Version 57.2 by Kilight Cao on 2025/07/03 15:28

Show last authors
1 [[image:image-20220523163353-1.jpeg||data-xwiki-image-style-alignment="center" height="604" width="500"]]
2
3
4
5
6
7
8
9 **Table of Contents:**
10
11 {{toc/}}
12
13
14
15
16
17 = 1. Introduction =
18
19 == 1.1 What is the LT-22222-LA I/O Controller? ==
20
21
22 (((
23 (((
24 The Dragino (% style="color:blue" %)**LT-22222-LA I/O Controller**(%%) is an advanced LoRaWAN end device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
25
26 The LT-22222-LA I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
27 )))
28 )))
29
30 (((
31 With the LT-22222-LA I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
32 )))
33
34 (((
35 You can connect the LT-22222-LA I/O Controller to a LoRaWAN network service provider in several ways:
36
37 * If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Stack Community Network), you can select a network and register the LT-22222-LA I/O controller with it.
38 * If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-LA I/O controller with this network.
39 * Setup your own private LoRaWAN network.
40 )))
41
42 (((
43
44
45 The network diagram below illustrates how the LT-22222-LA communicates with a typical LoRaWAN network.
46 )))
47
48
49 [[image:lorawan-nw.jpg]]
50
51 == 1.2 Specifications ==
52
53
54 (% style="color:#037691" %)**Hardware System:**
55
56 * Power Consumption:
57 ** Idle: 4mA@12V
58 ** 20dB Transmit: 34mA@12V
59 * Operating Temperature: -40 ~~ 85 Degrees, No Dew
60
61 (% style="color:#037691" %)**Interface for Model: LT22222-LA:**
62
63 * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50V, or 220V with optional external resistor)
64 * 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
65 * 2 x Relay Output (5A@250VAC / 30VDC)
66 * 2 x 0~~20mA Analog Input (res:0.01mA)
67 * 2 x 0~~30V Analog Input (res:0.01V)
68 * Power Input 7~~ 24V DC. 
69
70 (% style="color:#037691" %)**LoRa Spec:**
71
72 * Frequency Range:
73 ** Band 1 (HF): 862 ~~ 1020 MHz
74 ** Band 2 (LF): 410 ~~ 528 MHz
75 * 168 dB maximum link budget.
76 * +20 dBm - 100 mW constant RF output vs.
77 * +14 dBm high-efficiency PA.
78 * Programmable bit rate up to 300 kbps.
79 * High sensitivity: down to -148 dBm.
80 * Bullet-proof front end: IIP3 = -12.5 dBm.
81 * Excellent blocking immunity.
82 * Low RX current of 10.3 mA, 200 nA register retention.
83 * Fully integrated synthesizer with a resolution of 61 Hz.
84 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
85 * Built-in bit synchronizer for clock recovery.
86 * Preamble detection.
87 * 127 dB Dynamic Range RSSI.
88 * Automatic RF Sense and CAD with ultra-fast AFC.
89 * Packet engine up to 256 bytes with CRC.
90
91 == 1.3 Features ==
92
93
94 * LoRaWAN Class A & Class C modes
95 * Optional Customized LoRa Protocol
96 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
97 * AT Commands to change parameters
98 * Remotely configure parameters via LoRaWAN Downlink
99 * Firmware upgradable via program port
100 * Counting
101
102 == 1.4 Applications ==
103
104
105 * Smart buildings & home automation
106 * Logistics and supply chain management
107 * Smart metering
108 * Smart agriculture
109 * Smart cities
110 * Smart factory
111
112 == 1.5 Hardware Variants ==
113
114
115 (% border="1" cellspacing="3" style="width:531.222px" %)
116 |(% style="background-color:#4f81bd; color:white; width:108px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:158px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:261px" %)**Description**
117 |(% style="width:108px" %)**LT-22222-LA**|(% style="width:158px" %)(((
118 [[image:lt33222-l.jpg]]
119 )))|(% style="width:261px" %)(((
120 * 3 x Digital Input (Bi-direction)
121 * 3 x Digital Output
122 * 2 x Relay Output (5A@250VAC / 30VDC)
123 * 2 x 0~~20mA Analog Input (res:0.01mA)
124 * 2 x 0~~30V Analog Input (res:0.01v)
125 * 1 x Counting Port
126 )))
127
128 = 2. Assembling the device =
129
130 == 2.1 Connecting the antenna ==
131
132
133 Connect the LoRa antenna to the antenna connector, **ANT**,** **located on the top right side of the device, next to the upper screw terminal block. Secure the antenna by tightening it clockwise.
134
135 {{warning}}
136 **Warning! Do not power on the device without connecting the antenna.**
137 {{/warning}}
138
139
140 == 2.2 Terminals ==
141
142
143 The  LT-22222-LA has two screw terminal blocks. The upper screw terminal block has 6 screw terminals and the lower screw terminal block has 10 screw terminals.
144
145 **Upper screw terminal block (from left to right):**
146
147 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:381px" %)
148 |=(% style="width: 139px;background-color:#4f81bd;color:white" %)Screw Terminal|=(% style="width: 242px;background-color:#4f81bd;color:white" %)Function
149 |(% style="width:139px" %)GND|(% style="width:242px" %)Ground
150 |(% style="width:139px" %)VIN|(% style="width:242px" %)Input Voltage
151 |(% style="width:139px" %)AVI2|(% style="width:242px" %)Analog Voltage Input Terminal 2
152 |(% style="width:139px" %)AVI1|(% style="width:242px" %)Analog Voltage Input Terminal 1
153 |(% style="width:139px" %)ACI2|(% style="width:242px" %)Analog Current Input Terminal 2
154 |(% style="width:139px" %)ACI1|(% style="width:242px" %)Analog Current Input Terminal 1
155
156 **Lower screw terminal block (from left to right):**
157
158 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:253px" %)
159 |=(% style="width: 125px;background-color:#4f81bd;color:white" %)Screw Terminal|=(% style="width: 128px;background-color:#4f81bd;color:white" %)Function
160 |(% style="width:125px" %)RO1-2|(% style="width:128px" %)Relay Output 1
161 |(% style="width:125px" %)RO1-1|(% style="width:128px" %)Relay Output 1
162 |(% style="width:125px" %)RO2-2|(% style="width:128px" %)Relay Output 2
163 |(% style="width:125px" %)RO2-1|(% style="width:128px" %)Relay Output 2
164 |(% style="width:125px" %)DI2+|(% style="width:128px" %)Digital Input 2
165 |(% style="width:125px" %)DI2-|(% style="width:128px" %)Digital Input 2
166 |(% style="width:125px" %)DI1+|(% style="width:128px" %)Digital Input 1
167 |(% style="width:125px" %)DI1-|(% style="width:128px" %)Digital Input 1
168 |(% style="width:125px" %)DO2|(% style="width:128px" %)Digital Output 2
169 |(% style="width:125px" %)DO1|(% style="width:128px" %)Digital Output 1
170
171 == 2.3 Connecting LT-22222-LA to a Power Source ==
172
173
174 The LT-22222-LA I/O Controller can be powered by a **7–24V DC** power source. Connect your power supply’s **positive wire** to the **VIN** and the **negative wire** to the **GND** screw terminals. The power indicator **(PWR) LED** will turn on when the device is properly powered.
175
176 {{warning}}
177 **We recommend that you power on the LT-22222-LA after adding its registration information to the LoRaWAN network server. Otherwise, the device will continuously send join-request messages to attempt to join a LoRaWAN network but will fail.**
178 {{/warning}}
179
180 [[image:1653297104069-180.png]]
181
182
183
184 = 3. Registering LT-22222-LA with a LoRaWAN Network Server =
185
186
187 The LT-22222-LA supports both OTAA (Over-the-Air Activation) and ABP (Activation By Personalization) methods to activate with a LoRaWAN Network Server. However, OTAA is the most secure method for activating a device with a LoRaWAN Network Server. OTAA regenerates session keys upon initial registration and regenerates new session keys after any subsequent reboots. By default, the LT-22222-LA is configured to operate in LoRaWAN Class C mode.
188
189
190 == 3.1 Prerequisites ==
191
192
193 The LT-22222-LA comes with device registration information such as DevEUI, AppEUI, and AppKey which allows you to register it with a LoRaWAN network. This registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
194
195 {{info}}
196 If you are unable to set the provided root key and other identifiers in the network server, you must generate new keys and identifiers with the network server and configure the device with them using AT commands.
197 {{/info}}
198
199 The following subsections explain how to register the LT-22222-LA with different LoRaWAN network server providers.
200
201 [[image:image-20230425173427-2.png]]
202
203 == 3.2 The Things Stack ==
204
205
206 This section guides you through how to register your LT-22222-LA with The Things Stack Sandbox.
207
208 {{info}}
209 The Things Stack Sandbox was formally called The Things Stack Community Edition.
210 {{/info}}
211
212
213 The network diagram below illustrates the connection between the LT-22222-LA and The Things Stack, as well as how the data can be integrated with the ThingsEye IoT platform.
214
215 [[image:1751523649311-511.png||height="407" width="1378"]]
216
217 {{info}}
218 You can use a LoRaWAN gateway, such as the [[Dragino LPS8N>>https://www.dragino.com/products/lora-lorawan-gateway/item/200-lps8n.html]], to expand or create LoRaWAN coverage in your area.
219 {{/info}}
220
221
222 === 3.2.1 Setting up ===
223
224
225 * Sign up for a free account with [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] if you do not have one yet.
226 * Log in to your The Things Stack Sandbox account.
227 * Create an **application** with The Things Stack if you do not have one yet (E.g., dragino-docs).
228 * Go to your application's page and click on the **End devices** in the left menu.
