Version 57.7 by Kilight Cao on 2025/07/03 15:31

Show last authors
1 [[image:image-20220523163353-1.jpeg||data-xwiki-image-style-alignment="center" height="604" width="500"]]
2
3
4
5
6
7
8
9 **Table of Contents:**
10
11 {{toc/}}
12
13
14
15
16
17 = 1. Introduction =
18
19 == 1.1 What is the LT-22222-LA I/O Controller? ==
20
21
22 (((
23 (((
24 The Dragino (% style="color:blue" %)**LT-22222-LA I/O Controller**(%%) is an advanced LoRaWAN end device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
25
26 The LT-22222-LA I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
27 )))
28 )))
29
30 (((
31 With the LT-22222-LA I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
32
33 (% style="color:blue" %)**LT-22222-LA I/O Controller**(%%) support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining.
34 )))
35
36 (((
37 You can connect the LT-22222-LA I/O Controller to a LoRaWAN network service provider in several ways:
38
39 * If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Stack Community Network), you can select a network and register the LT-22222-LA I/O controller with it.
40 * If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-LA I/O controller with this network.
41 * Setup your own private LoRaWAN network.
42 )))
43
44 (((
45
46
47 The network diagram below illustrates how the LT-22222-LA communicates with a typical LoRaWAN network.
48 )))
49
50
51 [[image:lorawan-nw.jpg]]
52
53 == 1.2 Specifications ==
54
55
56 (% style="color:#037691" %)**Hardware System:**
57
58 * Power Consumption:
59 ** Idle: 4mA@12V
60 ** 20dB Transmit: 34mA@12V
61 * Operating Temperature: -40 ~~ 85 Degrees, No Dew
62
63 (% style="color:#037691" %)**Interface for Model: LT22222-LA:**
64
65 * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50V, or 220V with optional external resistor)
66 * 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
67 * 2 x Relay Output (5A@250VAC / 30VDC)
68 * 2 x 0~~20mA Analog Input (res:0.01mA)
69 * 2 x 0~~30V Analog Input (res:0.01V)
70 * Power Input 7~~ 24V DC. 
71
72 (% style="color:#037691" %)**LoRa Spec:**
73
74 * Frequency Range:
75 ** Band 1 (HF): 862 ~~ 1020 MHz
76 ** Band 2 (LF): 410 ~~ 528 MHz
77 * 168 dB maximum link budget.
78 * +20 dBm - 100 mW constant RF output vs.
79 * +14 dBm high-efficiency PA.
80 * Programmable bit rate up to 300 kbps.
81 * High sensitivity: down to -148 dBm.
82 * Bullet-proof front end: IIP3 = -12.5 dBm.
83 * Excellent blocking immunity.
84 * Low RX current of 10.3 mA, 200 nA register retention.
85 * Fully integrated synthesizer with a resolution of 61 Hz.
86 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
87 * Built-in bit synchronizer for clock recovery.
88 * Preamble detection.
89 * 127 dB Dynamic Range RSSI.
90 * Automatic RF Sense and CAD with ultra-fast AFC.
91 * Packet engine up to 256 bytes with CRC.
92
93 == 1.3 Features ==
94
95
96 * LoRaWAN Class A & Class C modes
97 * Optional Customized LoRa Protocol
98 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
99 * AT Commands to change parameters
100 * Remotely configure parameters via LoRaWAN Downlink
101 * Support wireless OTA update firmware
102 * Counting
103
104 == 1.4 Applications ==
105
106
107 * Smart buildings & home automation
108 * Logistics and supply chain management
109 * Smart metering
110 * Smart agriculture
111 * Smart cities
112 * Smart factory
113
114 == 1.5 Hardware Variants ==
115
116
117 (% border="1" cellspacing="3" style="width:531.222px" %)
118 |(% style="background-color:#4f81bd; color:white; width:108px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:158px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:261px" %)**Description**
119 |(% style="width:108px" %)**LT-22222-LA**|(% style="width:158px" %)(((
120 [[image:lt33222-l.jpg]]
121 )))|(% style="width:261px" %)(((
122 * 3 x Digital Input (Bi-direction)
123 * 3 x Digital Output
124 * 2 x Relay Output (5A@250VAC / 30VDC)
125 * 2 x 0~~20mA Analog Input (res:0.01mA)
126 * 2 x 0~~30V Analog Input (res:0.01v)
127 * 1 x Counting Port
128 )))
129
130 = 2. Assembling the device =
131
132 == 2.1 Connecting the antenna ==
133
134
135 Connect the LoRa antenna to the antenna connector, **ANT**,** **located on the top right side of the device, next to the upper screw terminal block. Secure the antenna by tightening it clockwise.
136
137 {{warning}}
138 **Warning! Do not power on the device without connecting the antenna.**
139 {{/warning}}
140
141
142 == 2.2 Terminals ==
143
144
145 The  LT-22222-LA has two screw terminal blocks. The upper screw terminal block has 6 screw terminals and the lower screw terminal block has 10 screw terminals.
146
147 **Upper screw terminal block (from left to right):**
148
149 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:381px" %)
150 |=(% style="width: 139px;background-color:#4f81bd;color:white" %)Screw Terminal|=(% style="width: 242px;background-color:#4f81bd;color:white" %)Function
151 |(% style="width:139px" %)GND|(% style="width:242px" %)Ground
152 |(% style="width:139px" %)VIN|(% style="width:242px" %)Input Voltage
153 |(% style="width:139px" %)AVI2|(% style="width:242px" %)Analog Voltage Input Terminal 2
154 |(% style="width:139px" %)AVI1|(% style="width:242px" %)Analog Voltage Input Terminal 1
155 |(% style="width:139px" %)ACI2|(% style="width:242px" %)Analog Current Input Terminal 2
156 |(% style="width:139px" %)ACI1|(% style="width:242px" %)Analog Current Input Terminal 1
157
158 **Lower screw terminal block (from left to right):**
159
160 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:253px" %)
161 |=(% style="width: 125px;background-color:#4f81bd;color:white" %)Screw Terminal|=(% style="width: 128px;background-color:#4f81bd;color:white" %)Function
162 |(% style="width:125px" %)RO1-2|(% style="width:128px" %)Relay Output 1
163 |(% style="width:125px" %)RO1-1|(% style="width:128px" %)Relay Output 1
164 |(% style="width:125px" %)RO2-2|(% style="width:128px" %)Relay Output 2
165 |(% style="width:125px" %)RO2-1|(% style="width:128px" %)Relay Output 2
166 |(% style="width:125px" %)DI2+|(% style="width:128px" %)Digital Input 2
167 |(% style="width:125px" %)DI2-|(% style="width:128px" %)Digital Input 2
168 |(% style="width:125px" %)DI1+|(% style="width:128px" %)Digital Input 1
169 |(% style="width:125px" %)DI1-|(% style="width:128px" %)Digital Input 1
170 |(% style="width:125px" %)DO2|(% style="width:128px" %)Digital Output 2
171 |(% style="width:125px" %)DO1|(% style="width:128px" %)Digital Output 1
172
173 == 2.3 Connecting LT-22222-LA to a Power Source ==
174
175
176 The LT-22222-LA I/O Controller can be powered by a **7–24V DC** power source. Connect your power supply’s **positive wire** to the **VIN** and the **negative wire** to the **GND** screw terminals. The power indicator **(PWR) LED** will turn on when the device is properly powered.
177
178 {{warning}}
179 **We recommend that you power on the LT-22222-LA after adding its registration information to the LoRaWAN network server. Otherwise, the device will continuously send join-request messages to attempt to join a LoRaWAN network but will fail.**
180 {{/warning}}
181
182 [[image:1653297104069-180.png]]
183
184
185
186 = 3. Registering LT-22222-LA with a LoRaWAN Network Server =
187
188
189 The LT-22222-LA supports both OTAA (Over-the-Air Activation) and ABP (Activation By Personalization) methods to activate with a LoRaWAN Network Server. However, OTAA is the most secure method for activating a device with a LoRaWAN Network Server. OTAA regenerates session keys upon initial registration and regenerates new session keys after any subsequent reboots. By default, the LT-22222-LA is configured to operate in LoRaWAN Class C mode.
190
191
192 == 3.1 Prerequisites ==
193
194
195 The LT-22222-LA comes with device registration information such as DevEUI, AppEUI, and AppKey which allows you to register it with a LoRaWAN network. This registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
196
197 {{info}}
198 If you are unable to set the provided root key and other identifiers in the network server, you must generate new keys and identifiers with the network server and configure the device with them using AT commands.
199 {{/info}}
200
201 The following subsections explain how to register the LT-22222-LA with different LoRaWAN network server providers.
202
203 [[image:image-20230425173427-2.png]]
204
205 == 3.2 The Things Stack ==
206
207
208 This section guides you through how to register your LT-22222-LA with The Things Stack Sandbox.
209
210 {{info}}
211 The Things Stack Sandbox was formally called The Things Stack Community Edition.
212 {{/info}}
213
214
215 The network diagram below illustrates the connection between the LT-22222-LA and The Things Stack, as well as how the data can be integrated with the ThingsEye IoT platform.
216
217 [[image:1751523649311-511.png||height="407" width="1378"]]
218
219 {{info}}
220 You can use a LoRaWAN gateway, such as the [[Dragino LPS8N>>https://www.dragino.com/products/lora-lorawan-gateway/item/200-lps8n.html]], to expand or create LoRaWAN coverage in your area.
221 {{/info}}
222
223
224 === 3.2.1 Setting up ===
225
226
227 * Sign up for a free account with [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] if you do not have one yet.
228 * Log in to your The Things Stack Sandbox account.
229 * Create an **application** with The Things Stack if you do not have one yet (E.g., dragino-docs).
230 * Go to your application's page and click on the **End devices** in the left menu.
231 * On the End devices page, click on **+ Register end device**. Two registration options are available:
232
233 ==== 3.2.1.1 Using the LoRaWAN Device Repository ====
234
235
236 * On the **Register end device** page:
237 ** Select the option **Select the end device in the LoRaWAN Device Repository **under **Input method**.
238 ** Select the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)** from the respective dropdown lists.
239 *** **End device brand**: Dragino Technology Co., Limited
240 *** **Model**: LT22222-L I/O Controller
241 *** **Hardware ver**: Unknown
242 *** **Firmware ver**: 1.6.0
243 *** **Profile (Region)**: Select the region that matches your device.
244 ** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
245
246 [[image:lt-22222-l-dev-repo-reg-p1.png]]
247
248
249 * Register end device page continued...
250 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message 'This end device can be registered on the network'.
251 ** In the **DevEUI** field, enter the **DevEUI**.
252 ** In the **AppKey** field, enter the **AppKey.**
253 ** In the **End device ID** field, enter a unique name for your LT-22222-LA within this application.
254 ** Under **After registration**, select the **View registered end device** option.
255 ** Click **Register end device** button.
256
257 [[image:lt-22222-l-dev-repo-reg-p2.png]]
258
259
260 * You will be navigated to the **Device overview** page.
261
262 [[image:lt-22222-device-overview.png]]
263
264
265 ==== 3.2.1.2 Adding device manually ====
266
267
268 * On the **Register end device** page:
269 ** Select the option **Enter end device specifies manually** under **Input method**.
270 ** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
271 ** Select the **LoRaWAN version** as **LoRaWAN Specification 1.0.3**
272 ** Select the **Regional Parameters version** as** RP001 Regional Parameters 1.0.3 revision A**
273 ** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the hidden section.
274 ** Select the option **Over the air activation (OTAA)** under the **Activation mode.**
275 ** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities** dropdown list.
276
277 [[image:lt-22222-l-manually-p1.png]]
278
279
280 * Register end device page continued...
281 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message '//**This end device can be registered on the network**//'
282 ** In the **DevEUI** field, enter the **DevEUI**.
283 ** In the **AppKey** field, enter the **AppKey**.
284 ** In the **End device ID** field, enter a unique name for your LT-22222-LA within this application.
