** button if it is not selected by default.
2098 * Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name.
2099 * Click the **JavaScript** button.
2100 * Paste the downlink decoder function into the text area (first, delete the default code). The demo downlink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Downlink_Converter.js]].
2101 * Click the **Next** button. You will be navigated to the **Connection** tab.
2102
2103 [[image:thingseye-io-step-4.png]]
2104
2105
2106 **Connection:**
2107
2108 * Choose **Region** from the **Host type**.
2109 * Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...).
2110 * Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The **username **and **password **can be found on the MQTT integration page of your The Things Stack account (see **3.5.1 Configuring The Things Stack**).
2111 * Click the **Check connection** button to test the connection. If the connection is successful, you will see the message saying **Connected**.
2112
2113 [[image:message-1.png]]
2114
2115
2116 * Click the **Add** button.
2117
2118 [[image:thingseye-io-step-5.png]]
2119
2120
2121 Your integration has been added to the** Integrations** list and will be displayed on the **Integrations** page. Check whether the status is shown as **Active**. If not, review your configuration settings and correct any errors.
2122
2123 [[image:thingseye.io_integrationsCenter_integrations.png]]
2124
2125
2126 ==== 3.5.2.1 Viewing integration details ====
2127
2128
2129 Click on your integration from the list. The **Integration details** window will appear with the **Details **tab selected. The **Details **tab shows all the settings you have provided for this integration.
2130
2131 [[image:integration-details.png]]
2132
2133
2134 If you want to edit the settings you have provided, click on the **Toggle edit mode** button. Once you have done click on the **Apply changes **button.
2135
2136 {{info}}
2137 See also [[ThingsEye documentation>>https://wiki.thingseye.io/xwiki/bin/view/Main/]].
2138 {{/info}}
2139
2140
2141 ==== 3.5.2.2 Viewing events ====
2142
2143
2144 The **Events **tab displays all the uplink messages from the LT-22222-L.
2145
2146 * Select **Debug **from the **Event type** dropdown.
2147 * Select the** time frame** from the **time window**.
2148
2149 [[image:thingseye-events.png]]
2150
2151
2152 * To view the **JSON payload** of a message, click on the **three dots (...)** in the **Message** column of the desired message.
2153
2154 [[image:thingseye-json.png]]
2155
2156
2157 ==== 3.5.2.3 Deleting an integration ====
2158
2159
2160 If you want to delete an integration, click the **Delete integratio**n button on the Integrations page.
2161
2162
2163 ==== 3.5.2.4 Viewing sensor data on a dashboard ====
2164
2165
2166 You can create a dashboard with ThingsEye to visualize the sensor data coming from the LT-22222-LA. The following image shows a dashboard created for the LT-22222-LA. See **Creating a dashboard** in ThingsEye documentation for more information.
2167
2168 [[image:lt-22222-l-dashboard.png]]
2169
2170
2171 == 3.6 Interface Details ==
2172
2173 === 3.6.1 Digital Input Ports: DI1/DI2/DI3 (For LT-33222-L, Low Active) ===
2174
2175
2176 Supports** NPN-type **sensors.
2177
2178 [[image:1653356991268-289.png]]
2179
2180
2181 === 3.6.2 Digital Input Ports: DI1/DI2 ===
2182
2183
2184 (((
2185 The DI ports of the LT-22222-LA can support **NPN**, **PNP**, or **dry contact** output sensors.
2186 )))
2187
2188 (((
2189 (((
2190 The part of the internal circuit of the LT-22222-LA shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
2191
2192 [[image:1653357170703-587.png]]
2193 )))
2194 )))
2195
2196
2197 (((
2198 (((
2199 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
2200 )))
2201 )))
2202
2203 (((
2204
2205 )))
2206
2207 (((
2208 (% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
2209 )))
2210
2211 (((
2212 This type of sensor outputs a low (GND) signal when active.
2213 )))
2214
2215 * (((
2216 Connect the sensor's output to DI1-
2217 )))