229 * On the End devices page, click on **+ Register end device**. Two registration options are available:
230
231 ==== 3.2.1.1 Using the LoRaWAN Device Repository ====
232
233
234 * On the **Register end device** page:
235 ** Select the option **Select the end device in the LoRaWAN Device Repository **under **Input method**.
236 ** Select the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)** from the respective dropdown lists.
237 *** **End device brand**: Dragino Technology Co., Limited
238 *** **Model**: LT22222-L I/O Controller
239 *** **Hardware ver**: Unknown
240 *** **Firmware ver**: 1.6.0
241 *** **Profile (Region)**: Select the region that matches your device.
242 ** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
243
244 [[image:lt-22222-l-dev-repo-reg-p1.png]]
245
246
247 * Register end device page continued...
248 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message 'This end device can be registered on the network'.
249 ** In the **DevEUI** field, enter the **DevEUI**.
250 ** In the **AppKey** field, enter the **AppKey.**
251 ** In the **End device ID** field, enter a unique name for your LT-22222-LA within this application.
252 ** Under **After registration**, select the **View registered end device** option.
253 ** Click **Register end device** button.
254
255 [[image:lt-22222-l-dev-repo-reg-p2.png]]
256
257
258 * You will be navigated to the **Device overview** page.
259
260 [[image:lt-22222-device-overview.png]]
261
262
263 ==== 3.2.1.2 Adding device manually ====
264
265
266 * On the **Register end device** page:
267 ** Select the option **Enter end device specifies manually** under **Input method**.
268 ** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
269 ** Select the **LoRaWAN version** as **LoRaWAN Specification 1.0.3**
270 ** Select the **Regional Parameters version** as** RP001 Regional Parameters 1.0.3 revision A**
271 ** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the hidden section.
272 ** Select the option **Over the air activation (OTAA)** under the **Activation mode.**
273 ** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities** dropdown list.
274
275 [[image:lt-22222-l-manually-p1.png]]
276
277
278 * Register end device page continued...
279 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message '//**This end device can be registered on the network**//'
280 ** In the **DevEUI** field, enter the **DevEUI**.
281 ** In the **AppKey** field, enter the **AppKey**.
282 ** In the **End device ID** field, enter a unique name for your LT-22222-LA within this application.
283 ** Under **After registration**, select the **View registered end device** option.
284 ** Click the **Register end device** button.
285
286 [[image:lt-22222-l-manually-p2.png]]
287
288
289 You will be navigated to the **Device overview** page.
290
291 [[image:lt-22222-device-overview.png]]
292
293
294
295 === 3.2.2 Joining ===
296
297
298 On the end device's page (in this case, lt-22222-la), click on **Live data** tab. The Live data panel for your device will display. Initially, it is blank.
299
300 Now power on your LT-22222-LA. The **TX LED** will **fast-blink 5 times** which means the LT-22222-LA will enter the **work mode** and start to **join** The Things Stack network server. The **TX LED** will be on for **5 seconds** after joining the network. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server.
301
302 [[image:lt-22222-l-joining.png]]
303
304
305
306 === 3.2.3 Uplinks ===
307
308
309 After successfully joining, the device will send its first **uplink data message** to The Things Stack application it belongs to (in this example, it is **dragino-docs**). When the LT-22222-LA sends an uplink message to the server, the **TX LED** turns on for **1 second**. By default, you will receive an uplink data message from the device every 10 minutes.
310
311 Click on one of the **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the **decode_payload {}** JSON object.
312
313 [[image:lt-22222-ul-payload-decoded.png]]
314
315
316 If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **Applications > [your application] > End devices** > [**your end device]** > **Payload formatters** > **Uplink**. Then select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes.
317
318 {{info}}
319 The Things Stack provides two levels of payload formatters: application level and device level. The device-level payload formatters **override **the application-level payload formatters.
320 {{/info}}
321
322 [[image:lt-22222-ul-payload-fmt.png]]
323
324
325 We have written a payload formatter that resolves some decoding issues present in The Things Stack Device Repository payload formatter. You can add it under the **Custom JavaScript formatter**. It can be found [[here>>https://github.com/dragino/dragino-end-node-decoder/blob/main/LT22222-L/v1.6_decoder_ttn%20.txt]]:
326
327 [[image:lt-22222-l-js-custom-payload-formatter.png]]
328
329
330 === 3.2.4 Downlinks ===
331
332
333 When the LT-22222-L receives a downlink message from the LoRaWAN Network Server, the **RX LED** turns on for **1 second**.
334
335
336 == 3.3 Working Modes and Uplink Payload formats ==
337
338
339 The LT-22222-LA has 5 **working modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any working mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
340
341 * (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO
342
343 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
344
345 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
346
347 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
348
349 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
350
351 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
352
353 The uplink messages are sent over LoRaWAN FPort=2. By default, an uplink message is sent every 10 minutes.
354
355
356 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
357
358
359 (((
360 This is the default mode.
361
362 The uplink payload is 11 bytes long.
363 (% wfd-invisible="true" style="display:none" %)
364
365 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
366 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
367 |Value|(((
368 AVI1 voltage
369 )))|(((
370 AVI2 voltage
371 )))|(((
372 ACI1 Current
373 )))|(((
374 ACI2 Current
375 )))|**DIDORO***|(((
376 Reserve
377 )))|MOD
378 )))
379
380 (((
381 (% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below.
382
383 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
384 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
385 |RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
386 )))
387
388 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
389 * DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW.
390 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
391
392 (% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-LA**
393
394 For example, if the payload is: [[image:image-20220523175847-2.png]]
395
396
397 **The interface values can be calculated as follows:  **
398
399 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
400
401 AVI2 channel voltage is 0x04AC/1000=1.196V
402
403 ACI1 channel current is 0x1310/1000=4.880mA
404
405 ACI2 channel current is 0x1300/1000=4.864mA
406
407 The last byte 0xAA= **10101010**(b) means,
408
409 * [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
410 * [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
411 * **[1] DI3 - not used for LT-22222-LA.**
412 * [0] DI2 channel input is LOW, and the DI2 LED is OFF.
413 * [1] DI1 channel input state:
414 ** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
415 ** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
416 ** DI1 LED is ON in both cases.
417 * **[0] DO3 - not used for LT-22222-LA.**
418 * [1] DO2 channel output is LOW, and the DO2 LED is ON.
419 * [0] DO1 channel output state:
420 ** DO1 is FLOATING when there is no load between DO1 and V+.
421 ** DO1 is HIGH and there is a load between DO1 and V+.
422 ** DO1 LED is OFF in both cases.
423
424 Reserve = 0
425
426 MOD = 1
427
428
429 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
430
431
432 (((
433 **For LT-22222-LA**: In this mode, **DI1 and DI2** are used as counting pins.
434 )))
435
436 (((
437 The uplink payload is 11 bytes long.
438
439 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
440 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
441 It starts counting again when it reaches the maximum value.**
442
443 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
444 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
445 |Value|COUNT1|COUNT2 |DIDORO*|(((
446 Reserve
447 )))|MOD
448 )))
449
450 (((
451 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, FIRST, Reserve, Reserve, DO3, DO2 and DO1, and its size is 1 byte long as shown below.
452
453 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
454 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
455 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
456
457 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
458 )))
459
460 * FIRST: Indicates that this is the first packet after joining the network.
461 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
462
463 (((
464 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-LA**
465
466
467 )))
468
469 (((
470 **To activate this mode, run the following AT commands:**
471 )))
472
473 (((
474 (% class="box infomessage" %)
475 (((
476 **AT+MOD=2**
477
478 **ATZ**
479 )))
480 )))
481
482 (((
483
484
485 (% style="color:#4f81bd" %)**AT Commands for counting:**
486 )))
487
488 (((
489 **For LT22222-LA:**
490
491 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
492
493 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
494
495 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
496
497 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
498
499 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
500
501 (% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
502 )))
503
504
505
506
507
508
509
510
511
512 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
513
514
515 (% style="color:red" %)**Note: The maximum count depends on the bytes it is.
516 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
517 It starts counting again when it reaches the maximum value.**
518
519 **LT22222-LA**: In this mode, the DI1 is used as a counting pin.
520
521 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
522 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
523 |Value|COUNT1|(((
524 ACI1 Current
525 )))|(((
526 ACI2 Current
527 )))|DIDORO*|Reserve|MOD
528
529 (((
530 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
531
532 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
533 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
534 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
535 )))
536
537 * RO is for the relay. ROx=1: closed, ROx=0 always open.
538 * FIRST: Indicates that this is the first packet after joining the network.
539 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
540
541 (((
542 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-LA.**
543 )))
544
545
546
547
548
549
550
551
552
553 (((
554 **To activate this mode, run the following AT commands:**
555 )))
556
557 (((
558 (% class="box infomessage" %)
559 (((
560 **AT+MOD=3**
561
562 **ATZ**
563 )))
564 )))
565
566 (((
567 AT Commands for counting:
568
569 The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
570 )))
571
572
573 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
574
575
576 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
577 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
578 It starts counting again when it reaches the maximum value.**
579
580
581 (((
582 **LT22222-LA**: In this mode, the DI1 is used as a counting pin.
583 )))
584
585 (((
586 The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
587
588 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
589 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
590 |Value|COUNT1|AVI1 Counting|DIDORO*|(((
591 Reserve
592 )))|MOD
593 )))
594
595 (((
596 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
597
598 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
599 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
600 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
601 )))
602
603 * RO is for the relay. ROx=1: closed, ROx=0 always open.
604 * FIRST: Indicates that this is the first packet after joining the network.