285 ** Under **After registration**, select the **View registered end device** option.
286 ** Click the **Register end device** button.
287
288 [[image:lt-22222-l-manually-p2.png]]
289
290
291 You will be navigated to the **Device overview** page.
292
293 [[image:lt-22222-device-overview.png]]
294
295
296
297 === 3.2.2 Joining ===
298
299
300 On the end device's page (in this case, lt-22222-la), click on **Live data** tab. The Live data panel for your device will display. Initially, it is blank.
301
302 Now power on your LT-22222-LA. The **TX LED** will **fast-blink 5 times** which means the LT-22222-LA will enter the **work mode** and start to **join** The Things Stack network server. The **TX LED** will be on for **5 seconds** after joining the network. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server.
303
304 [[image:lt-22222-l-joining.png]]
305
306
307
308 === 3.2.3 Uplinks ===
309
310
311 After successfully joining, the device will send its first **uplink data message** to The Things Stack application it belongs to (in this example, it is **dragino-docs**). When the LT-22222-LA sends an uplink message to the server, the **TX LED** turns on for **1 second**. By default, you will receive an uplink data message from the device every 10 minutes.
312
313 Click on one of the **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the **decode_payload {}** JSON object.
314
315 [[image:lt-22222-ul-payload-decoded.png]]
316
317
318 If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **Applications > [your application] > End devices** > [**your end device]** > **Payload formatters** > **Uplink**. Then select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes.
319
320 {{info}}
321 The Things Stack provides two levels of payload formatters: application level and device level. The device-level payload formatters **override **the application-level payload formatters.
322 {{/info}}
323
324 [[image:lt-22222-ul-payload-fmt.png]]
325
326
327 We have written a payload formatter that resolves some decoding issues present in The Things Stack Device Repository payload formatter. You can add it under the **Custom JavaScript formatter**. It can be found [[here>>https://github.com/dragino/dragino-end-node-decoder/blob/main/LT22222-L/v1.6_decoder_ttn%20.txt]]:
328
329 [[image:lt-22222-l-js-custom-payload-formatter.png]]
330
331
332 === 3.2.4 Downlinks ===
333
334
335 When the LT-22222-L receives a downlink message from the LoRaWAN Network Server, the **RX LED** turns on for **1 second**.
336
337
338 == 3.3 Working Modes and Uplink Payload formats ==
339
340
341 The LT-22222-LA has 5 **working modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any working mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
342
343 * (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO
344
345 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
346
347 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
348
349 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
350
351 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
352
353 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
354
355 The uplink messages are sent over LoRaWAN FPort=2. By default, an uplink message is sent every 10 minutes.
356
357
358 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
359
360
361 (((
362 This is the default mode.
363
364 The uplink payload is 11 bytes long.
365 (% wfd-invisible="true" style="display:none" %)
366
367 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
368 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
369 |Value|(((
370 AVI1 voltage
371 )))|(((
372 AVI2 voltage
373 )))|(((
374 ACI1 Current
375 )))|(((
376 ACI2 Current
377 )))|**DIDORO***|(((
378 Reserve
379 )))|MOD
380 )))
381
382 (((
383 (% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below.
384
385 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
386 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
387 |RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
388 )))
389
390 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
391 * DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW.
392 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
393
394 (% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-LA**
395
396 For example, if the payload is: [[image:image-20220523175847-2.png]]
397
398
399 **The interface values can be calculated as follows:  **
400
401 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
402
403 AVI2 channel voltage is 0x04AC/1000=1.196V
404
405 ACI1 channel current is 0x1310/1000=4.880mA
406
407 ACI2 channel current is 0x1300/1000=4.864mA
408
409 The last byte 0xAA= **10101010**(b) means,
410
411 * [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
412 * [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
413 * **[1] DI3 - not used for LT-22222-LA.**
414 * [0] DI2 channel input is LOW, and the DI2 LED is OFF.
415 * [1] DI1 channel input state:
416 ** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
417 ** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
418 ** DI1 LED is ON in both cases.
419 * **[0] DO3 - not used for LT-22222-LA.**
420 * [1] DO2 channel output is LOW, and the DO2 LED is ON.
421 * [0] DO1 channel output state:
422 ** DO1 is FLOATING when there is no load between DO1 and V+.
423 ** DO1 is HIGH and there is a load between DO1 and V+.
424 ** DO1 LED is OFF in both cases.
425
426 Reserve = 0
427
428 MOD = 1
429
430
431 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
432
433
434 (((
435 **For LT-22222-LA**: In this mode, **DI1 and DI2** are used as counting pins.
436 )))
437
438 (((
439 The uplink payload is 11 bytes long.
440
441 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
442 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
443 It starts counting again when it reaches the maximum value.**
444
445 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
446 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
447 |Value|COUNT1|COUNT2 |DIDORO*|(((
448 Reserve
449 )))|MOD
450 )))
451
452 (((
453 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, FIRST, Reserve, Reserve, DO3, DO2 and DO1, and its size is 1 byte long as shown below.
454
455 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
456 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
457 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
458
459 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
460 )))
461
462 * FIRST: Indicates that this is the first packet after joining the network.
463 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
464
465 (((
466 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-LA**
467
468
469 )))
470
471 (((
472 **To activate this mode, run the following AT commands:**
473 )))
474
475 (((
476 (% class="box infomessage" %)
477 (((
478 **AT+MOD=2**
479
480 **ATZ**
481 )))
482 )))
483
484 (((
485
486
487 (% style="color:#4f81bd" %)**AT Commands for counting:**
488 )))
489
490 (((
491 **For LT22222-LA:**
492
493 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
494
495 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
496
497 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
498
499 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
500
501 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
502
503 (% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
504 )))
505
506
507
508
509
510
511
512
513
514 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
515
516
517 (% style="color:red" %)**Note: The maximum count depends on the bytes it is.
518 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
519 It starts counting again when it reaches the maximum value.**
520
521 **LT22222-LA**: In this mode, the DI1 is used as a counting pin.
522
523 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
524 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
525 |Value|COUNT1|(((
526 ACI1 Current
527 )))|(((
528 ACI2 Current
529 )))|DIDORO*|Reserve|MOD
530
531 (((
532 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
533
534 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
535 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
536 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
537 )))
538
539 * RO is for the relay. ROx=1: closed, ROx=0 always open.
540 * FIRST: Indicates that this is the first packet after joining the network.
541 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
542
543 (((
544 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-LA.**
545 )))
546
547
548
549
550
551
552
553
554
555 (((
556 **To activate this mode, run the following AT commands:**
557 )))
558
559 (((
560 (% class="box infomessage" %)
561 (((
562 **AT+MOD=3**
563
564 **ATZ**
565 )))
566 )))
567
568 (((
569 AT Commands for counting:
570
571 The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
572 )))
573
574
575 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
576
577
578 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
579 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
580 It starts counting again when it reaches the maximum value.**
581
582
583 (((
584 **LT22222-LA**: In this mode, the DI1 is used as a counting pin.
585 )))
586
587 (((
588 The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
589
590 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
591 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
592 |Value|COUNT1|AVI1 Counting|DIDORO*|(((
593 Reserve
594 )))|MOD
595 )))
596
597 (((
598 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
599
600 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
601 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
602 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
603 )))
604
605 * RO is for the relay. ROx=1: closed, ROx=0 always open.
606 * FIRST: Indicates that this is the first packet after joining the network.
607 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
608
609 (((
610 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
611
612
613 )))
614
615 (((
616 **To activate this mode, run the following AT commands:**
617 )))
618
619 (((
620 (% class="box infomessage" %)
621 (((
622 **AT+MOD=4**
623
624 **ATZ**
625 )))
626 )))
627
628 (((
629 AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
630 )))
631
632 (((
633 **In addition to that, below are the commands for AVI1 Counting:**
634
635 (% style="color:blue" %)**AT+SETCNT=3,60 **(%%)**(Sets AVI1 Count to 60)**
636
637 (% style="color:blue" %)**AT+VOLMAX=20000 **(%%)**(If the AVI1 voltage is higher than VOLMAX (20000mV =20V), the counter increases by 1)**
638
639 (% style="color:blue" %)**AT+VOLMAX=20000,0 **(%%)**(If the AVI1 voltage is lower than VOLMAX (20000mV =20V), counter increases by 1)**
640
641 (% style="color:blue" %)**AT+VOLMAX=20000,1 **(%%)**(If the AVI1 voltage is higher than VOLMAX (20000mV =20V), counter increases by 1)**
642 )))
643
644
645
646
647
648
649
650
651
652 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
653
654
655 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
656 The maximum count for four bytes is FFFF (hex) = 65535 (dec).
657 It starts counting again when it reaches the maximum value.**
658
659
660 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
661
662 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
663 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
664 |Value|(((
665 AVI1 voltage
666 )))|(((
667 AVI2 voltage
668 )))|(((
669 ACI1 Current
670 )))|COUNT1|DIDORO*|(((
671 Reserve
672 )))|MOD
673
674 (((
675 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
676
677 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
678 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
679 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
680 )))
681
682 * RO is for the relay. ROx=1: closed, ROx=0 always open.
683 * FIRST: Indicates that this is the first packet after joining the network.
684 * (((
685 DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
686 )))
687
688 (((
689 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-LA.**
690 )))
691
692 (((
693 **To activate this mode, run the following AT commands:**
694 )))
695
696 (((
697 (% class="box infomessage" %)
698 (((
699 **AT+MOD=5**
700
701 **ATZ**
702 )))
703 )))
704
705 (((
706 Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
707 )))
708
709
710
711
712
713
714
715
716
717 === 3.3.6 AT+ADDMOD~=6 (Trigger Mode, Optional) ===
718
719
720 (% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate __alongside__ with other modes.**
721
722 For example, if you configure the following commands:
723
724 * **AT+MOD=1 ** **~-~->**  Sets the default working mode
725 * **AT+ADDMOD6=1**   **~-~->**  Enables trigger mode
726
727 The LT-22222-LA will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. It will send uplink packets in two cases:
728
729 1. Periodic uplink: Based on TDC time. The payload is the same as in normal mode (MOD=1 as set above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
730 1. (((
731 Trigger uplink: sent when a trigger condition is met. In this case, LT will send two packets
732
733 * The first uplink uses the payload specified in trigger mode (MOD=6).
734 * The second packet uses the normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**confirmed uplinks.**
735 )))
736
737 (% style="color:#037691" %)**AT Commands to set Trigger Conditions**:
738
739 (% style="color:#4f81bd" %)**Trigger based on voltage**:
740
741 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
742
743
744 **Example:**
745
746 AT+AVLIM=3000,6000,0,2000 (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
747
748 AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0 for parameters that are not in use)
749
750
751 (% style="color:#4f81bd" %)**Trigger based on current**:
752
753 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
754
755
756 **Example:**
757
758 AT+ACLIM=10000,15000,0,0 (triggers an uplink if AC1 current is lower than 10mA or higher than 15mA)
759
760
761 (% style="color:#4f81bd" %)**Trigger based on DI status**:
762
763 DI status triggers Flag.
764
765 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
766
767
768 **Example:**
769
770 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
771
772
773 (% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
774
775 **Type Code**: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
776
777 **Format**: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
778
779 AA: Type Code for this downlink Command:
780
781 xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
782
783 yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
784
785 yy2 yy2: AC1 or AV1 HIGH limit.
786
787 yy3 yy3: AC2 or AV2 LOW limit.
788
789 Yy4 yy4: AC2 or AV2 HIGH limit.
790
791
792 **Example 1**: AA 00 13 88 00 00 00 00 00 00
793
794 Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
795
796
797 **Example 2**: AA 02 01 00
798
799 Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
800
801
802 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
803
804 MOD6 Payload: a total of 11 bytes
805
806 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
807 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
808 |Value|(((
809 TRI_A FLAG
810 )))|(((
811 TRI_A Status
812 )))|(((
813 TRI_DI FLAG+STA
814 )))|Reserve|Enable/Disable MOD6|(((
815 MOD(6)
816 )))
817
818 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Total 1 byte as below.