2218 * (((
2219 Connect the sensor's VCC to DI1+.
2220 )))
2221
2222 (((
2223 When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be:
2224 )))
2225
2226 (((
2227 **= DI1**+** / 1K.**
2228 )))
2229
2230 (((
2231 For example, if** DI1+ **= **12V**, the resulting current is = 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
2232 )))
2233
2234 (((
2235
2236 )))
2237
2238 (((
2239 (% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
2240 )))
2241
2242 (((
2243 This type of sensor outputs a high signal (e.g., 24V) when active.
2244 )))
2245
2246 * (((
2247 Connect the sensor's output to DI1+
2248 )))
2249 * (((
2250 Connect the sensor's GND DI1-.
2251 )))
2252
2253 (((
2254 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
2255 )))
2256
2257 (((
2258 **= DI1+ / 1K.**
2259 )))
2260
2261 (((
2262 If **DI1+ = 24V**, the resulting current is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
2263 )))
2264
2265 (((
2266
2267 )))
2268
2269 (((
2270 (% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
2271 )))
2272
2273 (((
2274 Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
2275 )))
2276
2277 * (((
2278 Connect the sensor's output to DI1+ with a 50K resistor in series.
2279 )))
2280 * (((
2281 Connect the sensor's GND DI1-.
2282 )))
2283
2284 (((
2285 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
2286 )))
2287
2288 (((
2289 **= DI1+ / 51K.**
2290 )))
2291
2292 (((
2293 If the sensor output is 220V, then (% wfd-invisible="true" id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
2294 )))
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305 (% style="color:blue" %)**Example 4**(%%): Connecting to a Dry Contact sensor
2306
2307 From the DI port circuit above, activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference on its own.
2308
2309 To detect a Dry Contact, you can supply a power source to one of the pins of the Dry Contact. A reference circuit diagram is shown below.
2310
2311 [[image:image-20230616235145-1.png]]
2312
2313 (% style="color:blue" %)**Example 5**(%%): Connecting to an Open Collector
2314
2315
2316 [[image:image-20240219115718-1.png]]
2317
2318 === 3.6.3 Digital Output Ports: DO1/DO2 ===
2319
2320
2321 (% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
2322
2323 (% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
2324
2325 [[image:1653357531600-905.png]]
2326
2327
2328 === 3.6.4 Analog Input Interfaces ===
2329
2330
2331 The analog input interface is shown below. The LT-22222-LA will measure the IN2 voltage to calculate the current passing through the load. The formula is:
2332
2333
2334 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
2335
2336 [[image:1653357592296-182.png]]
2337
2338 Example: Connecting a 4~~20mA sensor
2339
2340 We will use the wind speed sensor as an example for reference only.
2341
2342
2343 (% style="color:blue" %)**Specifications of the wind speed sensor:**
2344
2345 (% style="color:red" %)**Red:  12~~24V**
2346
2347 (% style="color:#ffc000" %)**Yellow:  4~~20mA**
2348
2349 **Black:  GND**
2350
2351 **Connection diagram:**
2352
2353 [[image:1653357640609-758.png]]
2354
2355 [[image:1653357648330-671.png]]
2356
2357
2358 Example: Connecting to a regulated power supply to measure voltage
2359
2360 [[image:image-20230608101532-1.png]]
2361
2362 [[image:image-20230608101608-2.jpeg]]
2363
2364 [[image:image-20230608101722-3.png]]
2365
2366
2367 (% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
2368
2369 (% style="color:red" %)**Red:  12~~24v**
2370
2371 **Black:  GND**
2372
2373
2374 === 3.6.5 Relay Output ===
2375
2376
2377 (((
2378 The LT-22222-LA has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
2379
2380 (% style="color:red" %)**Note:**(%%) The ROx pins will be in the Open (NO) state when the LT-22222-LA is powered off.
2381 )))
2382
2383 [[image:image-20220524100215-9.png]]
2384
2385 [[image:image-20220524100215-10.png]]
2386
2387
2388
2389 == 3.7 LED Indicators ==
2390
2391
2392 The table below lists the behaviour of LED indicators for each port function.
2393
2394 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
2395 |(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
2396 |**PWR**|Always on when there is power
2397 |**TX**|(((
2398 (((
2399 Device booting: TX blinks 5 times.
2400 )))
2401
2402 (((
2403 Successful network joins: TX remains ON for 5 seconds.
2404 )))
2405
2406 (((
2407 Transmit a LoRa packet: TX blinks once
2408 )))
2409 )))
2410 |**RX**|RX blinks once when a packet is received.