605 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
606
607 (((
608 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
609
610
611 )))
612
613 (((
614 **To activate this mode, run the following AT commands:**
615 )))
616
617 (((
618 (% class="box infomessage" %)
619 (((
620 **AT+MOD=4**
621
622 **ATZ**
623 )))
624 )))
625
626 (((
627 AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
628 )))
629
630 (((
631 **In addition to that, below are the commands for AVI1 Counting:**
632
633 (% style="color:blue" %)**AT+SETCNT=3,60 **(%%)**(Sets AVI1 Count to 60)**
634
635 (% style="color:blue" %)**AT+VOLMAX=20000 **(%%)**(If the AVI1 voltage is higher than VOLMAX (20000mV =20V), the counter increases by 1)**
636
637 (% style="color:blue" %)**AT+VOLMAX=20000,0 **(%%)**(If the AVI1 voltage is lower than VOLMAX (20000mV =20V), counter increases by 1)**
638
639 (% style="color:blue" %)**AT+VOLMAX=20000,1 **(%%)**(If the AVI1 voltage is higher than VOLMAX (20000mV =20V), counter increases by 1)**
640 )))
641
642
643
644
645
646
647
648
649
650 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
651
652
653 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
654 The maximum count for four bytes is FFFF (hex) = 65535 (dec).
655 It starts counting again when it reaches the maximum value.**
656
657
658 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
659
660 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
661 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
662 |Value|(((
663 AVI1 voltage
664 )))|(((
665 AVI2 voltage
666 )))|(((
667 ACI1 Current
668 )))|COUNT1|DIDORO*|(((
669 Reserve
670 )))|MOD
671
672 (((
673 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
674
675 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
676 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
677 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
678 )))
679
680 * RO is for the relay. ROx=1: closed, ROx=0 always open.
681 * FIRST: Indicates that this is the first packet after joining the network.
682 * (((
683 DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
684 )))
685
686 (((
687 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-LA.**
688 )))
689
690 (((
691 **To activate this mode, run the following AT commands:**
692 )))
693
694 (((
695 (% class="box infomessage" %)
696 (((
697 **AT+MOD=5**
698
699 **ATZ**
700 )))
701 )))
702
703 (((
704 Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
705 )))
706
707
708
709
710
711
712
713
714
715 === 3.3.6 AT+ADDMOD~=6 (Trigger Mode, Optional) ===
716
717
718 (% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate __alongside__ with other modes.**
719
720 For example, if you configure the following commands:
721
722 * **AT+MOD=1 ** **~-~->**  Sets the default working mode
723 * **AT+ADDMOD6=1**   **~-~->**  Enables trigger mode
724
725 The LT-22222-LA will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. It will send uplink packets in two cases:
726
727 1. Periodic uplink: Based on TDC time. The payload is the same as in normal mode (MOD=1 as set above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
728 1. (((
729 Trigger uplink: sent when a trigger condition is met. In this case, LT will send two packets
730
731 * The first uplink uses the payload specified in trigger mode (MOD=6).
732 * The second packet uses the normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**confirmed uplinks.**
733 )))
734
735 (% style="color:#037691" %)**AT Commands to set Trigger Conditions**:
736
737 (% style="color:#4f81bd" %)**Trigger based on voltage**:
738
739 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
740
741
742 **Example:**
743
744 AT+AVLIM=3000,6000,0,2000 (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
745
746 AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0 for parameters that are not in use)
747
748
749 (% style="color:#4f81bd" %)**Trigger based on current**:
750
751 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
752
753
754 **Example:**
755
756 AT+ACLIM=10000,15000,0,0 (triggers an uplink if AC1 current is lower than 10mA or higher than 15mA)
757
758
759 (% style="color:#4f81bd" %)**Trigger based on DI status**:
760
761 DI status triggers Flag.
762
763 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
764
765
766 **Example:**
767
768 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
769
770
771 (% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
772
773 **Type Code**: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
774
775 **Format**: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
776
777 AA: Type Code for this downlink Command:
778
779 xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
780
781 yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
782
783 yy2 yy2: AC1 or AV1 HIGH limit.
784
785 yy3 yy3: AC2 or AV2 LOW limit.
786
787 Yy4 yy4: AC2 or AV2 HIGH limit.
788
789
790 **Example 1**: AA 00 13 88 00 00 00 00 00 00
791
792 Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
793
794
795 **Example 2**: AA 02 01 00
796
797 Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
798
799
800 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
801
802 MOD6 Payload: a total of 11 bytes
803
804 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
805 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
806 |Value|(((
807 TRI_A FLAG
808 )))|(((
809 TRI_A Status
810 )))|(((
811 TRI_DI FLAG+STA
812 )))|Reserve|Enable/Disable MOD6|(((
813 MOD(6)
814 )))
815
816 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Total 1 byte as below.
817
818 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
819 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
820 |(((
821 AV1_LOW
822 )))|(((
823 AV1_HIGH
824 )))|(((
825 AV2_LOW
826 )))|(((
827 AV2_HIGH
828 )))|(((
829 AC1_LOW
830 )))|(((
831 AC1_HIGH
832 )))|(((
833 AC2_LOW
834 )))|(((
835 AC2_HIGH
836 )))
837
838 * Each bit shows if the corresponding trigger has been configured.
839
840 **Example:**
841
842 10100000: This means the system is configured to use the triggers AV1_LOW and AV2_LOW.
843
844
845 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is triggered. Total 1 byte as below.
846
847 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
848 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
849 |(((
850 AV1_LOW
851 )))|(((
852 AV1_HIGH
853 )))|(((
854 AV2_LOW
855 )))|(((
856 AV2_HIGH
857 )))|(((
858 AC1_LOW
859 )))|(((
860 AC1_HIGH
861 )))|(((
862 AC2_LOW
863 )))|(((
864 AC2_HIGH
865 )))
866
867 * Each bit shows which status has been triggered on this uplink.
868
869 **Example:**
870
871 10000000: The uplink is triggered by AV1_LOW, indicating that the voltage is too low.
872
873
874 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is triggered. Total 1 byte as below.
875
876 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
877 |(% style="width:50px" %)**bit 7**|(% style="width:50px" %)**bit 6**|(% style="width:50px" %)**bit 5**|(% style="width:50px" %)**bit 4**|(% style="width:90px" %)**bit 3**|(% style="width:80px" %)**bit 2**|(% style="width:90px" %)**bit 1**|(% style="width:95px" %)**bit 0**
878 |(% style="width:49px" %)N/A|(% style="width:53px" %)N/A|(% style="width:53px" %)N/A|(% style="width:55px" %)N/A|(% style="width:99px" %)DI2_STATUS|(% style="width:83px" %)DI2_FLAG|(% style="width:98px" %)DI1_STATUS|(% style="width:85px" %)DI1_FLAG
879
880 * Each bit shows which status has been triggered on this uplink.
881
882 **Example:**
883
884 00000111: This means both DI1 and DI2 triggers are enabled, and this packet is triggered by DI1.
885
886 00000101: This means both DI1 and DI2 triggers are enabled.
887
888
889 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enabled. 0x00: MOD6 is disabled.
890
891 Downlink command to poll/request MOD6 status:
892
893 **AB 06**
894
895 When the device receives this command, it will send the MOD6 payload.
896
897
898 === 3.3.7 Payload Decoder ===
899
900 (((
901
902
903 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder/tree/main/LT22222-L]]
904 )))
905
906
907 == 3.4 ​Configure LT-22222-LA via AT Commands or Downlinks ==
908
909
910 (((
911 You can configure LT-22222-LA I/O Controller via AT Commands or LoRaWAN Downlinks.
912 )))
913
914 (((
915 (((
916 There are two types of commands:
917 )))
918 )))
919
920 * (% style="color:blue" %)**Common commands**(%%):
921
922 * (% style="color:blue" %)**Sensor-related commands**(%%):
923
924 === 3.4.1 Common commands ===
925
926
927 (((
928 These are available for each sensor and include actions such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]s.
929
930
931 )))
932
933 === 3.4.2 Sensor-related commands ===
934
935
936 These commands are specially designed for the LT-22222-LA. Commands can be sent to the device using options such as an AT command or a LoRaWAN downlink payload.
937
938
939 ==== 3.4.2.1 Set Transmit/Uplink Interval ====
940
941
942 Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes.
943
944 (% style="color:#037691" %)**AT command**
945
946 (% border="2" style="width:500px" %)
947 |**Command**|AT+TDC=<time>
948 |**Parameters**|**time **: uplink interval in milliseconds
949 |**Get**|AT+TDC=?
950 |**Response**|(((
951 current uplink interval
952
953 OK
954 )))
955 |**Set**|AT+TDC=<time>
956 |**Response**|OK
957 |**Example**|(((
958 AT+TDC=30000
959
960 Sets the uplink interval to **30 seconds** (30000 milliseconds)
961 )))
962
963 (% style="color:#037691" %)**Downlink payload**
964
965 (% border="2" style="width:500px" %)
966 |**Payload**|(((
967 <prefix><time>
968 )))
969 |**Parameters**|(((
970 **prefix** : 0x01
971
972 **time** : uplink interval in **seconds**, represented by **3  bytes** in **hexadecimal**.
973 )))
974 |**Example**|(((
975 01 **00 00 1E**
976
977 Sets the uplink interval to **30 seconds**
978
979 Conversion: 30 (dec) = 00 00 1E (hex)
980
981 See [[RapidTables>>https://www.rapidtables.com/convert/number/decimal-to-hex.html?x=30]]
982
983 [[image:Screenshot%202024-11-23%20at%2018.27.11.png||alt="Screenshot 2024-11-23 at 18.27.11.png"]]
984 )))
985
986 ==== 3.4.2.2 Set the Working Mode (AT+MOD) ====
987
988
989 Sets the working mode.
990
991 (% style="color:#037691" %)**AT command**
992
993 (% border="2" style="width:500px" %)
994 |(% style="width:97px" %)**Command**|(% style="width:413px" %)AT+MOD=<working_mode>
995 |(% style="width:97px" %)**Parameters**|(% style="width:413px" %)(((
996 **working_mode** :
997
998 1 = (Default mode/factory set):  2ACI + 2AVI + DI + DO + RO
999
1000 2 = Double DI Counting + DO + RO
1001
1002 3 = Single DI Counting + 2 x ACI + DO + RO
1003
1004 4 = Single DI Counting + 1 x Voltage Counting + DO + RO
1005
1006 5 = Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
1007
1008 6 = Trigger Mode, Optional, used together with MOD1 ~~ MOD5
1009 )))
1010 |(% style="width:97px" %)**Get**|(% style="width:413px" %)AT+MOD=?