819
820 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
821 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
822 |(((
823 AV1_LOW
824 )))|(((
825 AV1_HIGH
826 )))|(((
827 AV2_LOW
828 )))|(((
829 AV2_HIGH
830 )))|(((
831 AC1_LOW
832 )))|(((
833 AC1_HIGH
834 )))|(((
835 AC2_LOW
836 )))|(((
837 AC2_HIGH
838 )))
839
840 * Each bit shows if the corresponding trigger has been configured.
841
842 **Example:**
843
844 10100000: This means the system is configured to use the triggers AV1_LOW and AV2_LOW.
845
846
847 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is triggered. Total 1 byte as below.
848
849 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
850 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
851 |(((
852 AV1_LOW
853 )))|(((
854 AV1_HIGH
855 )))|(((
856 AV2_LOW
857 )))|(((
858 AV2_HIGH
859 )))|(((
860 AC1_LOW
861 )))|(((
862 AC1_HIGH
863 )))|(((
864 AC2_LOW
865 )))|(((
866 AC2_HIGH
867 )))
868
869 * Each bit shows which status has been triggered on this uplink.
870
871 **Example:**
872
873 10000000: The uplink is triggered by AV1_LOW, indicating that the voltage is too low.
874
875
876 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is triggered. Total 1 byte as below.
877
878 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
879 |(% style="width:50px" %)**bit 7**|(% style="width:50px" %)**bit 6**|(% style="width:50px" %)**bit 5**|(% style="width:50px" %)**bit 4**|(% style="width:90px" %)**bit 3**|(% style="width:80px" %)**bit 2**|(% style="width:90px" %)**bit 1**|(% style="width:95px" %)**bit 0**
880 |(% style="width:49px" %)N/A|(% style="width:53px" %)N/A|(% style="width:53px" %)N/A|(% style="width:55px" %)N/A|(% style="width:99px" %)DI2_STATUS|(% style="width:83px" %)DI2_FLAG|(% style="width:98px" %)DI1_STATUS|(% style="width:85px" %)DI1_FLAG
881
882 * Each bit shows which status has been triggered on this uplink.
883
884 **Example:**
885
886 00000111: This means both DI1 and DI2 triggers are enabled, and this packet is triggered by DI1.
887
888 00000101: This means both DI1 and DI2 triggers are enabled.
889
890
891 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enabled. 0x00: MOD6 is disabled.
892
893 Downlink command to poll/request MOD6 status:
894
895 **AB 06**
896
897 When the device receives this command, it will send the MOD6 payload.
898
899
900 === 3.3.7 Payload Decoder ===
901
902 (((
903
904
905 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder/tree/main/LT22222-L]]
906 )))
907
908
909 == 3.4 ​Configure LT-22222-LA via AT Commands or Downlinks ==
910
911
912 (((
913 You can configure LT-22222-LA I/O Controller via AT Commands or LoRaWAN Downlinks.
914 )))
915
916 (((
917 (((
918 There are two types of commands:
919 )))
920 )))
921
922 * (% style="color:blue" %)**Common commands**(%%):
923
924 * (% style="color:blue" %)**Sensor-related commands**(%%):
925
926 === 3.4.1 Common commands ===
927
928
929 (((
930 These are available for each sensor and include actions such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]s.
931
932
933 )))
934
935 === 3.4.2 Sensor-related commands ===
936
937
938 These commands are specially designed for the LT-22222-LA. Commands can be sent to the device using options such as an AT command or a LoRaWAN downlink payload.
939
940
941 ==== 3.4.2.1 Set Transmit/Uplink Interval ====
942
943
944 Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes.
945
946 (% style="color:#037691" %)**AT command**
947
948 (% border="2" style="width:500px" %)
949 |**Command**|AT+TDC=<time>
950 |**Parameters**|**time **: uplink interval in milliseconds
951 |**Get**|AT+TDC=?
952 |**Response**|(((
953 current uplink interval
954
955 OK
956 )))
957 |**Set**|AT+TDC=<time>
958 |**Response**|OK
959 |**Example**|(((
960 AT+TDC=30000
961
962 Sets the uplink interval to **30 seconds** (30000 milliseconds)
963 )))
964
965 (% style="color:#037691" %)**Downlink payload**
966
967 (% border="2" style="width:500px" %)
968 |**Payload**|(((
969 <prefix><time>
970 )))
971 |**Parameters**|(((
972 **prefix** : 0x01
973
974 **time** : uplink interval in **seconds**, represented by **3  bytes** in **hexadecimal**.
975 )))
976 |**Example**|(((
977 01 **00 00 1E**
978
979 Sets the uplink interval to **30 seconds**
980
981 Conversion: 30 (dec) = 00 00 1E (hex)
982
983 See [[RapidTables>>https://www.rapidtables.com/convert/number/decimal-to-hex.html?x=30]]
984
985 [[image:Screenshot%202024-11-23%20at%2018.27.11.png||alt="Screenshot 2024-11-23 at 18.27.11.png"]]
986 )))
987
988 ==== 3.4.2.2 Set the Working Mode (AT+MOD) ====
989
990
991 Sets the working mode.
992
993 (% style="color:#037691" %)**AT command**
994
995 (% border="2" style="width:500px" %)
996 |(% style="width:97px" %)**Command**|(% style="width:413px" %)AT+MOD=<working_mode>
997 |(% style="width:97px" %)**Parameters**|(% style="width:413px" %)(((
998 **working_mode** :
999
1000 1 = (Default mode/factory set):  2ACI + 2AVI + DI + DO + RO
1001
1002 2 = Double DI Counting + DO + RO
1003
1004 3 = Single DI Counting + 2 x ACI + DO + RO
1005
1006 4 = Single DI Counting + 1 x Voltage Counting + DO + RO
1007
1008 5 = Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
1009
1010 6 = Trigger Mode, Optional, used together with MOD1 ~~ MOD5
1011 )))
1012 |(% style="width:97px" %)**Get**|(% style="width:413px" %)AT+MOD=?
1013 |(% style="width:97px" %)**Response**|(% style="width:413px" %)(((
1014 Current working mode
1015
1016 OK
1017 )))
1018 |(% style="width:97px" %)**Set**|(% style="width:413px" %)AT+MOD=<working_mode>
1019 |(% style="width:97px" %)**Response**|(% style="width:413px" %)(((
1020 Attention:Take effect after ATZ
1021
1022 OK
1023 )))
1024 |(% style="width:97px" %)**Example**|(% style="width:413px" %)(((
1025 AT+MOD=2
1026
1027 Sets the device to working mode 2 (Double DI Counting + DO + RO)
1028 )))
1029
1030 (% class="wikigeneratedid" %)
1031 (% style="color:#037691" %)**Downlink payload**
1032
1033 (% border="2" style="width:500px" %)
1034 |(% style="width:98px" %)**Payload**|(% style="width:400px" %)<prefix><working_mode>
1035 |(% style="width:98px" %)**Parameters**|(% style="width:400px" %)(((
1036 **prefix** : 0x0A
1037
1038 **working_mode** : Working mode, represented by 1 byte in hexadecimal.
1039 )))
1040 |(% style="width:98px" %)**Example**|(% style="width:400px" %)(((
1041 0A **02**
1042
1043 Sets the device to working mode 2 (Double DI Counting + DO + RO)
1044 )))
1045
1046 ==== 3.4.2.3 Request an uplink from the device ====
1047
1048
1049 Requests an uplink from LT-22222-LA. The content of the uplink payload varies based on the device's current working mode.
1050
1051 (% style="color:#037691" %)**AT command**
1052
1053 There is no AT Command available for this feature.
1054
1055 (% style="color:#037691" %)**Downlink payload**
1056
1057 (% border="2" style="width:500px" %)
1058 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix>FF
1059 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)**prefix** : 0x08
1060 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1061 08 **FF**
1062
1063 Requests an uplink from LT-22222-L.
1064 )))
1065
1066 ==== 3.4.2.4 Enable/Disable Trigger Mode ====
1067
1068
1069 Enable or disable the trigger mode for the current working mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D628TriggerMode2COptional29"]]).
1070
1071 (% style="color:#037691" %)**AT Command**
1072
1073 (% border="2" style="width:500px" %)
1074 |(% style="width:95px" %)**Command**|(% style="width:403px" %)AT+ADDMOD6=<enable/disable trigger_mode>
1075 |(% style="width:95px" %)**Response**|(% style="width:403px" %)
1076 |(% style="width:95px" %)**Parameters**|(% style="width:403px" %)(((
1077 **enable/disable trigger_mode** :
1078
1079 1 = enable trigger mode
1080
1081 0 = disable trigger mode
1082 )))
1083 |(% style="width:95px" %)**Example**|(% style="width:403px" %)(((
1084 AT+ADDMOD6=1
1085
1086 Enable trigger mode for the current working mode
1087 )))
1088
1089 (% style="color:#037691" %)**Downlink payload**
1090
1091 (% border="2" style="width:500px" %)
1092 |(% style="width:97px" %)**Payload**|(% style="width:401px" %)<prefix><enable/disable trigger_mode>
1093 |(% style="width:97px" %)**Parameters**|(% style="width:401px" %)(((
1094 **prefix** : 0x0A 06 (two bytes in hexadecimal)
1095
1096 **enable/disable trigger_mode** : enable (1) or disable (0), represented by 1 byte in hexadecimal.
1097 )))
1098 |(% style="width:97px" %)**Example**|(% style="width:401px" %)(((
1099 0A 06 **01**
1100
1101 Enable trigger mode for the current working mode
1102 )))
1103
1104 ==== 3.4.2.5 Request trigger settings ====
1105
1106
1107 Requests the trigger settings.
1108
1109 (% style="color:#037691" %)**AT Command:**
1110
1111 There is no AT Command available for this feature.
1112
1113 (% style="color:#037691" %)**Downlink Payload**
1114
1115 (% border="2" style="width:500px" %)
1116 |(% style="width:95px" %)**Payload**|(% style="width:403px" %)<prefix>
1117 |(% style="width:95px" %)**Parameters**|(% style="width:403px" %)**prefix **: AB 06 (two bytes in hexadecimal)
1118 |(% style="width:95px" %)**Example**|(% style="width:403px" %)(((
1119 AB 06
1120
1121 Uplink the trigger settings.
1122 )))
1123
1124 ==== 3.4.2.6 Enable/Disable DI1/DI2/DI3 as a trigger ====
1125
1126
1127 Enable or disable DI1/DI2/DI3 as a trigger.
1128
1129 (% style="color:#037691" %)**AT Command**
1130
1131 (% border="2" style="width:500px" %)
1132 |(% style="width:98px" %)**Command**|(% style="width:400px" %)AT+DTRI=<DI1_trigger>,<DI2_trigger>
1133 |(% style="width:98px" %)**Response**|(% style="width:400px" %)
1134 |(% style="width:98px" %)**Parameters**|(% style="width:400px" %)(((
1135 **DI1_trigger:**
1136
1137 1 = enable DI1 trigger
1138
1139 0 = disable DI1 trigger
1140
1141 **DI2 _trigger**
1142
1143 1 = enable DI2 trigger
1144
1145 0 = disable DI2 trigger
1146 )))
1147 |(% style="width:98px" %)**Example**|(% style="width:400px" %)(((
1148 AT+DTRI=1,0
1149
1150 Enable DI1 trigger, disable DI2 trigger
1151 )))
1152
1153 (% class="wikigeneratedid" %)
1154 (% style="color:#037691" %)**Downlink Payload**
1155
1156 (% border="2" style="width:500px" %)
1157 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix><DI1_trigger><DI2_trigger>
1158 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1159 **prefix :** AA 02 (two bytes in hexadecimal)
1160
1161 **DI1_trigger:**
1162
1163 1 = enable DI1 trigger, represented by 1 byte in hexadecimal.
1164
1165 0 = disable DI1 trigger, represented by 1 byte in hexadecimal.