2411 |**DO1**|For LT-22222-LA: ON when DO1 is low, OFF when DO1 is high
2412 |**DO2**|For LT-22222-LA: ON when DO2 is low, OFF when DO2 is high
2413 |**DI1**|(((
2414 For LT-22222-LA: ON when DI1 is high, OFF when DI1 is low
2415 )))
2416 |**DI2**|(((
2417 For LT-22222-LA: ON when DI2 is high, OFF when DI2 is low
2418 )))
2419 |**RO1**|For LT-22222-LA: ON when RO1 is closed, OFF when RO1 is open
2420 |**RO2**|For LT-22222-LA: ON when RO2 is closed, OFF when RO2 is open
2421
2422 = 4. Using AT Commands =
2423
2424
2425 The LT-22222-LA supports programming using AT Commands.
2426
2427
2428 == 4.1 Connecting the LT-22222-LA to a PC ==
2429
2430
2431 (((
2432 You can use a USB-to-TTL adapter/converter along with a 3.5mm Program Cable to connect the LT-22222-LA to a PC, as shown below.
2433
2434 (% title="Click and drag to resize" %)​​[[image:1751525987713-642.png]]​
2435
2436
2437 )))
2438
2439 (((
2440 On the PC, you need to set the (% style="color:#4f81bd" %)**serial tool **(%%)(such as [[PuTTY>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]] or [[SecureCRT>>https://www.vandyke.com/cgi-bin/releases.php?product=securecrt]]) to a baud rate of (% style="color:green" %)**9600**(%%) to access the serial console of LT-22222-LA. Access to AT commands is disabled by default, and a password (default: (% style="color:green" %)**123456**)(%%) must be entered to enable AT command access, as shown below:
2441 )))
2442
2443 [[image:1653358355238-883.png]]
2444
2445
2446 (((
2447 == 4.2 LT-22222-LA related AT commands ==
2448
2449
2450 )))
2451
2452 (((
2453 The following is the list of all the AT commands related to the LT-22222-LA, except for those used for switching between working modes.
2454
2455 * **##AT##+<CMD>?** : Help on <CMD>
2456 * **##AT##+<CMD>** : Run <CMD>
2457 * **##AT##+<CMD>=<value>** : Set the value
2458 * **##AT##+<CMD>=?** : Get the value
2459 * ##**ATZ**##: Trigger a reset of the MCU
2460 * ##**AT+FDR**##: Reset Parameters to factory default, reserve keys 
2461 * **##AT+DEUI##**: Get or set the Device EUI (DevEUI)
2462 * **##AT+DADDR##**: Get or set the Device Address (DevAddr)
2463 * **##AT+APPKEY##**: Get or set the Application Key (AppKey)
2464 * ##**AT+NWKSKEY**##: Get or set the Network Session Key (NwkSKey)
2465 * **##AT+APPSKEY##**: Get or set the Application Session Key (AppSKey)
2466 * **##AT+APPEUI##**: Get or set the Application EUI (AppEUI)
2467 * **##AT+ADR##**: Get or set the Adaptive Data Rate setting. (0: OFF, 1: ON)
2468 * ##**AT+TXP**##: Get or set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Specification)
2469 * **##AT+DR##**:  Get or set the Data Rate. (0-7 corresponding to DR_X)  
2470 * **##AT+DCS##**: Get or set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
2471 * ##**AT+PNM**##: Get or set the public network mode. (0: off, 1: on)
2472 * ##**AT+RX2FQ**##: Get or set the Rx2 window frequency
2473 * ##**AT+RX2DR**##: Get or set the Rx2 window data rate (0-7 corresponding to DR_X)
2474 * ##**AT+RX1DL**##: Get or set the delay between the end of the Tx and the Rx Window 1 in ms
2475 * ##**AT+RX2DL**##: Get or set the delay between the end of the Tx and the Rx Window 2 in ms
2476 * ##**AT+JN1DL**##: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
2477 * ##**AT+JN2DL**##: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
2478 * ##**AT+NJM**##: Get or set the Network Join Mode. (0: ABP, 1: OTAA)
2479 * ##**AT+NWKID**##: Get or set the Network ID
2480 * ##**AT+FCU**##: Get or set the Frame Counter Uplink (FCntUp)
2481 * ##**AT+FCD**##: Get or set the Frame Counter Downlink (FCntDown)
2482 * ##**AT+CLASS**##: Get or set the Device Class
2483 * ##**AT+JOIN**##: Join Network