1011 |(% style="width:97px" %)**Response**|(% style="width:413px" %)(((
1012 Current working mode
1013
1014 OK
1015 )))
1016 |(% style="width:97px" %)**Set**|(% style="width:413px" %)AT+MOD=<working_mode>
1017 |(% style="width:97px" %)**Response**|(% style="width:413px" %)(((
1018 Attention:Take effect after ATZ
1019
1020 OK
1021 )))
1022 |(% style="width:97px" %)**Example**|(% style="width:413px" %)(((
1023 AT+MOD=2
1024
1025 Sets the device to working mode 2 (Double DI Counting + DO + RO)
1026 )))
1027
1028 (% class="wikigeneratedid" %)
1029 (% style="color:#037691" %)**Downlink payload**
1030
1031 (% border="2" style="width:500px" %)
1032 |(% style="width:98px" %)**Payload**|(% style="width:400px" %)<prefix><working_mode>
1033 |(% style="width:98px" %)**Parameters**|(% style="width:400px" %)(((
1034 **prefix** : 0x0A
1035
1036 **working_mode** : Working mode, represented by 1 byte in hexadecimal.
1037 )))
1038 |(% style="width:98px" %)**Example**|(% style="width:400px" %)(((
1039 0A **02**
1040
1041 Sets the device to working mode 2 (Double DI Counting + DO + RO)
1042 )))
1043
1044 ==== 3.4.2.3 Request an uplink from the device ====
1045
1046
1047 Requests an uplink from LT-22222-LA. The content of the uplink payload varies based on the device's current working mode.
1048
1049 (% style="color:#037691" %)**AT command**
1050
1051 There is no AT Command available for this feature.
1052
1053 (% style="color:#037691" %)**Downlink payload**
1054
1055 (% border="2" style="width:500px" %)
1056 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix>FF
1057 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)**prefix** : 0x08
1058 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1059 08 **FF**
1060
1061 Requests an uplink from LT-22222-L.
1062 )))
1063
1064 ==== 3.4.2.4 Enable/Disable Trigger Mode ====
1065
1066
1067 Enable or disable the trigger mode for the current working mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D628TriggerMode2COptional29"]]).
1068
1069 (% style="color:#037691" %)**AT Command**
1070
1071 (% border="2" style="width:500px" %)
1072 |(% style="width:95px" %)**Command**|(% style="width:403px" %)AT+ADDMOD6=<enable/disable trigger_mode>
1073 |(% style="width:95px" %)**Response**|(% style="width:403px" %)
1074 |(% style="width:95px" %)**Parameters**|(% style="width:403px" %)(((
1075 **enable/disable trigger_mode** :
1076
1077 1 = enable trigger mode
1078
1079 0 = disable trigger mode
1080 )))
1081 |(% style="width:95px" %)**Example**|(% style="width:403px" %)(((
1082 AT+ADDMOD6=1
1083
1084 Enable trigger mode for the current working mode
1085 )))
1086
1087 (% style="color:#037691" %)**Downlink payload**
1088
1089 (% border="2" style="width:500px" %)
1090 |(% style="width:97px" %)**Payload**|(% style="width:401px" %)<prefix><enable/disable trigger_mode>
1091 |(% style="width:97px" %)**Parameters**|(% style="width:401px" %)(((
1092 **prefix** : 0x0A 06 (two bytes in hexadecimal)
1093
1094 **enable/disable trigger_mode** : enable (1) or disable (0), represented by 1 byte in hexadecimal.
1095 )))
1096 |(% style="width:97px" %)**Example**|(% style="width:401px" %)(((
1097 0A 06 **01**
1098
1099 Enable trigger mode for the current working mode
1100 )))
1101
1102 ==== 3.4.2.5 Request trigger settings ====
1103
1104
1105 Requests the trigger settings.
1106
1107 (% style="color:#037691" %)**AT Command:**
1108
1109 There is no AT Command available for this feature.
1110
1111 (% style="color:#037691" %)**Downlink Payload**
1112
1113 (% border="2" style="width:500px" %)
1114 |(% style="width:95px" %)**Payload**|(% style="width:403px" %)<prefix>
1115 |(% style="width:95px" %)**Parameters**|(% style="width:403px" %)**prefix **: AB 06 (two bytes in hexadecimal)
1116 |(% style="width:95px" %)**Example**|(% style="width:403px" %)(((
1117 AB 06
1118
1119 Uplink the trigger settings.
1120 )))
1121
1122 ==== 3.4.2.6 Enable/Disable DI1/DI2/DI3 as a trigger ====
1123
1124
1125 Enable or disable DI1/DI2/DI3 as a trigger.
1126
1127 (% style="color:#037691" %)**AT Command**
1128
1129 (% border="2" style="width:500px" %)
1130 |(% style="width:98px" %)**Command**|(% style="width:400px" %)AT+DTRI=<DI1_trigger>,<DI2_trigger>
1131 |(% style="width:98px" %)**Response**|(% style="width:400px" %)
1132 |(% style="width:98px" %)**Parameters**|(% style="width:400px" %)(((
1133 **DI1_trigger:**
1134
1135 1 = enable DI1 trigger
1136
1137 0 = disable DI1 trigger
1138
1139 **DI2 _trigger**
1140
1141 1 = enable DI2 trigger
1142
1143 0 = disable DI2 trigger
1144 )))
1145 |(% style="width:98px" %)**Example**|(% style="width:400px" %)(((
1146 AT+DTRI=1,0
1147
1148 Enable DI1 trigger, disable DI2 trigger
1149 )))
1150
1151 (% class="wikigeneratedid" %)
1152 (% style="color:#037691" %)**Downlink Payload**
1153
1154 (% border="2" style="width:500px" %)
1155 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix><DI1_trigger><DI2_trigger>
1156 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1157 **prefix :** AA 02 (two bytes in hexadecimal)
1158
1159 **DI1_trigger:**
1160
1161 1 = enable DI1 trigger, represented by 1 byte in hexadecimal.
1162
1163 0 = disable DI1 trigger, represented by 1 byte in hexadecimal.
1164
1165 **DI2 _trigger**
1166
1167 1 = enable DI2 trigger, represented by 1 byte in hexadecimal.
1168
1169 0 = disable DI2 trigger, represented by 1 byte in hexadecimal.
1170 )))
1171 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1172 AA 02 **01 00**
1173
1174 Enable DI1 trigger, disable DI2 trigger
1175 )))
1176
1177 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as a trigger ====
1178
1179
1180 Sets DI1 or DI3 (for LT-33222-L) as a trigger.
1181
1182 (% style="color:#037691" %)**AT Command**
1183
1184 (% border="2" style="width:500px" %)
1185 |(% style="width:101px" %)**Command**|(% style="width:397px" %)AT+TRIG1=<interrupt_mode>,<minimum_signal_duration>
1186 |(% style="width:101px" %)**Response**|(% style="width:397px" %)
1187 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1188 **interrupt_mode** :  0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
1189
1190 **minimum_signal_duration** : the **minimum signal duration** required for the DI1 port to recognize a valid trigger.
1191 )))
1192 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1193 AT+TRIG1=1,100
1194
1195 Set the DI1 port to trigger on a rising edge; the valid signal duration is 100 ms.
1196 )))
1197
1198 (% class="wikigeneratedid" %)
1199 (% style="color:#037691" %)**Downlink Payload**
1200
1201 (% border="2" style="width:500px" %)
1202 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix><interrupt_mode><minimum_signal_duration>
1203 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1204 **prefix** : 09 01 (hexadecimal)
1205
1206 **interrupt_mode** : 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1), represented by 1 byte in hexadecimal.
1207
1208 **minimum_signal_duration** : in milliseconds, represented two bytes in hexadecimal.
1209 )))
1210 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1211 09 01 **01 00 64**
1212
1213 Set the DI1 port to trigger on a rising edge; the valid signal duration is 100 ms.
1214 )))
1215
1216 ==== 3.4.2.8 Trigger2 – Set DI2 as a trigger ====
1217
1218
1219 Sets DI2 as a trigger.
1220
1221 (% style="color:#037691" %)**AT Command**
1222
1223 (% border="2" style="width:500px" %)
1224 |(% style="width:94px" %)**Command**|(% style="width:404px" %)AT+TRIG2=<interrupt_mode>,<minimum_signal_duration>
1225 |(% style="width:94px" %)**Response**|(% style="width:404px" %)
1226 |(% style="width:94px" %)**Parameters**|(% style="width:404px" %)(((
1227 **interrupt_mode **:  0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
1228
1229 **minimum_signal_duration** : the **minimum signal duration** required for the DI1 port to recognize a valid trigger.
1230 )))
1231 |(% style="width:94px" %)**Example**|(% style="width:404px" %)(((
1232 AT+TRIG2=0,100
1233
1234 Set the DI1 port to trigger on a falling edge; the valid signal duration is 100 ms.
1235 )))
1236
1237 (% style="color:#037691" %)**Downlink Payload**
1238
1239 (% border="2" style="width:500px" %)
1240 |(% style="width:96px" %)**Payload**|(% style="width:402px" %)<prefix><interrupt_mode><minimum_signal_duration>
1241 |(% style="width:96px" %)**Parameters**|(% style="width:402px" %)(((
1242 **prefix** : 09 02 (hexadecimal)
1243
1244 **interrupt_mode **: 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1), represented by 1 byte in hexadecimal.