1166
1167 **DI2 _trigger**
1168
1169 1 = enable DI2 trigger, represented by 1 byte in hexadecimal.
1170
1171 0 = disable DI2 trigger, represented by 1 byte in hexadecimal.
1172 )))
1173 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1174 AA 02 **01 00**
1175
1176 Enable DI1 trigger, disable DI2 trigger
1177 )))
1178
1179 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as a trigger ====
1180
1181
1182 Sets DI1 or DI3 (for LT-33222-L) as a trigger.
1183
1184 (% style="color:#037691" %)**AT Command**
1185
1186 (% border="2" style="width:500px" %)
1187 |(% style="width:101px" %)**Command**|(% style="width:397px" %)AT+TRIG1=<interrupt_mode>,<minimum_signal_duration>
1188 |(% style="width:101px" %)**Response**|(% style="width:397px" %)
1189 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1190 **interrupt_mode** :  0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
1191
1192 **minimum_signal_duration** : the **minimum signal duration** required for the DI1 port to recognize a valid trigger.
1193 )))
1194 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1195 AT+TRIG1=1,100
1196
1197 Set the DI1 port to trigger on a rising edge; the valid signal duration is 100 ms.
1198 )))
1199
1200 (% class="wikigeneratedid" %)
1201 (% style="color:#037691" %)**Downlink Payload**
1202
1203 (% border="2" style="width:500px" %)
1204 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix><interrupt_mode><minimum_signal_duration>
1205 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1206 **prefix** : 09 01 (hexadecimal)
1207
1208 **interrupt_mode** : 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1), represented by 1 byte in hexadecimal.
1209
1210 **minimum_signal_duration** : in milliseconds, represented two bytes in hexadecimal.
1211 )))
1212 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1213 09 01 **01 00 64**
1214
1215 Set the DI1 port to trigger on a rising edge; the valid signal duration is 100 ms.
1216 )))
1217
1218 ==== 3.4.2.8 Trigger2 – Set DI2 as a trigger ====
1219
1220
1221 Sets DI2 as a trigger.
1222
1223 (% style="color:#037691" %)**AT Command**
1224
1225 (% border="2" style="width:500px" %)
1226 |(% style="width:94px" %)**Command**|(% style="width:404px" %)AT+TRIG2=<interrupt_mode>,<minimum_signal_duration>
1227 |(% style="width:94px" %)**Response**|(% style="width:404px" %)
1228 |(% style="width:94px" %)**Parameters**|(% style="width:404px" %)(((
1229 **interrupt_mode **:  0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
1230
1231 **minimum_signal_duration** : the **minimum signal duration** required for the DI1 port to recognize a valid trigger.
1232 )))
1233 |(% style="width:94px" %)**Example**|(% style="width:404px" %)(((
1234 AT+TRIG2=0,100
1235
1236 Set the DI1 port to trigger on a falling edge; the valid signal duration is 100 ms.
1237 )))
1238
1239 (% style="color:#037691" %)**Downlink Payload**
1240
1241 (% border="2" style="width:500px" %)
1242 |(% style="width:96px" %)**Payload**|(% style="width:402px" %)<prefix><interrupt_mode><minimum_signal_duration>
1243 |(% style="width:96px" %)**Parameters**|(% style="width:402px" %)(((
1244 **prefix** : 09 02 (hexadecimal)
1245
1246 **interrupt_mode **: 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1), represented by 1 byte in hexadecimal.
1247
1248 **minimum_signal_duration** : in milliseconds, represented two bytes in hexadecimal
1249 )))
1250 |(% style="width:96px" %)**Example**|(% style="width:402px" %)09 02 **00 00 64**
1251
1252 ==== 3.4.2.9 Trigger – Set AC (current) as a trigger ====
1253
1254
1255 Sets the current trigger based on the AC port. See also [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D628TriggerMode2COptional29"]]
1256
1257 (% style="color:#037691" %)**AT Command**
1258
1259 (% border="2" style="width:500px" %)
1260 |(% style="width:104px" %)**Command**|(% style="width:394px" %)(((
1261 AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
1262 )))
1263 |(% style="width:104px" %)**Response**|(% style="width:394px" %)
1264 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1265 **AC1_LIMIT_LOW** : lower limit of the current to be checked
1266
1267 **AC1_LIMIT_HIGH **: higher limit of the current to be checked
1268
1269 **AC2_LIMIT_HIGH **: lower limit of the current to be checked
1270
1271 **AC2_LIMIT_LOW** : higher limit of the current to be checked
1272 )))
1273 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1274 AT+ACLIM=10000,15000,0,0
1275
1276 Triggers an uplink if AC1 current is lower than 10mA or higher than 15mA
1277 )))
1278 |(% style="width:104px" %)Note|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D628TriggerMode2COptional29"]]
1279
1280 (% style="color:#037691" %)**Downlink Payload**
1281
1282 (% border="2" style="width:500px" %)
1283 |(% style="width:104px" %)**Payload**|(% style="width:394px" %)<prefix><AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
1284 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1285 **prefix **: AA 01 (hexadecimal)
1286
1287 **AC1_LIMIT_LOW** : lower limit of the current to be checked, two bytes in hexadecimal
1288
1289 **AC1_LIMIT_HIGH **: higher limit of the current to be checked, two bytes in hexadecimal
1290
1291 **AC2_LIMIT_HIGH **: lower limit of the current to be checked, two bytes in hexadecimal
1292
1293 **AC2_LIMIT_LOW** : higher limit of the current to be checked, two bytes in hexadecimal
1294 )))
1295 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1296 AA 01 **27** **10 3A** **98** 00 00 00 00
1297
1298 Triggers an uplink if AC1 current is lower than 10mA or higher than 15mA. Set all values to zero for AC2 limits because we are only checking AC1 limits.
1299 )))
1300 |(% style="width:104px" %)Note|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D628TriggerMode2COptional29"]]
1301
1302 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
1303
1304
1305 Sets the current trigger based on the AV port. See also [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D628TriggerMode2COptional29"]]
1306
1307 (% style="color:#037691" %)**AT Command**
1308
1309 (% border="2" style="width:500px" %)
1310 |(% style="width:104px" %)**Command**|(% style="width:387px" %)AT+AVLIM= AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
1311 |(% style="width:104px" %)**Response**|(% style="width:387px" %)
1312 |(% style="width:104px" %)**Parameters**|(% style="width:387px" %)(((
1313 **AC1_LIMIT_LOW** : lower limit of the current to be checked
1314
1315 **AC1_LIMIT_HIGH **: higher limit of the current to be checked
1316
1317 **AC2_LIMIT_HIGH **: lower limit of the current to be checked
1318
1319 **AC2_LIMIT_LOW** : higher limit of the current to be checked
1320 )))
1321 |(% style="width:104px" %)**Example**|(% style="width:387px" %)(((
1322 AT+AVLIM=3000,6000,0,2000
1323
1324 Triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V
1325 )))
1326 |(% style="width:104px" %)**Note**|(% style="width:387px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D628TriggerMode2COptional29"]]
1327
1328 (% style="color:#037691" %)**Downlink Payload**
1329
1330 (% border="2" style="width:500px" %)
1331 |(% style="width:104px" %)**Payload**|(% style="width:394px" %)<prefix><AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
1332 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1333 **prefix **: AA 00 (hexadecimal)
1334
1335 **AV1_LIMIT_LOW** : lower limit of the voltage to be checked, two bytes in hexadecimal
1336
1337 **AV1_LIMIT_HIGH **: higher limit of the voltage to be checked, two bytes in hexadecimal
1338
1339 **AV2_LIMIT_HIGH **: lower limit of the voltage to be checked, two bytes in hexadecimal
1340
1341 **AV2_LIMIT_LOW** : higher limit of the voltage to be checked, two bytes in hexadecimal
1342 )))
1343 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1344 AA 00 **0B B8 17 70 00 00 07 D0**
1345
1346 Triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V.
1347 )))
1348 |(% style="width:104px" %)**Note**|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D628TriggerMode2COptional29"]]
1349
1350 ==== 3.4.2.11 Trigger – Set the minimum interval ====
1351
1352
1353 Sets the AV and AC trigger minimum interval. The device won't respond to a second trigger within this set time after the first trigger.
1354
1355 (% style="color:#037691" %)**AT Command**
1356
1357 (% border="2" style="width:500px" %)
1358 |(% style="width:113px" %)**Command**|(% style="width:385px" %)AT+ATDC=<time>
1359 |(% style="width:113px" %)**Response**|(% style="width:385px" %)
1360 |(% style="width:113px" %)**Parameters**|(% style="width:385px" %)(((
1361 **time** : in minutes
1362 )))
1363 |(% style="width:113px" %)**Example**|(% style="width:385px" %)(((
1364 AT+ATDC=5
1365
1366 The device won't respond to the second trigger within 5 minutes after the first trigger.
1367 )))
1368 |(% style="width:113px" %)**Note**|(% style="width:385px" %)(% style="color:red" %)**The time must be greater than 5 minutes.**
1369
1370 (% style="color:#037691" %)**Downlink Payload**
1371
1372 (% border="2" style="width:500px" %)
1373 |(% style="width:112px" %)**Payload**|(% style="width:386px" %)<prefix><time>
1374 |(% style="width:112px" %)**Parameters**|(% style="width:386px" %)(((
1375 **prefix** : AC (hexadecimal)
1376
1377 **time **: in minutes (two bytes in hexadecimal)
1378 )))
1379 |(% style="width:112px" %)**Example**|(% style="width:386px" %)(((
1380 AC **00 05**
1381
1382 The device won't respond to the second trigger within 5 minutes after the first trigger.
1383 )))
1384 |(% style="width:112px" %)**Note**|(% style="width:386px" %)(% style="color:red" %)**The time must be greater than 5 minutes.**
1385
1386 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1387
1388
1389 Controls the digital outputs DO1, DO2, and DO3
1390
1391 (% style="color:#037691" %)**AT Command**
1392
1393 There is no AT Command to control the Digital Output.
1394
1395
1396 (% style="color:#037691" %)**Downlink Payload**
1397
1398 (% border="2" style="width:500px" %)
1399 |(% style="width:115px" %)**Payload**|(% style="width:383px" %)<prefix><DO1><DO2><DO3>
1400 |(% style="width:115px" %)**Parameters**|(% style="width:383px" %)(((
1401 **prefix** : 02 (hexadecimal)
1402
1403 **DOI** : 01: Low,  00: High, 11: No action (1 byte in hex)
1404
1405 **DO2** : 01: Low,  00: High, 11: No action (1 byte in hex)
1406
1407 **DO3 **: 01: Low,  00: High, 11: No action (1 byte in hex)
1408 )))
1409 |(% style="width:115px" %)**Examples**|(% style="width:383px" %)(((
1410 02 **01 00 01**
1411
1412 If there is a load between V+ and DOx, it means DO1 is set to low, DO2 is set to high, and DO3 is set to low.
1413
1414 **More examples:**
1415
1416 (((
1417 01: Low,  00: High,  11: No action
1418
1419 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:383px" %)
1420 |(% style="background-color:#4f81bd; color:white; width:126px" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white; width:85px" %)**DO1**|(% style="background-color:#4f81bd; color:white; width:86px" %)**DO2**|(% style="background-color:#4f81bd; color:white; width:86px" %)**DO3**
1421 |(% style="width:126px" %)02  01  00  11|(% style="width:85px" %)Low|(% style="width:86px" %)High|(% style="width:86px" %)No Action
1422 |(% style="width:126px" %)02  00  11  01|(% style="width:85px" %)High|(% style="width:86px" %)No Action|(% style="width:86px" %)Low
1423 |(% style="width:126px" %)02  11  01  00|(% style="width:85px" %)No Action|(% style="width:86px" %)Low|(% style="width:86px" %)High
1424 )))
1425
1426 (((
1427 (((
1428 (% style="color:red" %)**Note: For the LT-22222-L, there is no DO3; the last byte can have any value.**
1429 )))
1430
1431 (((
1432 (% style="color:red" %)**The device will upload a packet if downlink code executes successfully.**
1433 )))
1434 )))
1435 )))
1436
1437 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1438
1439
1440 (% style="color:#037691" %)**AT command**
1441
1442 There is no AT command to control the digital output.
1443
1444
1445 (% style="color:#037691" %)**Downlink payload**
1446
1447 (% border="2" style="width:500px" %)
1448 |(% style="width:116px" %)**Prefix**|(% style="width:382px" %)0xA9
1449 |(% style="width:116px" %)**Parameters**|(% style="width:382px" %)(((
1450 **inverter_mode**: 1 byte in hex.