2484 * ##**AT+NJS**##: Get OTAA Join Status
2485 * ##**AT+SENDB**##: Send hexadecimal data along with the application port
2486 * ##**AT+SEND**##: Send text data along with the application port
2487 * ##**AT+RECVB**##: Print the last received data in binary format (with hexadecimal values)
2488 * ##**AT+RECV**##: Print the last received data in raw format
2489 * ##**AT+VER**##: Get the current image version and Frequency Band
2490 * ##**AT+CFM**##: Get or Set the confirmation mode (0-1)
2491 * ##**AT+CFS**##: Get confirmation status of the last AT+SEND (0-1)
2492 * ##**AT+SNR**##: Get the SNR of the last received packet
2493 * ##**AT+RSSI**##: Get the RSSI of the last received packet
2494 * ##**AT+TDC**##: Get or set the application data transmission interval in ms
2495 * ##**AT+PORT**##: Get or set the application port
2496 * ##**AT+DISAT**##: Disable AT commands
2497 * ##**AT+PWORD**##: Set password, max 9 digits
2498 * ##**AT+CHS**##: Get or set the Frequency (Unit: Hz) for Single Channel Mode
2499 * ##**AT+CHE**##: Get or set eight channels mode, Only for US915, AU915, CN470
2500 * ##**AT+CFG**##: Print all settings
2501 )))
2502
2503
2504 == 4.2 Common AT Command Sequence ==
2505
2506 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
2507
2508 (((
2509
2510
2511 (((
2512 (% style="color:blue" %)**If the device has not yet joined the network:**
2513 )))
2514 )))
2515
2516 (((
2517 (% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT command access**##
2518 )))
2519
2520 (((
2521 (% style="background-color:#dcdcdc" %)##**AT+FDR ~/~/Reset parameters to factory default, Reserve keys**##
2522 )))
2523
2524 (((
2525 (% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT command access**##
2526 )))
2527
2528 (((
2529 (% style="background-color:#dcdcdc" %)##**AT+NJM=0 ~/~/Set to ABP mode**##
2530 )))
2531
2532 (((
2533 (% style="background-color:#dcdcdc" %)##**ATZ ~/~/Reset MCU**##
2534 )))
2535
2536
2537 (((
2538 (% style="color:blue" %)**If the device has already joined the network:**
2539 )))
2540
2541 (((
2542 (% style="background-color:#dcdcdc" %)##**AT+NJM=0**##
2543 )))
2544
2545 (((
2546 (% style="background-color:#dcdcdc" %)##**ATZ**##
2547 )))
2548
2549
2550 (((
2551
2552 )))
2553
2554
2555 === 4.2.3 Change to Class A ===
2556
2557
2558 (((
2559 (% style="color:blue" %)**If the sensor has JOINED:**
2560
2561 (% style="background-color:#dcdcdc" %)**AT+CLASS=A**
2562
2563 (% style="background-color:#dcdcdc" %)**ATZ**
2564 )))
2565
2566
2567 = 5. Case Study =
2568
2569 == 5.1 Counting how many objects pass through the flow line ==
2570
2571
2572 See [[How to set up to setup counting for objects passing through the flow line>>https://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LT-22222-L/How%20to%20set%20up%20to%20count%20objects%20pass%20in%20flow%20line/]].
2573
2574
2575 = 6. OTA Firmware update =
2576
2577
2578 (% class="wikigeneratedid" %)
2579 User can change firmware LT-22222-LA to:
2580
2581 * Change Frequency band/ region.
2582 * Update with new features.
2583 * Fix bugs.
2584
2585 Firmware and changelog can be downloaded from : **[[Firmware download link>>https://www.dropbox.com/sh/fis3g6nmhv0eokg/AAC6BcCZaX4BdqZkduUvZ3jIa?dl=0]]**
2586
2587
2588 Methods to Update Firmware:
2589
2590 * (Recommanded way) OTA firmware update via wireless : **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
2591 * Update through UART TTL interface : **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
2592
2593
2594
2595 = 7. FAQ =
2596
2597
2598 This section contains some frequently asked questions, which can help you resolve common issues and find solutions quickly.