1245
1246 **minimum_signal_duration** : in milliseconds, represented two bytes in hexadecimal
1247 )))
1248 |(% style="width:96px" %)**Example**|(% style="width:402px" %)09 02 **00 00 64**
1249
1250 ==== 3.4.2.9 Trigger – Set AC (current) as a trigger ====
1251
1252
1253 Sets the current trigger based on the AC port. See also [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D628TriggerMode2COptional29"]]
1254
1255 (% style="color:#037691" %)**AT Command**
1256
1257 (% border="2" style="width:500px" %)
1258 |(% style="width:104px" %)**Command**|(% style="width:394px" %)(((
1259 AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
1260 )))
1261 |(% style="width:104px" %)**Response**|(% style="width:394px" %)
1262 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1263 **AC1_LIMIT_LOW** : lower limit of the current to be checked
1264
1265 **AC1_LIMIT_HIGH **: higher limit of the current to be checked
1266
1267 **AC2_LIMIT_HIGH **: lower limit of the current to be checked
1268
1269 **AC2_LIMIT_LOW** : higher limit of the current to be checked
1270 )))
1271 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1272 AT+ACLIM=10000,15000,0,0
1273
1274 Triggers an uplink if AC1 current is lower than 10mA or higher than 15mA
1275 )))
1276 |(% style="width:104px" %)Note|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D628TriggerMode2COptional29"]]
1277
1278 (% style="color:#037691" %)**Downlink Payload**
1279
1280 (% border="2" style="width:500px" %)
1281 |(% style="width:104px" %)**Payload**|(% style="width:394px" %)<prefix><AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
1282 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1283 **prefix **: AA 01 (hexadecimal)
1284
1285 **AC1_LIMIT_LOW** : lower limit of the current to be checked, two bytes in hexadecimal
1286
1287 **AC1_LIMIT_HIGH **: higher limit of the current to be checked, two bytes in hexadecimal
1288
1289 **AC2_LIMIT_HIGH **: lower limit of the current to be checked, two bytes in hexadecimal
1290
1291 **AC2_LIMIT_LOW** : higher limit of the current to be checked, two bytes in hexadecimal
1292 )))
1293 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1294 AA 01 **27** **10 3A** **98** 00 00 00 00
1295
1296 Triggers an uplink if AC1 current is lower than 10mA or higher than 15mA. Set all values to zero for AC2 limits because we are only checking AC1 limits.
1297 )))
1298 |(% style="width:104px" %)Note|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D628TriggerMode2COptional29"]]
1299
1300 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
1301
1302
1303 Sets the current trigger based on the AV port. See also [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D628TriggerMode2COptional29"]]
1304
1305 (% style="color:#037691" %)**AT Command**
1306
1307 (% border="2" style="width:500px" %)
1308 |(% style="width:104px" %)**Command**|(% style="width:387px" %)AT+AVLIM= AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
1309 |(% style="width:104px" %)**Response**|(% style="width:387px" %)
1310 |(% style="width:104px" %)**Parameters**|(% style="width:387px" %)(((
1311 **AC1_LIMIT_LOW** : lower limit of the current to be checked
1312
1313 **AC1_LIMIT_HIGH **: higher limit of the current to be checked
1314
1315 **AC2_LIMIT_HIGH **: lower limit of the current to be checked
1316
1317 **AC2_LIMIT_LOW** : higher limit of the current to be checked
1318 )))
1319 |(% style="width:104px" %)**Example**|(% style="width:387px" %)(((
1320 AT+AVLIM=3000,6000,0,2000
1321
1322 Triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V
1323 )))
1324 |(% style="width:104px" %)**Note**|(% style="width:387px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D628TriggerMode2COptional29"]]
1325
1326 (% style="color:#037691" %)**Downlink Payload**
1327
1328 (% border="2" style="width:500px" %)
1329 |(% style="width:104px" %)**Payload**|(% style="width:394px" %)<prefix><AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
1330 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1331 **prefix **: AA 00 (hexadecimal)
1332
1333 **AV1_LIMIT_LOW** : lower limit of the voltage to be checked, two bytes in hexadecimal
1334
1335 **AV1_LIMIT_HIGH **: higher limit of the voltage to be checked, two bytes in hexadecimal
1336
1337 **AV2_LIMIT_HIGH **: lower limit of the voltage to be checked, two bytes in hexadecimal
1338
1339 **AV2_LIMIT_LOW** : higher limit of the voltage to be checked, two bytes in hexadecimal
1340 )))
1341 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1342 AA 00 **0B B8 17 70 00 00 07 D0**
1343
1344 Triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V.
1345 )))
1346 |(% style="width:104px" %)**Note**|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D628TriggerMode2COptional29"]]
1347
1348 ==== 3.4.2.11 Trigger – Set the minimum interval ====
1349
1350
1351 Sets the AV and AC trigger minimum interval. The device won't respond to a second trigger within this set time after the first trigger.
1352
1353 (% style="color:#037691" %)**AT Command**
1354
1355 (% border="2" style="width:500px" %)
1356 |(% style="width:113px" %)**Command**|(% style="width:385px" %)AT+ATDC=<time>
1357 |(% style="width:113px" %)**Response**|(% style="width:385px" %)
1358 |(% style="width:113px" %)**Parameters**|(% style="width:385px" %)(((
1359 **time** : in minutes
1360 )))
1361 |(% style="width:113px" %)**Example**|(% style="width:385px" %)(((
1362 AT+ATDC=5
1363
1364 The device won't respond to the second trigger within 5 minutes after the first trigger.
1365 )))
1366 |(% style="width:113px" %)**Note**|(% style="width:385px" %)(% style="color:red" %)**The time must be greater than 5 minutes.**
1367
1368 (% style="color:#037691" %)**Downlink Payload**
1369
1370 (% border="2" style="width:500px" %)
1371 |(% style="width:112px" %)**Payload**|(% style="width:386px" %)<prefix><time>
1372 |(% style="width:112px" %)**Parameters**|(% style="width:386px" %)(((
1373 **prefix** : AC (hexadecimal)
1374
1375 **time **: in minutes (two bytes in hexadecimal)
1376 )))
1377 |(% style="width:112px" %)**Example**|(% style="width:386px" %)(((
1378 AC **00 05**
1379
1380 The device won't respond to the second trigger within 5 minutes after the first trigger.
1381 )))
1382 |(% style="width:112px" %)**Note**|(% style="width:386px" %)(% style="color:red" %)**The time must be greater than 5 minutes.**
1383
1384 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1385
1386
1387 Controls the digital outputs DO1, DO2, and DO3
1388
1389 (% style="color:#037691" %)**AT Command**
1390
1391 There is no AT Command to control the Digital Output.
1392
1393
1394 (% style="color:#037691" %)**Downlink Payload**
1395
1396 (% border="2" style="width:500px" %)
1397 |(% style="width:115px" %)**Payload**|(% style="width:383px" %)<prefix><DO1><DO2><DO3>
1398 |(% style="width:115px" %)**Parameters**|(% style="width:383px" %)(((
1399 **prefix** : 02 (hexadecimal)
1400
1401 **DOI** : 01: Low,  00: High, 11: No action (1 byte in hex)
1402
1403 **DO2** : 01: Low,  00: High, 11: No action (1 byte in hex)
1404
1405 **DO3 **: 01: Low,  00: High, 11: No action (1 byte in hex)
1406 )))
1407 |(% style="width:115px" %)**Examples**|(% style="width:383px" %)(((
1408 02 **01 00 01**
1409
1410 If there is a load between V+ and DOx, it means DO1 is set to low, DO2 is set to high, and DO3 is set to low.
1411
1412 **More examples:**
1413
1414 (((
1415 01: Low,  00: High,  11: No action
1416
1417 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:383px" %)
1418 |(% style="background-color:#4f81bd; color:white; width:126px" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white; width:85px" %)**DO1**|(% style="background-color:#4f81bd; color:white; width:86px" %)**DO2**|(% style="background-color:#4f81bd; color:white; width:86px" %)**DO3**
1419 |(% style="width:126px" %)02  01  00  11|(% style="width:85px" %)Low|(% style="width:86px" %)High|(% style="width:86px" %)No Action
1420 |(% style="width:126px" %)02  00  11  01|(% style="width:85px" %)High|(% style="width:86px" %)No Action|(% style="width:86px" %)Low
1421 |(% style="width:126px" %)02  11  01  00|(% style="width:85px" %)No Action|(% style="width:86px" %)Low|(% style="width:86px" %)High
1422 )))
1423
1424 (((
1425 (((
1426 (% style="color:red" %)**Note: For the LT-22222-L, there is no DO3; the last byte can have any value.**
1427 )))
1428
1429 (((
1430 (% style="color:red" %)**The device will upload a packet if downlink code executes successfully.**
1431 )))
1432 )))
1433 )))
1434
1435 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1436
1437
1438 (% style="color:#037691" %)**AT command**
1439
1440 There is no AT command to control the digital output.
1441
1442
1443 (% style="color:#037691" %)**Downlink payload**
1444
1445 (% border="2" style="width:500px" %)
1446 |(% style="width:116px" %)**Prefix**|(% style="width:382px" %)0xA9
1447 |(% style="width:116px" %)**Parameters**|(% style="width:382px" %)(((
1448 **inverter_mode**: 1 byte in hex.
1449
1450 **01:** DO pins revert to their original state after the timeout.
1451 **00:** DO pins switch to an inverted state after the timeout.