1451
1452 **01:** DO pins revert to their original state after the timeout.
1453 **00:** DO pins switch to an inverted state after the timeout.
1454
1455
1456 **DO1_control_method_and_port_status **- 1 byte in hex
1457
1458 0x01 : DO1 set to low
1459
1460 0x00 : DO1 set to high
1461
1462 0x11 : DO1 NO action
1463
1464
1465 **DO2_control_method_and_port_status** - 1 byte in hex
1466
1467 0x01 : DO2 set to low
1468
1469 0x00 : DO2 set to high
1470
1471 0x11 : DO2 NO action
1472
1473
1474 **DO3_control_method_and_port_status **- 1 byte in hex
1475
1476 0x01 : DO3 set to low
1477
1478 0x00 : DO3 set to high
1479
1480 0x11 : DO3 NO action
1481
1482
1483 **latching_time** : 4 bytes in hex
1484
1485 (% style="color:red" %)**Note: **
1486
1487 Since firmware v1.6.0, the latch time supports 4 bytes or 2 bytes
1488
1489 Before firmware v1.6.0, the latch time only supported 2 bytes.
1490
1491 (% style="color:red" %)**The device will uplink a packet if the downlink code executes successfully.**
1492 )))
1493 |(% style="width:116px" %)**Payload format**|(% style="width:382px" %)<prefix><inverter_mode><DO1_control_method_and_port_status><DO2_control_method_and_port_status><DO2_control_method_and_port_status><latching_time>
1494 |(% style="width:116px" %)**Example**|(% style="width:382px" %)(((
1495 **A9 01 01 01 01 07 D0**
1496
1497 DO1 pin, DO2 pin, and DO3 pin will be set to low, last for 2 seconds, and then revert to their original state.
1498
1499
1500 **A9 01 00 01 11 07 D0**
1501
1502 DO1 pin is set to high, DO2 pin is set to low, and DO3 pin takes no action. This lasts for 2 seconds and then reverts to the original state.
1503
1504
1505 **A9 00 00 00 00 07 D0**
1506
1507 DO1 pin, DO2 pin, and DO3 pin will be set to high, last for 2 seconds, and then all change to low.
1508
1509
1510 **A9 00 11 01 00 07 D0**
1511
1512 DO1 pin takes no action, DO2 pin is set to low, and DO3 pin is set to high. This lasts for 2 seconds, after which the DO1 pin takes no action, the DO2 pin is set to high, and the DO3 pin is set to low.
1513 )))
1514
1515 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1516
1517
1518 (% style="color:#037691" %)**AT Command:**
1519
1520 There is no AT Command to control the Relay Output.
1521
1522
1523 (% style="color:#037691" %)**Downlink Payload**
1524
1525 (% border="2" style="width:500px" %)
1526 |(% style="width:113px" %)**Prefix**|(% style="width:384px" %)0x03
1527 |(% style="width:113px" %)**Parameters**|(% style="width:384px" %)(((
1528 **RO1_status** : 1 byte in hex
1529
1530 00: Open
1531
1532 01: Close
1533
1534 11: No action
1535
1536
1537 **RO2_status** : 1 byte in hex
1538
1539 00: Open
1540
1541 01: Close
1542
1543 11: No action
1544 )))
1545 |(% style="width:113px" %)**Payload format**|(% style="width:384px" %)<prefix><RO1_status><RO2_status>
1546 |(% style="width:113px" %)**Example**|(% style="width:384px" %)(((
1547 (% border="2" %)
1548 |=Payload|=RO1|=RO2
1549 |03  00  11|Open|No action
1550 |03  01  11|Close|No action
1551 |03 11  00|No action|Open
1552 |03 11  01|No action|Close
1553 |03 00 00|Open|Open
1554 |03 01 01|Close|Close
1555 |03 01 00|Close|Open
1556 |03 00 01|Open|Close
1557
1558 (% style="color:red" %)**The device will transmit an uplink packet if the downlink payload is executed successfully.**
1559 )))
1560
1561 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1562
1563
1564 Controls the relay output time.
1565
1566
1567 (% style="color:#037691" %)**AT Command:**
1568
1569 There is no AT Command to control the Relay Output
1570
1571
1572 (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1573
1574 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Sets RO1/RO2 relays with time control
1575
1576
1577 This controls the relay output time and includes 4 bytes:
1578
1579 (% style="color:#4f81bd" %)**First byte **(%%)**:** Type code (0x05)
1580
1581 (% style="color:#4f81bd" %)**Second byte (aa)**(%%): Inverter Mode
1582
1583 01: Relays will change back to their original state after a timeout.
1584
1585 00: Relays will change to the inverter state after a timeout.
1586
1587
1588 (% style="color:#4f81bd" %)**Third byte (bb)**(%%): Control Method and Ports status:
1589
1590 [[image:image-20221008095908-1.png]]
1591
1592
1593 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh bytes (cc)**(%%): Latching time. Unit: ms
1594
1595
1596 (% style="color:red" %)**Note:**
1597
1598 Since firmware v1.6.0, the latch time supports both 4 bytes and 2 bytes.
1599
1600 Before firmware v1.6.0, the latch time only supported 2 bytes.
1601
1602
1603 (% style="color:red" %)**The device will uplink a packet if the downlink code executes successfully.**
1604
1605
1606 **Example payload:**
1607
1608 **~1. 05 01 11 07 D0**
1609
1610 Relay1 and Relay2 will be set to NC, lasting 2 seconds, then revert to their original state
1611
1612 **2. 05 01 10 07 D0**
1613
1614 Relay1 will change to NC, Relay2 will change to NO, lasting 2 seconds, and then both will revert to their original state.
1615
1616 **3. 05 00 01 07 D0**
1617
1618 Relay1 will change to NO, Relay2 will change to NC, lasting 2 seconds, then Relay1 will change to NC, and Relay2 will change to NO.
1619
1620 **4. 05 00 00 07 D0**
1621
1622 Relay1 and Relay2 will change to NO, lasting 2 seconds, then both will change to NC.
1623
1624
1625
1626 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1627
1628
1629 When the voltage exceeds the threshold, counting begins. For details, see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1630
1631 (% style="color:#037691" %)**AT Command**
1632
1633 (% border="2" style="width:500px" %)
1634 |(% style="width:137px" %)**Command**|(% style="width:361px" %)AT+VOLMAX=<voltage>,<logic>
1635 |(% style="width:137px" %)**Response**|(% style="width:361px" %)
1636 |(% style="width:137px" %)**Parameters**|(% style="width:361px" %)(((
1637 **voltage** : voltage threshold in mV
1638
1639 **logic**:
1640
1641 **0** : lower than
1642
1643 **1**: higher than
1644
1645 if you leave the logic parameter blank, it is considered 0
1646 )))
1647 |(% style="width:137px" %)**Examples**|(% style="width:361px" %)(((
1648 AT+VOLMAX=20000
1649
1650 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1651
1652 AT+VOLMAX=20000,0
1653
1654 If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1
1655
1656 AT+VOLMAX=20000,1
1657
1658 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1659 )))
1660
1661 (% style="color:#037691" %)**Downlink Payload**
1662
1663 (% border="2" style="width:500px" %)
1664 |(% style="width:140px" %)**Payload**|(% style="width:358px" %)<prefix><voltage><logic>
1665 |(% style="width:140px" %)**Parameters**|(% style="width:358px" %)(((
1666 **prefix** : A5 (hex)
1667
1668 **voltage** : voltage threshold in mV (2 bytes in hex)
1669
1670 **logic**: (1 byte in hexadecimal)
1671
1672 **0** : lower than
1673
1674 **1**: higher than
1675
1676 if you leave the logic parameter blank, it is considered 1 (higher than)
1677 )))
1678 |(% style="width:140px" %)**Example**|(% style="width:358px" %)(((
1679 A5 **4E 20**
1680
1681 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1682
1683 A5 **4E 20 00**
1684
1685 If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1
1686
1687 A5 **4E 20 01**
1688
1689 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1690 )))
1691
1692 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1693
1694
1695 This command allows users to pre-configure specific count numbers for various counting parameters such as Count1, Count2, or AVI1 Count. Use the AT command to set the desired count number for each configuration.
1696
1697 (% style="color:#037691" %)**AT Command**
1698
1699 (% border="2" style="width:500px" %)
1700 |(% style="width:134px" %)**Command**|(% style="width:364px" %)AT+SETCNT=<counting_parameter>,<number>
1701 |(% style="width:134px" %)**Response**|(% style="width:364px" %)
1702 |(% style="width:134px" %)**Parameters**|(% style="width:364px" %)(((
1703 **counting_parameter** :
1704
1705 1: COUNT1
1706
1707 2: COUNT2
1708
1709 3: AVI1 Count
1710
1711 **number** : Start number
1712 )))
1713 |(% style="width:134px" %)**Example**|(% style="width:364px" %)(((
1714 AT+SETCNT=1,10
1715
1716 Sets the COUNT1 to 10.
1717 )))
1718
1719 (% style="color:#037691" %)**Downlink Payload**
1720
1721 (% border="2" style="width:500px" %)
1722 |(% style="width:135px" %)**Payload**|(% style="width:363px" %)<prefix><counting_parameter><number>
1723 |(% style="width:135px" %)**Parameters**|(% style="width:363px" %)(((
1724 prefix : A8 (hex)
1725
1726 **counting_parameter** : (1 byte in hexadecimal)
1727
1728 1: COUNT1
1729
1730 2: COUNT2
1731
1732 3: AVI1 Count
1733
1734 **number** : Start number, 4 bytes in hexadecimal
1735 )))
1736 |(% style="width:135px" %)**Example**|(% style="width:363px" %)(((
1737 A8 **01 00 00 00 0A**
1738
1739 Sets the COUNT1 to 10.
1740 )))
1741
1742 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1743
1744
1745 This command clears the counting in counting mode.
1746
1747 (% style="color:#037691" %)**AT Command**
1748
1749 (% border="2" style="width:500px" %)
1750 |(% style="width:142px" %)**Command**|(% style="width:356px" %)AT+CLRCOUNT
1751 |(% style="width:142px" %)**Response**|(% style="width:356px" %)-
1752
1753 (% style="color:#037691" %)**Downlink Payload**
1754
1755 (% border="2" style="width:500px" %)
1756 |(% style="width:141px" %)**Payload**|(% style="width:357px" %)<prefix><clear?>
1757 |(% style="width:141px" %)**Parameters**|(% style="width:357px" %)(((
1758 prefix : A6 (hex)
1759
1760 clear? : 01 (hex)
1761 )))
1762 |(% style="width:141px" %)**Example**|(% style="width:357px" %)A6 **01**
1763
1764 ==== 3.4.2.19 Set the save intervals of the counting results, RO (Relay Output), and DO (Digital Output) states ====
1765
1766 This command configures the device to periodically save the counting results, RO (Relay Output), and DO (Digital Output) states to internal flash memory at a user-defined interval. By setting a save interval, the device ensures that critical data (counting values and output states) is preserved in case of power loss.
1767 The save interval can be adjusted to the user's needs, with a minimum value of (% style="color:blue" %)**30**(%%) seconds.
1768 The saved RO/DO states can be restored after a device reset by combining this function with the (% style="color:blue" %)**AT+RODORESET**(%%) command.