2599
2600
2601
2602 (((
2603 (((
2604 == 7.2 How to change the LoRaWAN frequency band/region? ==
2605
2606
2607 )))
2608 )))
2609
2610 (((
2611 You can follow the introductions on [[how to upgrade the image>>doc:.https\:wiki\.dragino\.comxwikibinviewMainUser%20Manual%20for%20LoRaWAN%20End%20NodesLT-22222-LA#H6\.OTAFirmwareupdate.WebHome]]. When downloading, select the required image file.
2612 )))
2613
2614 (((
2615
2616
2617 == 7.3 How to set up LT-22222-LA to work with a Single Channel Gateway, such as LG01/LG02? ==
2618
2619
2620 )))
2621
2622 (((
2623 (((
2624 In this case, you need to set the LT-22222-LA to work in ABP mode and transmit on only one frequency.
2625 )))
2626 )))
2627
2628 (((
2629 (((
2630 We assume you have an LG01/LG02 working on the frequency 868400000. Below are the steps.
2631
2632
2633 )))
2634 )))
2635
2636 (((
2637 (% style="color:#0000ff" %)**Step 1**(%%): Log in to The Things Stack Sandbox account and create an ABP device in the application. To do this, use the manual registration option as explained in section 3.2.2.2, //Adding a Device Manually//. Select //Activation by Personalization (ABP)// under Activation Mode. Enter the DevEUI exactly as shown on the registration information sticker, then generate the Device Address, Application Session Key (AppSKey), and Network Session Key (NwkSKey).
2638
2639
2640 )))
2641
2642 (((
2643
2644 )))
2645
2646 {{warning}}
2647 Ensure that the Device Address (DevAddr) and the two keys match between the LT-22222-LA and The Things Stack. You can modify them either in The Things Stack or on the LT-22222-LA to make them align. In The Things Stack, you can configure the NwkSKey and AppSKey on the settings page, but note that the Device Address is generated by The Things Stack.
2648 {{/warning}}
2649
2650
2651 (((
2652 (% style="color:blue" %)**Step 2**(%%)**:  **(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)Run AT commands to configure the LT-22222-LA to operate in single-frequency and ABP mode. The AT commands are as follows:
2653
2654
2655 )))
2656
2657 (((
2658 (% style="background-color:#dcdcdc" %)**123456** (%%) : Enter the password to enable AT access.
2659
2660 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Reset parameters to factory default, keeping keys reserved.
2661
2662 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) : Set to ABP mode.
2663
2664 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) : Disable the Adaptive Data Rate (ADR).
2665
2666 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) : Set Data Rate (Use AT+DR=3 for the 915 MHz band).
2667
2668 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) : Set transmit interval to 60 seconds.
2669
2670 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4 MHz.
2671
2672 (% style="background-color:#dcdcdc" %)**AT+DADDR=xxxx**(%%) : Set the Device Address (DevAddr)
2673
2674 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:700; text-decoration:none; white-space:pre-wrap" %)**AT+APPKEY=xxxx**(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %): Get or set the Application Key (AppKey)
2675
2676 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)**AT+NWKSKEY=xxxx**: Get or set the Network Session Key (NwkSKey)
2677
2678 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)**AT+APPSKEY=xxxx**: Get or set the Application Session Key (AppSKey)
2679
2680 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) : Reset MCU.
2681 )))
2682
2683
2684 (((
2685 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)The following figure shows the screenshot of the command set above, issued using a serial tool:
2686 )))
2687
2688 [[image:1653360498588-932.png]]
2689
2690
2691 == 7.4 How to change the uplink interval? ==
2692
2693
2694 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2695
2696
2697 == 7.5 Can I see the counting event in the serial output? ==
2698
2699
2700 (((
2701 You can run the AT command **AT+DEBUG** to view the counting event in the serial output. If the firmware is too old and doesn’t support AT+DEBUG, update to the latest firmware first.