1452
1453
1454 **DO1_control_method_and_port_status **- 1 byte in hex
1455
1456 0x01 : DO1 set to low
1457
1458 0x00 : DO1 set to high
1459
1460 0x11 : DO1 NO action
1461
1462
1463 **DO2_control_method_and_port_status** - 1 byte in hex
1464
1465 0x01 : DO2 set to low
1466
1467 0x00 : DO2 set to high
1468
1469 0x11 : DO2 NO action
1470
1471
1472 **DO3_control_method_and_port_status **- 1 byte in hex
1473
1474 0x01 : DO3 set to low
1475
1476 0x00 : DO3 set to high
1477
1478 0x11 : DO3 NO action
1479
1480
1481 **latching_time** : 4 bytes in hex
1482
1483 (% style="color:red" %)**Note: **
1484
1485 Since firmware v1.6.0, the latch time supports 4 bytes or 2 bytes
1486
1487 Before firmware v1.6.0, the latch time only supported 2 bytes.
1488
1489 (% style="color:red" %)**The device will uplink a packet if the downlink code executes successfully.**
1490 )))
1491 |(% style="width:116px" %)**Payload format**|(% style="width:382px" %)<prefix><inverter_mode><DO1_control_method_and_port_status><DO2_control_method_and_port_status><DO2_control_method_and_port_status><latching_time>
1492 |(% style="width:116px" %)**Example**|(% style="width:382px" %)(((
1493 **A9 01 01 01 01 07 D0**
1494
1495 DO1 pin, DO2 pin, and DO3 pin will be set to low, last for 2 seconds, and then revert to their original state.
1496
1497
1498 **A9 01 00 01 11 07 D0**
1499
1500 DO1 pin is set to high, DO2 pin is set to low, and DO3 pin takes no action. This lasts for 2 seconds and then reverts to the original state.
1501
1502
1503 **A9 00 00 00 00 07 D0**
1504
1505 DO1 pin, DO2 pin, and DO3 pin will be set to high, last for 2 seconds, and then all change to low.
1506
1507
1508 **A9 00 11 01 00 07 D0**
1509
1510 DO1 pin takes no action, DO2 pin is set to low, and DO3 pin is set to high. This lasts for 2 seconds, after which the DO1 pin takes no action, the DO2 pin is set to high, and the DO3 pin is set to low.
1511 )))
1512
1513 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1514
1515
1516 (% style="color:#037691" %)**AT Command:**
1517
1518 There is no AT Command to control the Relay Output.
1519
1520
1521 (% style="color:#037691" %)**Downlink Payload**
1522
1523 (% border="2" style="width:500px" %)
1524 |(% style="width:113px" %)**Prefix**|(% style="width:384px" %)0x03
1525 |(% style="width:113px" %)**Parameters**|(% style="width:384px" %)(((
1526 **RO1_status** : 1 byte in hex
1527
1528 00: Open
1529
1530 01: Close
1531
1532 11: No action
1533
1534
1535 **RO2_status** : 1 byte in hex
1536
1537 00: Open
1538
1539 01: Close
1540
1541 11: No action
1542 )))
1543 |(% style="width:113px" %)**Payload format**|(% style="width:384px" %)<prefix><RO1_status><RO2_status>
1544 |(% style="width:113px" %)**Example**|(% style="width:384px" %)(((
1545 (% border="2" %)
1546 |=Payload|=RO1|=RO2
1547 |03  00  11|Open|No action
1548 |03  01  11|Close|No action
1549 |03 11  00|No action|Open
1550 |03 11  01|No action|Close
1551 |03 00 00|Open|Open
1552 |03 01 01|Close|Close
1553 |03 01 00|Close|Open
1554 |03 00 01|Open|Close
1555
1556 (% style="color:red" %)**The device will transmit an uplink packet if the downlink payload is executed successfully.**
1557 )))
1558
1559 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1560
1561
1562 Controls the relay output time.
1563
1564
1565 (% style="color:#037691" %)**AT Command:**
1566
1567 There is no AT Command to control the Relay Output
1568
1569
1570 (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1571
1572 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Sets RO1/RO2 relays with time control
1573
1574
1575 This controls the relay output time and includes 4 bytes:
1576
1577 (% style="color:#4f81bd" %)**First byte **(%%)**:** Type code (0x05)
1578
1579 (% style="color:#4f81bd" %)**Second byte (aa)**(%%): Inverter Mode
1580
1581 01: Relays will change back to their original state after a timeout.
1582
1583 00: Relays will change to the inverter state after a timeout.
1584
1585
1586 (% style="color:#4f81bd" %)**Third byte (bb)**(%%): Control Method and Ports status:
1587
1588 [[image:image-20221008095908-1.png]]
1589
1590
1591 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh bytes (cc)**(%%): Latching time. Unit: ms
1592
1593
1594 (% style="color:red" %)**Note:**
1595
1596 Since firmware v1.6.0, the latch time supports both 4 bytes and 2 bytes.
1597
1598 Before firmware v1.6.0, the latch time only supported 2 bytes.
1599
1600
1601 (% style="color:red" %)**The device will uplink a packet if the downlink code executes successfully.**
1602
1603
1604 **Example payload:**
1605
1606 **~1. 05 01 11 07 D0**
1607
1608 Relay1 and Relay2 will be set to NC, lasting 2 seconds, then revert to their original state
1609
1610 **2. 05 01 10 07 D0**
1611
1612 Relay1 will change to NC, Relay2 will change to NO, lasting 2 seconds, and then both will revert to their original state.
1613
1614 **3. 05 00 01 07 D0**
1615
1616 Relay1 will change to NO, Relay2 will change to NC, lasting 2 seconds, then Relay1 will change to NC, and Relay2 will change to NO.
1617
1618 **4. 05 00 00 07 D0**
1619
1620 Relay1 and Relay2 will change to NO, lasting 2 seconds, then both will change to NC.
1621
1622
1623
1624 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1625
1626
1627 When the voltage exceeds the threshold, counting begins. For details, see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1628
1629 (% style="color:#037691" %)**AT Command**
1630
1631 (% border="2" style="width:500px" %)
1632 |(% style="width:137px" %)**Command**|(% style="width:361px" %)AT+VOLMAX=<voltage>,<logic>
1633 |(% style="width:137px" %)**Response**|(% style="width:361px" %)
1634 |(% style="width:137px" %)**Parameters**|(% style="width:361px" %)(((
1635 **voltage** : voltage threshold in mV
1636
1637 **logic**:
1638
1639 **0** : lower than
1640
1641 **1**: higher than
1642
1643 if you leave the logic parameter blank, it is considered 0
1644 )))
1645 |(% style="width:137px" %)**Examples**|(% style="width:361px" %)(((
1646 AT+VOLMAX=20000
1647
1648 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1649
1650 AT+VOLMAX=20000,0
1651
1652 If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1
1653
1654 AT+VOLMAX=20000,1
1655
1656 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1657 )))
1658
1659 (% style="color:#037691" %)**Downlink Payload**
1660
1661 (% border="2" style="width:500px" %)
1662 |(% style="width:140px" %)**Payload**|(% style="width:358px" %)<prefix><voltage><logic>
1663 |(% style="width:140px" %)**Parameters**|(% style="width:358px" %)(((
1664 **prefix** : A5 (hex)
1665
1666 **voltage** : voltage threshold in mV (2 bytes in hex)
1667
1668 **logic**: (1 byte in hexadecimal)
1669
1670 **0** : lower than
1671
1672 **1**: higher than
1673
1674 if you leave the logic parameter blank, it is considered 1 (higher than)
1675 )))
1676 |(% style="width:140px" %)**Example**|(% style="width:358px" %)(((
1677 A5 **4E 20**
1678
1679 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1680
1681 A5 **4E 20 00**
1682
1683 If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1
1684
1685 A5 **4E 20 01**
1686
1687 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1688 )))
1689
1690 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1691
1692
1693 This command allows users to pre-configure specific count numbers for various counting parameters such as Count1, Count2, or AVI1 Count. Use the AT command to set the desired count number for each configuration.
1694
1695 (% style="color:#037691" %)**AT Command**
1696
1697 (% border="2" style="width:500px" %)
1698 |(% style="width:134px" %)**Command**|(% style="width:364px" %)AT+SETCNT=<counting_parameter>,<number>
1699 |(% style="width:134px" %)**Response**|(% style="width:364px" %)
1700 |(% style="width:134px" %)**Parameters**|(% style="width:364px" %)(((
1701 **counting_parameter** :
1702
1703 1: COUNT1
1704
1705 2: COUNT2
1706
1707 3: AVI1 Count
1708
1709 **number** : Start number
1710 )))
1711 |(% style="width:134px" %)**Example**|(% style="width:364px" %)(((
1712 AT+SETCNT=1,10
1713
1714 Sets the COUNT1 to 10.
1715 )))
1716
1717 (% style="color:#037691" %)**Downlink Payload**
1718
1719 (% border="2" style="width:500px" %)
1720 |(% style="width:135px" %)**Payload**|(% style="width:363px" %)<prefix><counting_parameter><number>
1721 |(% style="width:135px" %)**Parameters**|(% style="width:363px" %)(((
1722 prefix : A8 (hex)
1723
1724 **counting_parameter** : (1 byte in hexadecimal)
1725
1726 1: COUNT1
1727
1728 2: COUNT2
1729
1730 3: AVI1 Count
1731
1732 **number** : Start number, 4 bytes in hexadecimal
1733 )))
1734 |(% style="width:135px" %)**Example**|(% style="width:363px" %)(((
1735 A8 **01 00 00 00 0A**
1736
1737 Sets the COUNT1 to 10.
1738 )))
1739
1740 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1741
1742
1743 This command clears the counting in counting mode.
1744
1745 (% style="color:#037691" %)**AT Command**
1746
1747 (% border="2" style="width:500px" %)
1748 |(% style="width:142px" %)**Command**|(% style="width:356px" %)AT+CLRCOUNT
1749 |(% style="width:142px" %)**Response**|(% style="width:356px" %)-
1750
1751 (% style="color:#037691" %)**Downlink Payload**
1752
1753 (% border="2" style="width:500px" %)
1754 |(% style="width:141px" %)**Payload**|(% style="width:357px" %)<prefix><clear?>
1755 |(% style="width:141px" %)**Parameters**|(% style="width:357px" %)(((
1756 prefix : A6 (hex)
1757
1758 clear? : 01 (hex)
1759 )))
1760 |(% style="width:141px" %)**Example**|(% style="width:357px" %)A6 **01**
1761
1762 ==== 3.4.2.19 Set the save intervals of the counting results, RO (Relay Output), and DO (Digital Output) states ====
1763
1764 This command configures the device to periodically save the counting results, RO (Relay Output), and DO (Digital Output) states to internal flash memory at a user-defined interval. By setting a save interval, the device ensures that critical data (counting values and output states) is preserved in case of power loss.