1769
1770 (% style="color:#037691" %)**AT Command**
1771
1772 (% border="2" style="width:500px" %)
1773 |(% style="width:124px" %)**Command**|(% style="width:374px" %)AT+COUTIME=<time>
1774 |(% style="width:124px" %)**Response**|(% style="width:374px" %)
1775 |(% style="width:124px" %)**Parameters**|(% style="width:374px" %)time : seconds (0 to 16777215)
1776 |(% style="width:124px" %)**Example**|(% style="width:374px" %)(((
1777 AT+COUTIME=60
1778
1779 Sets the device to save its counting results, RO and DO states to the memory every 60 seconds.
1780 )))
1781
1782 (% style="color:#037691" %)**Downlink Payload**
1783
1784 (% border="2" style="width:500px" %)
1785 |(% style="width:123px" %)**Payload**|(% style="width:375px" %)<prefix><time>
1786 |(% style="width:123px" %)**Parameters**|(% style="width:375px" %)(((
1787 prefix : A7
1788
1789 time : seconds, 3 bytes in hexadecimal
1790 )))
1791 |(% style="width:123px" %)**Example**|(% style="width:375px" %)(((
1792 A7 **00 00 3C**
1793
1794 SSets the device to save its counting results, RO and DO states to the memory every 60 seconds.
1795 )))
1796
1797 ==== 3.4.2.20 Reset saved RO and DO states ====
1798
1799
1800 This command allows you to reset the saved relay output (RO) and digital output (DO) states when the device joins the network. By configuring this setting, you can control whether the device should retain or reset the relay states after a reset and rejoin to the network.
1801
1802 (% style="color:#037691" %)**AT Command**
1803
1804 (% border="2" style="width:500px" %)
1805 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+RODORESET=<state>
1806 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1807 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1808 **state** :
1809
1810 **0** : RODO will close when the device joins the network. (default)
1811
1812 **1**: After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1813 )))
1814 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1815 (% style="color:blue" %)**AT+RODORESET=1 **
1816
1817 RODO will close when the device joins the network. (default)
1818
1819 (% style="color:blue" %)**AT+RODORESET=0 **
1820
1821 After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1822 )))
1823
1824 (% style="color:#037691" %)**Downlink Payload**
1825
1826 (% border="2" style="width:500px" %)
1827 |(% style="width:127px" %)**Payload**|(% style="width:371px" %)<prefix><state>
1828 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1829 **prefix** : AD
1830
1831 **state** :
1832
1833 **0** : RODO will close when the device joins the network. (default), represents as 1 byte in hexadecimal.
1834
1835 **1**: After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network. - represents as 1 byte in hexadecimal
1836 )))
1837 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1838 AD **01**
1839
1840 RODO will close when the device joins the network. (default)
1841
1842 AD **00**
1843
1844 After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1845 )))
1846
1847 ==== 3.4.2.21 Encrypted payload ====
1848
1849
1850 This command allows you to configure whether the device should upload data in an encrypted format or in plaintext. By default, the device encrypts the payload before uploading. You can toggle this setting to either upload encrypted data or transmit it without encryption.
1851
1852 (% style="color:#037691" %)**AT Command:**
1853
1854 (% border="2" style="width:500px" %)
1855 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+DECRYPT=<state>
1856 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1857 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1858 **state** :
1859
1860 **1** : The payload is uploaded without encryption
1861
1862 **0** : The payload is encrypted when uploaded (default)
1863 )))
1864 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1865 AT+DECRYPT=1
1866
1867 The payload is uploaded without encryption
1868
1869 AT+DECRYPT=0
1870
1871 The payload is encrypted when uploaded (default)
1872 )))
1873
1874 There is no downlink payload for this configuration.
1875
1876
1877 ==== 3.4.2.22 Get sensor value ====
1878
1879
1880 This command allows you to retrieve and optionally uplink sensor readings through the serial port.
1881
1882 (% style="color:#037691" %)**AT Command**
1883
1884 (% border="2" style="width:500px" %)
1885 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+GETSENSORVALUE=<state>
1886 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1887 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1888 **state** :
1889
1890 **0 **: Retrieves the current sensor reading via the serial port.
1891
1892 **1 **: Retrieves and uploads the current sensor reading via the serial port.
1893 )))
1894 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1895 AT+GETSENSORVALUE=0
1896
1897 Retrieves the current sensor reading via the serial port.
1898
1899 AT+GETSENSORVALUE=1
1900
1901 Retrieves and uplinks the current sensor reading via the serial port.
1902 )))
1903
1904 There is no downlink payload for this configuration.
1905
1906
1907 ==== 3.4.2.23 Resetting the downlink packet count ====
1908
1909
1910 This command manages how the node handles mismatched downlink packet counts. It offers two modes: one disables the reception of further downlink packets if discrepancies occur, while the other resets the downlink packet count to align with the server, ensuring continued communication.
1911
1912 (% style="color:#037691" %)**AT Command**
1913
1914 (% border="2" style="width:500px" %)
1915 |(% style="width:130px" %)**Command**|(% style="width:368px" %)AT+DISFCNTCHECK=<state>
1916 |(% style="width:130px" %)**Response**|(% style="width:368px" %)(((
1917
1918 )))
1919 |(% style="width:130px" %)**Parameters**|(% style="width:368px" %)(((
1920 **state **:
1921
1922 **0** : When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node stops receiving further downlink packets (default).
1923
1924
1925 **1** : When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node resets its downlink packet count to match the server's, ensuring consistency.
1926 )))
1927 |(% style="width:130px" %)**Example**|(% style="width:368px" %)(((
1928 AT+DISFCNTCHECK=0
1929
1930 When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node stops receiving further downlink packets (default).
1931
1932 AT+DISFCNTCHECK=1
1933
1934 When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node resets its downlink packet count to match the server's, ensuring consistency.
1935 )))
1936
1937 There is no downlink payload for this configuration.
1938
1939
1940 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1941
1942
1943 This command controls the behavior of the node when the combined size of the MAC commands (MACANS) from the server and the payload exceed the allowed byte limit for the current data rate (DR). The command provides two modes: one enables splitting the data into batches to ensure compliance with the byte limit, while the other prioritizes the payload and ignores the MACANS in cases of overflow.
1944
1945 (% style="color:#037691" %)**AT Command**
1946
1947 (% border="2" style="width:500px" %)
1948 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+DISMACANS=<state>
1949 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1950 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1951 **state** :
1952
1953 **0** : When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1954
1955 **1** : When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1956 )))
1957 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1958 AT+DISMACANS=0
1959
1960 When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1961
1962 AT+DISMACANS=1
1963
1964 When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1965 )))
1966
1967 (% style="color:#037691" %)**Downlink Payload**
1968
1969 (% border="2" style="width:500px" %)
1970 |(% style="width:126px" %)**Payload**|(% style="width:372px" %)<prefix><state>
1971 |(% style="width:126px" %)**Parameters**|(% style="width:372px" %)(((
1972 **prefix** : 21
1973
1974 **state** : (2 bytes in hexadecimal)
1975
1976 **0** : When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1977
1978 **1 **: When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1979 )))
1980 |(% style="width:126px" %)**Example**|(% style="width:372px" %)(((
1981 21 **00 01**
1982
1983 Set DISMACANS=1
1984 )))
1985
1986 ==== 3.4.2.25 Copy downlink to uplink ====
1987
1988
1989 This command enables the device to immediately uplink the payload of a received downlink packet back to the server. The command allows for quick data replication from downlink to uplink, with a fixed port number of 100.
1990
1991 (% style="color:#037691" %)**AT Command**(%%)**:**
1992
1993 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving a downlink payload from the server, the device will immediately uplink the payload back to the server using port number 100.
1994
1995 Example:**aa xx xx xx xx**         ~/~/ **aa** indicates whether the configuration has changed: **00** means YES, and **01** means NO. **xx xx xx xx** are the bytes uplinked back.
1996
1997
1998 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1999
2000 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
2001
2002 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
2003
2004 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
2005
2006
2007 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
2008
2009 There is no downlink option available for this feature.
2010
2011
2012 ==== 3.4.2.26 Query firmware version, frequency band, subband, and TDC time ====
2013
2014
2015 This command is used to query key information about the device, including its firmware version, frequency band, subband, and TDC time. By sending the specified payload as a downlink, the server can retrieve this essential data from the device.
2016
2017 * (((
2018 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
2019
2020 (% style="color:blue" %)**26 01  ** (%%) ~/~/  The downlink payload 26 01 is used to query the device's firmware version, frequency band, subband, and TDC time.
2021
2022
2023 )))
2024
2025 **Example:**
2026
2027 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
2028
2029
2030 == 3.5 Integrating with ThingsEye.io ==
2031
2032
2033 The Things Stack application supports integration with ThingsEye.io. Once integrated, ThingsEye.io acts as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
2034
2035
2036 === 3.5.1 Configuring The Things Stack ===
2037
2038
2039 We use The Things Stack Sandbox in this example:
2040
2041 * In **The Things Stack Sandbox**, go to the **Application **for the LT-22222-LA you added.
2042 * Select **MQTT** under **Integrations** in the left menu.
2043 * In the **Connection information **section, under **Connection credentials**, The Things Stack displays an auto-generated **username**. You can use it or provide a new one.
2044 * Click the **Generate new API key** button to generate a password. You can view it by clicking on the **visibility toggle/eye** icon. The API key works as the password.
2045
2046 {{info}}
2047 The username and  password (API key) you created here are required in the next section.
2048 {{/info}}
2049
2050 [[image:tts-mqtt-integration.png]]
2051
2052
2053 === 3.5.2 Configuring ThingsEye.io ===
2054
2055
2056 The ThingsEye.io IoT platform is not open for self-registration at the moment. If you are interested in testing the platform, please send your project information to admin@thingseye.io, and we will create an account for you.
2057
2058 * Login to your [[ThingsEye.io >>https://thingseye.io]]account.
2059 * Under the **Integrations center**, click **Integrations**.
2060 * Click the **Add integration** button (the button with the **+** symbol).
2061
2062 [[image:thingseye-io-step-1.png]]
2063
2064
2065 On the **Add integration** window, configure the following:
2066
2067 **Basic settings:**
2068
2069 * Select **The Things Stack Community** from the **Integration type** list.
2070 * Enter a suitable name for your integration in the **Name **text** **box or keep the default name.
2071 * Ensure the following options are turned on.
2072 ** Enable integration
2073 ** Debug mode
2074 ** Allow creating devices or assets
2075 * Click the **Next** button. you will be navigated to the **Uplink data converter** tab.
2076
2077 [[image:thingseye-io-step-2.png]]
2078
2079
2080 **Uplink data converter:**
2081
2082 * Click the **Create new** button if it is not selected by default.
2083 * Enter a suitable name for the uplink data converter in the **Name **text** **box or keep the default name.
2084 * Click the **JavaScript** button.
2085 * Paste the uplink decoder function into the text area (first, delete the default code). The demo uplink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]].
2086 * Click the **Next** button. You will be navigated to the **Downlink data converter **tab.
2087
2088 [[image:thingseye-io-step-3.png]]
2089
2090
2091 **Downlink data converter (this is an optional step):**
2092
2093 * Click the **Create new** button if it is not selected by default.
2094 * Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name.
2095 * Click the **JavaScript** button.
2096 * Paste the downlink decoder function into the text area (first, delete the default code). The demo downlink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Downlink_Converter.js]].
2097 * Click the **Next** button. You will be navigated to the **Connection** tab.
2098
2099 [[image:thingseye-io-step-4.png]]
2100
2101
2102 **Connection:**
2103
2104 * Choose **Region** from the **Host type**.
2105 * Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...).
2106 * Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The **username **and **password **can be found on the MQTT integration page of your The Things Stack account (see **3.5.1 Configuring The Things Stack**).
2107 * Click the **Check connection** button to test the connection. If the connection is successful, you will see the message saying **Connected**.