2702
2703
2704
2705 )))
2706
2707 (((
2708 == 7.6 Why does the relay output default to an open relay after the LT-22222-LA is powered off? ==
2709
2710
2711 * If the device is not properly shut down and is directly powered off.
2712 * It will default to a power-off state.
2713 * In modes 2 to 5, the DO/RO status and pulse count are saved to flash memory.
2714 * After a restart, the status before the power failure will be read from Flash.
2715
2716 == 7.7 Can I set up LT-22222-LA as an NC (Normally Closed) relay? ==
2717
2718
2719 The LT-22222-LA's built-in relay is Normally Open (NO). You can use an external relay to achieve a Normally Closed (NC) configuration. The circuit diagram is shown below:
2720
2721 [[image:image-20221006170630-1.png]]
2722
2723
2724
2725
2726 == 7.8 Why does the LT-22222-LA always report 15.585V when measuring the AVI? ==
2727
2728
2729 It is likely that the GND is not connected during the measurement, or that the wire connected to the GND is loose.
2730
2731
2732 = 8. Troubleshooting =
2733
2734
2735 This section provides some known troubleshooting tips.
2736
2737
2738 )))
2739
2740 (((
2741 (((
2742 == 8.1 Downlink isn't working. How can I solve this? ==
2743
2744
2745 )))
2746 )))
2747
2748 (((
2749 Please refer to this link for debugging instructions: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2750 )))
2751
2752 (((
2753
2754
2755 == 8.2 Having trouble uploading an image? ==
2756
2757
2758 )))
2759
2760 (((
2761 Please refer to this link for troubleshooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2762 )))
2763
2764 (((
2765
2766
2767 == 8.3 Why can't I join TTN in the US915 /AU915 bands? ==
2768
2769
2770 )))
2771
2772 (((
2773 It might be related to the channel mapping. [[Please refer to this link for details.>>https://github.com/dragino/LT-22222-L/releases]]
2774 )))
2775
2776
2777 == 8.4 Why can the LT-22222-LA perform uplink normally, but cannot receive downlink? ==
2778
2779
2780 The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue.
2781 Use this command to synchronize their counts: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resettingthedownlinkpacketcount"]]
2782
2783
2784 = 9. Ordering information =
2785
2786
2787 (% style="color:#4f81bd" %)**LT-22222-LA-XXX:**
2788
2789 (% style="color:#4f81bd" %)**XXX:**
2790
2791 * (% style="color:red" %)**EU433**(%%): LT with frequency bands EU433
2792 * (% style="color:red" %)**EU868**(%%): LT with frequency bands EU868
2793 * (% style="color:red" %)**KR920**(%%): LT with frequency bands KR920
2794 * (% style="color:red" %)**CN470**(%%): LT with frequency bands CN470
2795 * (% style="color:red" %)**AS923**(%%): LT with frequency bands AS923
2796 * (% style="color:red" %)**AU915**(%%): LT with frequency bands AU915
2797 * (% style="color:red" %)**US915**(%%): LT with frequency bands US915
2798 * (% style="color:red" %)**IN865**(%%): LT with frequency bands IN865
2799 * (% style="color:red" %)**CN779**(%%): LT with frequency bands CN779
2800
2801 = 10. Package information =
2802
2803
2804 (% style="color:#037691" %)**Package Includes**:
2805
2806 * 1 x LT-22222-LA I/O Controller
2807 * 1 x LoRa antenna matched to the frequency of the LT-22222-LA
2808 * 1 x bracket for DIN rail mounting
2809 * 1 x 3.5 mm programming cable
2810
2811 (% style="color:#037691" %)**Dimension and weight**:
2812
2813 * Package Size / pcs : 145×80×50 mm
2814 * Weight / pcs : 180 g
2815
2816 = 11. Support =
2817
2818
2819 * (((
2820 Support is available Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different time zones, we cannot offer live support. However, your questions will be answered as soon as possible within the aforementioned schedule.
2821 )))
2822 * (((
2823 Please provide as much information as possible regarding your inquiry (e.g., product models, a detailed description of the problem, steps to replicate it, etc.) and send an email to [[support@dragino.cc>>mailto:support@dragino.cc]]
2824
2825
2826 )))
2827
2828 = 12. Reference​​​​​ =
2829
2830
2831 * LT-22222-LA: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2832 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2833 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]