1765 The save interval can be adjusted to the user's needs, with a minimum value of (% style="color:blue" %)**30**(%%) seconds.
1766 The saved RO/DO states can be restored after a device reset by combining this function with the (% style="color:blue" %)**AT+RODORESET**(%%) command.
1767
1768 (% style="color:#037691" %)**AT Command**
1769
1770 (% border="2" style="width:500px" %)
1771 |(% style="width:124px" %)**Command**|(% style="width:374px" %)AT+COUTIME=<time>
1772 |(% style="width:124px" %)**Response**|(% style="width:374px" %)
1773 |(% style="width:124px" %)**Parameters**|(% style="width:374px" %)time : seconds (0 to 16777215)
1774 |(% style="width:124px" %)**Example**|(% style="width:374px" %)(((
1775 AT+COUTIME=60
1776
1777 Sets the device to save its counting results, RO and DO states to the memory every 60 seconds.
1778 )))
1779
1780 (% style="color:#037691" %)**Downlink Payload**
1781
1782 (% border="2" style="width:500px" %)
1783 |(% style="width:123px" %)**Payload**|(% style="width:375px" %)<prefix><time>
1784 |(% style="width:123px" %)**Parameters**|(% style="width:375px" %)(((
1785 prefix : A7
1786
1787 time : seconds, 3 bytes in hexadecimal
1788 )))
1789 |(% style="width:123px" %)**Example**|(% style="width:375px" %)(((
1790 A7 **00 00 3C**
1791
1792 SSets the device to save its counting results, RO and DO states to the memory every 60 seconds.
1793 )))
1794
1795 ==== 3.4.2.20 Reset saved RO and DO states ====
1796
1797
1798 This command allows you to reset the saved relay output (RO) and digital output (DO) states when the device joins the network. By configuring this setting, you can control whether the device should retain or reset the relay states after a reset and rejoin to the network.
1799
1800 (% style="color:#037691" %)**AT Command**
1801
1802 (% border="2" style="width:500px" %)
1803 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+RODORESET=<state>
1804 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1805 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1806 **state** :
1807
1808 **0** : RODO will close when the device joins the network. (default)
1809
1810 **1**: After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1811 )))
1812 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1813 (% style="color:blue" %)**AT+RODORESET=1 **
1814
1815 RODO will close when the device joins the network. (default)
1816
1817 (% style="color:blue" %)**AT+RODORESET=0 **
1818
1819 After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1820 )))
1821
1822 (% style="color:#037691" %)**Downlink Payload**
1823
1824 (% border="2" style="width:500px" %)
1825 |(% style="width:127px" %)**Payload**|(% style="width:371px" %)<prefix><state>
1826 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1827 **prefix** : AD
1828
1829 **state** :
1830
1831 **0** : RODO will close when the device joins the network. (default), represents as 1 byte in hexadecimal.
1832
1833 **1**: After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network. - represents as 1 byte in hexadecimal
1834 )))
1835 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1836 AD **01**
1837
1838 RODO will close when the device joins the network. (default)
1839
1840 AD **00**
1841
1842 After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1843 )))
1844
1845 ==== 3.4.2.21 Encrypted payload ====
1846
1847
1848 This command allows you to configure whether the device should upload data in an encrypted format or in plaintext. By default, the device encrypts the payload before uploading. You can toggle this setting to either upload encrypted data or transmit it without encryption.
1849
1850 (% style="color:#037691" %)**AT Command:**
1851
1852 (% border="2" style="width:500px" %)
1853 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+DECRYPT=<state>
1854 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1855 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1856 **state** :
1857
1858 **1** : The payload is uploaded without encryption
1859
1860 **0** : The payload is encrypted when uploaded (default)
1861 )))
1862 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1863 AT+DECRYPT=1
1864
1865 The payload is uploaded without encryption
1866
1867 AT+DECRYPT=0
1868
1869 The payload is encrypted when uploaded (default)
1870 )))
1871
1872 There is no downlink payload for this configuration.
1873
1874
1875 ==== 3.4.2.22 Get sensor value ====
1876
1877
1878 This command allows you to retrieve and optionally uplink sensor readings through the serial port.
1879
1880 (% style="color:#037691" %)**AT Command**
1881
1882 (% border="2" style="width:500px" %)
1883 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+GETSENSORVALUE=<state>
1884 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1885 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1886 **state** :
1887
1888 **0 **: Retrieves the current sensor reading via the serial port.
1889
1890 **1 **: Retrieves and uploads the current sensor reading via the serial port.
1891 )))
1892 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1893 AT+GETSENSORVALUE=0
1894
1895 Retrieves the current sensor reading via the serial port.
1896
1897 AT+GETSENSORVALUE=1
1898
1899 Retrieves and uplinks the current sensor reading via the serial port.
1900 )))
1901
1902 There is no downlink payload for this configuration.
1903
1904
1905 ==== 3.4.2.23 Resetting the downlink packet count ====
1906
1907
1908 This command manages how the node handles mismatched downlink packet counts. It offers two modes: one disables the reception of further downlink packets if discrepancies occur, while the other resets the downlink packet count to align with the server, ensuring continued communication.
1909
1910 (% style="color:#037691" %)**AT Command**
1911
1912 (% border="2" style="width:500px" %)
1913 |(% style="width:130px" %)**Command**|(% style="width:368px" %)AT+DISFCNTCHECK=<state>
1914 |(% style="width:130px" %)**Response**|(% style="width:368px" %)(((
1915
1916 )))
1917 |(% style="width:130px" %)**Parameters**|(% style="width:368px" %)(((
1918 **state **:
1919
1920 **0** : When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node stops receiving further downlink packets (default).
1921
1922
1923 **1** : When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node resets its downlink packet count to match the server's, ensuring consistency.
1924 )))
1925 |(% style="width:130px" %)**Example**|(% style="width:368px" %)(((
1926 AT+DISFCNTCHECK=0
1927
1928 When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node stops receiving further downlink packets (default).
1929
1930 AT+DISFCNTCHECK=1
1931
1932 When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node resets its downlink packet count to match the server's, ensuring consistency.
1933 )))
1934
1935 There is no downlink payload for this configuration.
1936
1937
1938 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1939
1940
1941 This command controls the behavior of the node when the combined size of the MAC commands (MACANS) from the server and the payload exceed the allowed byte limit for the current data rate (DR). The command provides two modes: one enables splitting the data into batches to ensure compliance with the byte limit, while the other prioritizes the payload and ignores the MACANS in cases of overflow.
1942
1943 (% style="color:#037691" %)**AT Command**
1944
1945 (% border="2" style="width:500px" %)
1946 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+DISMACANS=<state>
1947 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1948 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1949 **state** :
1950
1951 **0** : When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1952
1953 **1** : When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1954 )))
1955 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1956 AT+DISMACANS=0
1957
1958 When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1959
1960 AT+DISMACANS=1
1961
1962 When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1963 )))
1964
1965 (% style="color:#037691" %)**Downlink Payload**
1966
1967 (% border="2" style="width:500px" %)
1968 |(% style="width:126px" %)**Payload**|(% style="width:372px" %)<prefix><state>
1969 |(% style="width:126px" %)**Parameters**|(% style="width:372px" %)(((
1970 **prefix** : 21
1971
1972 **state** : (2 bytes in hexadecimal)
1973
1974 **0** : When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1975
1976 **1 **: When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1977 )))
1978 |(% style="width:126px" %)**Example**|(% style="width:372px" %)(((
1979 21 **00 01**
1980
1981 Set DISMACANS=1
1982 )))
1983
1984 ==== 3.4.2.25 Copy downlink to uplink ====
1985
1986
1987 This command enables the device to immediately uplink the payload of a received downlink packet back to the server. The command allows for quick data replication from downlink to uplink, with a fixed port number of 100.
1988
1989 (% style="color:#037691" %)**AT Command**(%%)**:**
1990
1991 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving a downlink payload from the server, the device will immediately uplink the payload back to the server using port number 100.
1992
1993 Example:**aa xx xx xx xx**         ~/~/ **aa** indicates whether the configuration has changed: **00** means YES, and **01** means NO. **xx xx xx xx** are the bytes uplinked back.
1994
1995
1996 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1997
1998 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1999
2000 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
2001
2002 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
2003
2004
2005 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
2006
2007 There is no downlink option available for this feature.
2008
2009
2010 ==== 3.4.2.26 Query firmware version, frequency band, subband, and TDC time ====
2011
2012
2013 This command is used to query key information about the device, including its firmware version, frequency band, subband, and TDC time. By sending the specified payload as a downlink, the server can retrieve this essential data from the device.