2108
2109 [[image:message-1.png]]
2110
2111
2112 * Click the **Add** button.
2113
2114 [[image:thingseye-io-step-5.png]]
2115
2116
2117 Your integration has been added to the** Integrations** list and will be displayed on the **Integrations** page. Check whether the status is shown as **Active**. If not, review your configuration settings and correct any errors.
2118
2119 [[image:thingseye.io_integrationsCenter_integrations.png]]
2120
2121
2122 ==== 3.5.2.1 Viewing integration details ====
2123
2124
2125 Click on your integration from the list. The **Integration details** window will appear with the **Details **tab selected. The **Details **tab shows all the settings you have provided for this integration.
2126
2127 [[image:integration-details.png]]
2128
2129
2130 If you want to edit the settings you have provided, click on the **Toggle edit mode** button. Once you have done click on the **Apply changes **button.
2131
2132 {{info}}
2133 See also [[ThingsEye documentation>>https://wiki.thingseye.io/xwiki/bin/view/Main/]].
2134 {{/info}}
2135
2136
2137 ==== 3.5.2.2 Viewing events ====
2138
2139
2140 The **Events **tab displays all the uplink messages from the LT-22222-L.
2141
2142 * Select **Debug **from the **Event type** dropdown.
2143 * Select the** time frame** from the **time window**.
2144
2145 [[image:thingseye-events.png]]
2146
2147
2148 * To view the **JSON payload** of a message, click on the **three dots (...)** in the **Message** column of the desired message.
2149
2150 [[image:thingseye-json.png]]
2151
2152
2153 ==== 3.5.2.3 Deleting an integration ====
2154
2155
2156 If you want to delete an integration, click the **Delete integratio**n button on the Integrations page.
2157
2158
2159 ==== 3.5.2.4 Viewing sensor data on a dashboard ====
2160
2161
2162 You can create a dashboard with ThingsEye to visualize the sensor data coming from the LT-22222-LA. The following image shows a dashboard created for the LT-22222-LA. See **Creating a dashboard** in ThingsEye documentation for more information.
2163
2164 [[image:lt-22222-l-dashboard.png]]
2165
2166
2167 == 3.6 Interface Details ==
2168
2169 === 3.6.1 Digital Input Ports: DI1/DI2/DI3 (For LT-33222-L, Low Active) ===
2170
2171
2172 Supports** NPN-type **sensors.
2173
2174 [[image:1653356991268-289.png]]
2175
2176
2177 === 3.6.2 Digital Input Ports: DI1/DI2 ===
2178
2179
2180 (((
2181 The DI ports of the LT-22222-LA can support **NPN**, **PNP**, or **dry contact** output sensors.
2182 )))
2183
2184 (((
2185 (((
2186 The part of the internal circuit of the LT-22222-LA shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
2187
2188 [[image:1653357170703-587.png]]
2189 )))
2190 )))
2191
2192
2193 (((
2194 (((
2195 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
2196 )))
2197 )))
2198
2199 (((
2200
2201 )))
2202
2203 (((
2204 (% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
2205 )))
2206
2207 (((
2208 This type of sensor outputs a low (GND) signal when active.
2209 )))
2210
2211 * (((
2212 Connect the sensor's output to DI1-
2213 )))
2214 * (((
2215 Connect the sensor's VCC to DI1+.
2216 )))
2217
2218 (((
2219 When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be:
2220 )))
2221
2222 (((
2223 **= DI1**+** / 1K.**
2224 )))
2225
2226 (((
2227 For example, if** DI1+ **= **12V**, the resulting current is = 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
2228 )))
2229
2230 (((
2231
2232 )))
2233
2234 (((
2235 (% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
2236 )))
2237
2238 (((
2239 This type of sensor outputs a high signal (e.g., 24V) when active.
2240 )))
2241
2242 * (((
2243 Connect the sensor's output to DI1+
2244 )))
2245 * (((
2246 Connect the sensor's GND DI1-.
2247 )))
2248
2249 (((
2250 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
2251 )))
2252
2253 (((
2254 **= DI1+ / 1K.**
2255 )))
2256
2257 (((
2258 If **DI1+ = 24V**, the resulting current is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
2259 )))
2260
2261 (((
2262
2263 )))
2264
2265 (((
2266 (% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
2267 )))
2268
2269 (((
2270 Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
2271 )))
2272
2273 * (((
2274 Connect the sensor's output to DI1+ with a 50K resistor in series.
2275 )))
2276 * (((
2277 Connect the sensor's GND DI1-.
2278 )))
2279
2280 (((
2281 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
2282 )))
2283
2284 (((
2285 **= DI1+ / 51K.**
2286 )))
2287
2288 (((
2289 If the sensor output is 220V, then (% wfd-invisible="true" id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
2290 )))
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300 (% style="color:blue" %)**Example 4**(%%): Connecting to a Dry Contact sensor
2301
2302 From the DI port circuit above, activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference on its own.
2303
2304 To detect a Dry Contact, you can supply a power source to one of the pins of the Dry Contact. A reference circuit diagram is shown below.
2305
2306 [[image:image-20230616235145-1.png]]
2307
2308 (% style="color:blue" %)**Example 5**(%%): Connecting to an Open Collector
2309
2310
2311 [[image:image-20240219115718-1.png]]
2312
2313 === 3.6.3 Digital Output Ports: DO1/DO2 ===
2314
2315
2316 (% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
2317
2318 (% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
2319
2320 [[image:1653357531600-905.png]]
2321
2322
2323 === 3.6.4 Analog Input Interfaces ===
2324
2325
2326 The analog input interface is shown below. The LT-22222-LA will measure the IN2 voltage to calculate the current passing through the load. The formula is:
2327
2328
2329 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
2330
2331 [[image:1653357592296-182.png]]
2332
2333 Example: Connecting a 4~~20mA sensor
2334
2335 We will use the wind speed sensor as an example for reference only.
2336
2337
2338 (% style="color:blue" %)**Specifications of the wind speed sensor:**
2339
2340 (% style="color:red" %)**Red:  12~~24V**
2341
2342 (% style="color:#ffc000" %)**Yellow:  4~~20mA**
2343
2344 **Black:  GND**
2345
2346 **Connection diagram:**
2347
2348 [[image:1653357640609-758.png]]
2349
2350 [[image:1653357648330-671.png]]
2351
2352
2353 Example: Connecting to a regulated power supply to measure voltage
2354
2355 [[image:image-20230608101532-1.png]]
2356
2357 [[image:image-20230608101608-2.jpeg]]
2358
2359 [[image:image-20230608101722-3.png]]
2360
2361
2362 (% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
2363
2364 (% style="color:red" %)**Red:  12~~24v**
2365
2366 **Black:  GND**
2367
2368
2369 === 3.6.5 Relay Output ===
2370
2371
2372 (((
2373 The LT-22222-LA has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
2374
2375 (% style="color:red" %)**Note:**(%%) The ROx pins will be in the Open (NO) state when the LT-22222-LA is powered off.
2376 )))
2377
2378 [[image:image-20220524100215-9.png]]
2379
2380 [[image:image-20220524100215-10.png]]
2381
2382
2383
2384 == 3.7 LED Indicators ==
2385
2386
2387 The table below lists the behaviour of LED indicators for each port function.
2388
2389 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
2390 |(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
2391 |**PWR**|Always on when there is power
2392 |**TX**|(((
2393 (((
2394 Device booting: TX blinks 5 times.
2395 )))
2396
2397 (((
2398 Successful network joins: TX remains ON for 5 seconds.
2399 )))
2400
2401 (((
2402 Transmit a LoRa packet: TX blinks once
2403 )))
2404 )))
2405 |**RX**|RX blinks once when a packet is received.
2406 |**DO1**|For LT-22222-LA: ON when DO1 is low, OFF when DO1 is high
2407 |**DO2**|For LT-22222-LA: ON when DO2 is low, OFF when DO2 is high
2408 |**DI1**|(((
2409 For LT-22222-LA: ON when DI1 is high, OFF when DI1 is low
2410 )))
2411 |**DI2**|(((
2412 For LT-22222-LA: ON when DI2 is high, OFF when DI2 is low
2413 )))
2414 |**RO1**|For LT-22222-LA: ON when RO1 is closed, OFF when RO1 is open
2415 |**RO2**|For LT-22222-LA: ON when RO2 is closed, OFF when RO2 is open
2416
2417 = 4. Using AT Commands =
2418
2419
2420 The LT-22222-LA supports programming using AT Commands.
2421
2422
2423 == 4.1 Connecting the LT-22222-LA to a PC ==
2424
2425
2426 (((
2427 You can use a USB-to-TTL adapter/converter along with a 3.5mm Program Cable to connect the LT-22222-LA to a PC, as shown below.
2428
2429 (% title="Click and drag to resize" %)​​[[image:1751525987713-642.png]]​
2430
2431
2432 )))
2433
2434 (((
2435 On the PC, you need to set the (% style="color:#4f81bd" %)**serial tool **(%%)(such as [[PuTTY>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]] or [[SecureCRT>>https://www.vandyke.com/cgi-bin/releases.php?product=securecrt]]) to a baud rate of (% style="color:green" %)**9600**(%%) to access the serial console of LT-22222-LA. Access to AT commands is disabled by default, and a password (default: (% style="color:green" %)**123456**)(%%) must be entered to enable AT command access, as shown below:
2436 )))
2437
2438 [[image:1653358355238-883.png]]
2439
2440
2441 (((
2442 == 4.2 LT-22222-LA related AT commands ==
2443
2444
2445 )))
2446
2447 (((
2448 The following is the list of all the AT commands related to the LT-22222-LA, except for those used for switching between working modes.
2449
2450 * **##AT##+<CMD>?** : Help on <CMD>
2451 * **##AT##+<CMD>** : Run <CMD>
2452 * **##AT##+<CMD>=<value>** : Set the value
2453 * **##AT##+<CMD>=?** : Get the value
2454 * ##**ATZ**##: Trigger a reset of the MCU
2455 * ##**AT+FDR**##: Reset Parameters to factory default, reserve keys 
2456 * **##AT+DEUI##**: Get or set the Device EUI (DevEUI)
2457 * **##AT+DADDR##**: Get or set the Device Address (DevAddr)
2458 * **##AT+APPKEY##**: Get or set the Application Key (AppKey)
2459 * ##**AT+NWKSKEY**##: Get or set the Network Session Key (NwkSKey)
2460 * **##AT+APPSKEY##**: Get or set the Application Session Key (AppSKey)
2461 * **##AT+APPEUI##**: Get or set the Application EUI (AppEUI)
2462 * **##AT+ADR##**: Get or set the Adaptive Data Rate setting. (0: OFF, 1: ON)
2463 * ##**AT+TXP**##: Get or set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Specification)
2464 * **##AT+DR##**:  Get or set the Data Rate. (0-7 corresponding to DR_X)  
2465 * **##AT+DCS##**: Get or set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
2466 * ##**AT+PNM**##: Get or set the public network mode. (0: off, 1: on)
2467 * ##**AT+RX2FQ**##: Get or set the Rx2 window frequency
2468 * ##**AT+RX2DR**##: Get or set the Rx2 window data rate (0-7 corresponding to DR_X)
2469 * ##**AT+RX1DL**##: Get or set the delay between the end of the Tx and the Rx Window 1 in ms
2470 * ##**AT+RX2DL**##: Get or set the delay between the end of the Tx and the Rx Window 2 in ms
2471 * ##**AT+JN1DL**##: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
2472 * ##**AT+JN2DL**##: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
2473 * ##**AT+NJM**##: Get or set the Network Join Mode. (0: ABP, 1: OTAA)
2474 * ##**AT+NWKID**##: Get or set the Network ID
2475 * ##**AT+FCU**##: Get or set the Frame Counter Uplink (FCntUp)
2476 * ##**AT+FCD**##: Get or set the Frame Counter Downlink (FCntDown)
2477 * ##**AT+CLASS**##: Get or set the Device Class
2478 * ##**AT+JOIN**##: Join Network
2479 * ##**AT+NJS**##: Get OTAA Join Status
2480 * ##**AT+SENDB**##: Send hexadecimal data along with the application port
2481 * ##**AT+SEND**##: Send text data along with the application port
2482 * ##**AT+RECVB**##: Print the last received data in binary format (with hexadecimal values)
2483 * ##**AT+RECV**##: Print the last received data in raw format
2484 * ##**AT+VER**##: Get the current image version and Frequency Band
2485 * ##**AT+CFM**##: Get or Set the confirmation mode (0-1)
2486 * ##**AT+CFS**##: Get confirmation status of the last AT+SEND (0-1)
2487 * ##**AT+SNR**##: Get the SNR of the last received packet
2488 * ##**AT+RSSI**##: Get the RSSI of the last received packet
2489 * ##**AT+TDC**##: Get or set the application data transmission interval in ms
2490 * ##**AT+PORT**##: Get or set the application port
2491 * ##**AT+DISAT**##: Disable AT commands
2492 * ##**AT+PWORD**##: Set password, max 9 digits
2493 * ##**AT+CHS**##: Get or set the Frequency (Unit: Hz) for Single Channel Mode
2494 * ##**AT+CHE**##: Get or set eight channels mode, Only for US915, AU915, CN470
2495 * ##**AT+CFG**##: Print all settings
2496 )))
2497
2498
2499 == 4.2 Common AT Command Sequence ==
2500
2501 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
2502
2503 (((
2504
2505
2506 (((
2507 (% style="color:blue" %)**If the device has not yet joined the network:**
2508 )))
2509 )))
2510
2511 (((
2512 (% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT command access**##
2513 )))
2514
2515 (((
2516 (% style="background-color:#dcdcdc" %)##**AT+FDR ~/~/Reset parameters to factory default, Reserve keys**##
2517 )))
2518
2519 (((
2520 (% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT command access**##
2521 )))
2522
2523 (((
2524 (% style="background-color:#dcdcdc" %)##**AT+NJM=0 ~/~/Set to ABP mode**##
2525 )))
2526
2527 (((
2528 (% style="background-color:#dcdcdc" %)##**ATZ ~/~/Reset MCU**##
2529 )))
2530
2531
2532 (((
2533 (% style="color:blue" %)**If the device has already joined the network:**
2534 )))
2535
2536 (((
2537 (% style="background-color:#dcdcdc" %)##**AT+NJM=0**##
2538 )))
2539
2540 (((
2541 (% style="background-color:#dcdcdc" %)##**ATZ**##
2542 )))
2543
2544
2545 (((
2546
2547 )))
2548
2549
2550 === 4.2.3 Change to Class A ===
2551
2552
2553 (((
2554 (% style="color:blue" %)**If the sensor has JOINED:**
2555
2556 (% style="background-color:#dcdcdc" %)**AT+CLASS=A**
2557
2558 (% style="background-color:#dcdcdc" %)**ATZ**
2559 )))
2560
2561
2562 = 5. Case Study =
2563
2564 == 5.1 Counting how many objects pass through the flow line ==
2565
2566
2567 See [[How to set up to setup counting for objects passing through the flow line>>https://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LT-22222-L/How%20to%20set%20up%20to%20count%20objects%20pass%20in%20flow%20line/]].
2568
2569
2570 = 6. OTA Firmware update =
2571
2572
2573 (% class="wikigeneratedid" %)
2574 User can change firmware LT-22222-LA to:
2575
2576 * Change Frequency band/ region.
2577 * Update with new features.
2578 * Fix bugs.
2579
2580 Firmware and changelog can be downloaded from : **[[Firmware download link>>https://www.dropbox.com/sh/fis3g6nmhv0eokg/AAC6BcCZaX4BdqZkduUvZ3jIa?dl=0]]**
2581
2582
2583 Methods to Update Firmware:
2584
2585 * (Recommanded way) OTA firmware update via wireless : **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
2586 * Update through UART TTL interface : **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
2587
2588
2589
2590 = 7. FAQ =
2591
2592
2593 This section contains some frequently asked questions, which can help you resolve common issues and find solutions quickly.
2594
2595
2596
2597
2598 (((
2599 (((
2600 == 7.2 How to change the LoRaWAN frequency band/region? ==
2601
2602
2603 )))
2604 )))
2605
2606 (((
2607 You can follow the introductions on [[how to upgrade the image>>doc:]]. When downloading, select the required image file.
2608 )))
2609
2610 (((
2611
2612
2613 == 7.3 How to set up LT-22222-LA to work with a Single Channel Gateway, such as LG01/LG02? ==
2614
2615
2616 )))
2617
2618 (((
2619 (((
2620 In this case, you need to set the LT-22222-LA to work in ABP mode and transmit on only one frequency.
2621 )))
2622 )))
2623
2624 (((
2625 (((
2626 We assume you have an LG01/LG02 working on the frequency 868400000. Below are the steps.
2627
2628
2629 )))
2630 )))
2631
2632 (((
2633 (% style="color:#0000ff" %)**Step 1**(%%): Log in to The Things Stack Sandbox account and create an ABP device in the application. To do this, use the manual registration option as explained in section 3.2.2.2, //Adding a Device Manually//. Select //Activation by Personalization (ABP)// under Activation Mode. Enter the DevEUI exactly as shown on the registration information sticker, then generate the Device Address, Application Session Key (AppSKey), and Network Session Key (NwkSKey).
2634
2635
2636 )))
2637
2638 (((
2639
2640 )))
2641
2642 {{warning}}
2643 Ensure that the Device Address (DevAddr) and the two keys match between the LT-22222-LA and The Things Stack. You can modify them either in The Things Stack or on the LT-22222-LA to make them align. In The Things Stack, you can configure the NwkSKey and AppSKey on the settings page, but note that the Device Address is generated by The Things Stack.
2644 {{/warning}}
2645
2646
2647 (((
2648 (% style="color:blue" %)**Step 2**(%%)**:  **(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)Run AT commands to configure the LT-22222-LA to operate in single-frequency and ABP mode. The AT commands are as follows:
2649
2650
2651 )))
2652
2653 (((
2654 (% style="background-color:#dcdcdc" %)**123456** (%%) : Enter the password to enable AT access.
2655
2656 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Reset parameters to factory default, keeping keys reserved.
2657
2658 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) : Set to ABP mode.
2659
2660 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) : Disable the Adaptive Data Rate (ADR).
2661
2662 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) : Set Data Rate (Use AT+DR=3 for the 915 MHz band).
2663
2664 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) : Set transmit interval to 60 seconds.
2665
2666 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4 MHz.
2667
2668 (% style="background-color:#dcdcdc" %)**AT+DADDR=xxxx**(%%) : Set the Device Address (DevAddr)
2669
2670 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:700; text-decoration:none; white-space:pre-wrap" %)**AT+APPKEY=xxxx**(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %): Get or set the Application Key (AppKey)
2671
2672 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)**AT+NWKSKEY=xxxx**: Get or set the Network Session Key (NwkSKey)
2673
2674 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)**AT+APPSKEY=xxxx**: Get or set the Application Session Key (AppSKey)
2675
2676 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) : Reset MCU.
2677 )))
2678
2679
2680 (((
2681 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)The following figure shows the screenshot of the command set above, issued using a serial tool:
2682 )))
2683
2684 [[image:1653360498588-932.png]]
2685
2686
2687 == 7.4 How to change the uplink interval? ==
2688
2689
2690 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2691
2692
2693 == 7.5 Can I see the counting event in the serial output? ==
2694
2695
2696 (((
2697 You can run the AT command **AT+DEBUG** to view the counting event in the serial output. If the firmware is too old and doesn’t support AT+DEBUG, update to the latest firmware first.
2698
2699
2700
2701 )))
2702
2703 (((
2704 == 7.6 Why does the relay output default to an open relay after the LT-22222-LA is powered off? ==
2705
2706
2707 * If the device is not properly shut down and is directly powered off.
2708 * It will default to a power-off state.
2709 * In modes 2 to 5, the DO/RO status and pulse count are saved to flash memory.
2710 * After a restart, the status before the power failure will be read from Flash.
2711
2712 == 7.7 Can I set up LT-22222-LA as an NC (Normally Closed) relay? ==
2713
2714
2715 The LT-22222-LA's built-in relay is Normally Open (NO). You can use an external relay to achieve a Normally Closed (NC) configuration. The circuit diagram is shown below:
2716
2717 [[image:image-20221006170630-1.png]]
2718
2719
2720
2721
2722 == 7.8 Why does the LT-22222-LA always report 15.585V when measuring the AVI? ==
2723
2724
2725 It is likely that the GND is not connected during the measurement, or that the wire connected to the GND is loose.
2726
2727
2728 = 8. Troubleshooting =
2729
2730
2731 This section provides some known troubleshooting tips.
2732
2733
2734 )))
2735
2736 (((
2737 (((
2738 == 8.1 Downlink isn't working. How can I solve this? ==
2739
2740
2741 )))
2742 )))
2743
2744 (((
2745 Please refer to this link for debugging instructions: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2746 )))
2747
2748 (((
2749
2750
2751 == 8.2 Having trouble uploading an image? ==
2752
2753
2754 )))
2755
2756 (((
2757 Please refer to this link for troubleshooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2758 )))
2759
2760 (((
2761
2762
2763 == 8.3 Why can't I join TTN in the US915 /AU915 bands? ==
2764
2765
2766 )))
2767
2768 (((
2769 It might be related to the channel mapping. [[Please refer to this link for details.>>https://github.com/dragino/LT-22222-L/releases]]
2770 )))
2771
2772
2773 == 8.4 Why can the LT-22222-LA perform uplink normally, but cannot receive downlink? ==
2774
2775
2776 The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue.
2777 Use this command to synchronize their counts: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resettingthedownlinkpacketcount"]]
2778
2779
2780 = 9. Ordering information =
2781
2782
2783 (% style="color:#4f81bd" %)**LT-22222-LA-XXX:**
2784
2785 (% style="color:#4f81bd" %)**XXX:**
2786
2787 * (% style="color:red" %)**EU433**(%%): LT with frequency bands EU433
2788 * (% style="color:red" %)**EU868**(%%): LT with frequency bands EU868
2789 * (% style="color:red" %)**KR920**(%%): LT with frequency bands KR920
2790 * (% style="color:red" %)**CN470**(%%): LT with frequency bands CN470
2791 * (% style="color:red" %)**AS923**(%%): LT with frequency bands AS923
2792 * (% style="color:red" %)**AU915**(%%): LT with frequency bands AU915
2793 * (% style="color:red" %)**US915**(%%): LT with frequency bands US915
2794 * (% style="color:red" %)**IN865**(%%): LT with frequency bands IN865
2795 * (% style="color:red" %)**CN779**(%%): LT with frequency bands CN779
2796
2797 = 10. Package information =
2798
2799
2800 (% style="color:#037691" %)**Package Includes**:
2801
2802 * 1 x LT-22222-LA I/O Controller
2803 * 1 x LoRa antenna matched to the frequency of the LT-22222-LA
2804 * 1 x bracket for DIN rail mounting
2805 * 1 x 3.5 mm programming cable
2806
2807 (% style="color:#037691" %)**Dimension and weight**:
2808
2809 * Package Size / pcs : 145×80×50 mm
2810 * Weight / pcs : 180 g
2811
2812 = 11. Support =
2813
2814
2815 * (((
2816 Support is available Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different time zones, we cannot offer live support. However, your questions will be answered as soon as possible within the aforementioned schedule.
2817 )))
2818 * (((
2819 Please provide as much information as possible regarding your inquiry (e.g., product models, a detailed description of the problem, steps to replicate it, etc.) and send an email to [[support@dragino.cc>>mailto:support@dragino.cc]]
2820
2821
2822 )))
2823
2824 = 12. Reference​​​​​ =
2825
2826
2827 * LT-22222-LA: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2828 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2829 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]