2014
2015 * (((
2016 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
2017
2018 (% style="color:blue" %)**26 01  ** (%%) ~/~/  The downlink payload 26 01 is used to query the device's firmware version, frequency band, subband, and TDC time.
2019
2020
2021 )))
2022
2023 **Example:**
2024
2025 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
2026
2027
2028 == 3.5 Integrating with ThingsEye.io ==
2029
2030
2031 The Things Stack application supports integration with ThingsEye.io. Once integrated, ThingsEye.io acts as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
2032
2033
2034 === 3.5.1 Configuring The Things Stack ===
2035
2036
2037 We use The Things Stack Sandbox in this example:
2038
2039 * In **The Things Stack Sandbox**, go to the **Application **for the LT-22222-LA you added.
2040 * Select **MQTT** under **Integrations** in the left menu.
2041 * In the **Connection information **section, under **Connection credentials**, The Things Stack displays an auto-generated **username**. You can use it or provide a new one.
2042 * Click the **Generate new API key** button to generate a password. You can view it by clicking on the **visibility toggle/eye** icon. The API key works as the password.
2043
2044 {{info}}
2045 The username and  password (API key) you created here are required in the next section.
2046 {{/info}}
2047
2048 [[image:tts-mqtt-integration.png]]
2049
2050
2051 === 3.5.2 Configuring ThingsEye.io ===
2052
2053
2054 The ThingsEye.io IoT platform is not open for self-registration at the moment. If you are interested in testing the platform, please send your project information to admin@thingseye.io, and we will create an account for you.
2055
2056 * Login to your [[ThingsEye.io >>https://thingseye.io]]account.
2057 * Under the **Integrations center**, click **Integrations**.
2058 * Click the **Add integration** button (the button with the **+** symbol).
2059
2060 [[image:thingseye-io-step-1.png]]
2061
2062
2063 On the **Add integration** window, configure the following:
2064
2065 **Basic settings:**
2066
2067 * Select **The Things Stack Community** from the **Integration type** list.
2068 * Enter a suitable name for your integration in the **Name **text** **box or keep the default name.
2069 * Ensure the following options are turned on.
2070 ** Enable integration
2071 ** Debug mode
2072 ** Allow creating devices or assets
2073 * Click the **Next** button. you will be navigated to the **Uplink data converter** tab.
2074
2075 [[image:thingseye-io-step-2.png]]
2076
2077
2078 **Uplink data converter:**
2079
2080 * Click the **Create new** button if it is not selected by default.
2081 * Enter a suitable name for the uplink data converter in the **Name **text** **box or keep the default name.
2082 * Click the **JavaScript** button.
2083 * Paste the uplink decoder function into the text area (first, delete the default code). The demo uplink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]].
2084 * Click the **Next** button. You will be navigated to the **Downlink data converter **tab.
2085
2086 [[image:thingseye-io-step-3.png]]
2087
2088
2089 **Downlink data converter (this is an optional step):**
2090
2091 * Click the **Create new** button if it is not selected by default.
2092 * Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name.
2093 * Click the **JavaScript** button.
2094 * Paste the downlink decoder function into the text area (first, delete the default code). The demo downlink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Downlink_Converter.js]].
2095 * Click the **Next** button. You will be navigated to the **Connection** tab.
2096
2097 [[image:thingseye-io-step-4.png]]
2098
2099
2100 **Connection:**
2101
2102 * Choose **Region** from the **Host type**.
2103 * Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...).
2104 * Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The **username **and **password **can be found on the MQTT integration page of your The Things Stack account (see **3.5.1 Configuring The Things Stack**).
2105 * Click the **Check connection** button to test the connection. If the connection is successful, you will see the message saying **Connected**.
2106
2107 [[image:message-1.png]]
2108
2109
2110 * Click the **Add** button.
2111
2112 [[image:thingseye-io-step-5.png]]
2113
2114
2115 Your integration has been added to the** Integrations** list and will be displayed on the **Integrations** page. Check whether the status is shown as **Active**. If not, review your configuration settings and correct any errors.
2116
2117 [[image:thingseye.io_integrationsCenter_integrations.png]]
2118
2119
2120 ==== 3.5.2.1 Viewing integration details ====
2121
2122
2123 Click on your integration from the list. The **Integration details** window will appear with the **Details **tab selected. The **Details **tab shows all the settings you have provided for this integration.
2124
2125 [[image:integration-details.png]]
2126
2127
2128 If you want to edit the settings you have provided, click on the **Toggle edit mode** button. Once you have done click on the **Apply changes **button.
2129
2130 {{info}}
2131 See also [[ThingsEye documentation>>https://wiki.thingseye.io/xwiki/bin/view/Main/]].
2132 {{/info}}
2133
2134
2135 ==== 3.5.2.2 Viewing events ====
2136
2137
2138 The **Events **tab displays all the uplink messages from the LT-22222-L.
2139
2140 * Select **Debug **from the **Event type** dropdown.
2141 * Select the** time frame** from the **time window**.
2142
2143 [[image:thingseye-events.png]]
2144
2145
2146 * To view the **JSON payload** of a message, click on the **three dots (...)** in the **Message** column of the desired message.
2147
2148 [[image:thingseye-json.png]]
2149
2150
2151 ==== 3.5.2.3 Deleting an integration ====
2152
2153
2154 If you want to delete an integration, click the **Delete integratio**n button on the Integrations page.
2155
2156
2157 ==== 3.5.2.4 Viewing sensor data on a dashboard ====
2158
2159
2160 You can create a dashboard with ThingsEye to visualize the sensor data coming from the LT-22222-LA. The following image shows a dashboard created for the LT-22222-LA. See **Creating a dashboard** in ThingsEye documentation for more information.
2161
2162 [[image:lt-22222-l-dashboard.png]]
2163
2164
2165 == 3.6 Interface Details ==
2166
2167 === 3.6.1 Digital Input Ports: DI1/DI2/DI3 (For LT-33222-L, Low Active) ===
2168
2169
2170 Supports** NPN-type **sensors.
2171
2172 [[image:1653356991268-289.png]]
2173
2174
2175 === 3.6.2 Digital Input Ports: DI1/DI2 ===
2176
2177
2178 (((
2179 The DI ports of the LT-22222-LA can support **NPN**, **PNP**, or **dry contact** output sensors.
2180 )))
2181
2182 (((
2183 (((
2184 The part of the internal circuit of the LT-22222-LA shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
2185
2186 [[image:1653357170703-587.png]]
2187 )))
2188 )))
2189
2190
2191 (((
2192 (((
2193 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
2194 )))
2195 )))
2196
2197 (((
2198
2199 )))
2200
2201 (((
2202 (% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
2203 )))
2204
2205 (((
2206 This type of sensor outputs a low (GND) signal when active.
2207 )))
2208
2209 * (((
2210 Connect the sensor's output to DI1-
2211 )))
2212 * (((
2213 Connect the sensor's VCC to DI1+.
2214 )))
2215
2216 (((
2217 When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be:
2218 )))
2219
2220 (((
2221 **= DI1**+** / 1K.**
2222 )))
2223
2224 (((
2225 For example, if** DI1+ **= **12V**, the resulting current is = 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
2226 )))
2227
2228 (((
2229
2230 )))
2231
2232 (((
2233 (% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
2234 )))
2235
2236 (((
2237 This type of sensor outputs a high signal (e.g., 24V) when active.
2238 )))
2239
2240 * (((
2241 Connect the sensor's output to DI1+
2242 )))
2243 * (((
2244 Connect the sensor's GND DI1-.
2245 )))
2246
2247 (((
2248 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
2249 )))
2250
2251 (((
2252 **= DI1+ / 1K.**
2253 )))
2254
2255 (((
2256 If **DI1+ = 24V**, the resulting current is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
2257 )))
2258
2259 (((
2260
2261 )))
2262
2263 (((
2264 (% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
2265 )))
2266
2267 (((
2268 Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
2269 )))
2270
2271 * (((
2272 Connect the sensor's output to DI1+ with a 50K resistor in series.
2273 )))
2274 * (((
2275 Connect the sensor's GND DI1-.
2276 )))
2277
2278 (((
2279 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
2280 )))
2281
2282 (((
2283 **= DI1+ / 51K.**
2284 )))
2285
2286 (((
2287 If the sensor output is 220V, then (% wfd-invisible="true" id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
2288 )))
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298 (% style="color:blue" %)**Example 4**(%%): Connecting to a Dry Contact sensor
2299
2300 From the DI port circuit above, activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference on its own.
2301
2302 To detect a Dry Contact, you can supply a power source to one of the pins of the Dry Contact. A reference circuit diagram is shown below.
2303
2304 [[image:image-20230616235145-1.png]]
2305
2306 (% style="color:blue" %)**Example 5**(%%): Connecting to an Open Collector
2307
2308
2309 [[image:image-20240219115718-1.png]]
2310
2311 === 3.6.3 Digital Output Ports: DO1/DO2 ===
2312
2313
2314 (% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
2315
2316 (% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
2317
2318 [[image:1653357531600-905.png]]
2319
2320
2321 === 3.6.4 Analog Input Interfaces ===
2322
2323
2324 The analog input interface is shown below. The LT-22222-LA will measure the IN2 voltage to calculate the current passing through the load. The formula is:
2325
2326
2327 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
2328
2329 [[image:1653357592296-182.png]]
2330
2331 Example: Connecting a 4~~20mA sensor
2332
2333 We will use the wind speed sensor as an example for reference only.
2334
2335
2336 (% style="color:blue" %)**Specifications of the wind speed sensor:**
2337
2338 (% style="color:red" %)**Red:  12~~24V**
2339
2340 (% style="color:#ffc000" %)**Yellow:  4~~20mA**
2341
2342 **Black:  GND**
2343
2344 **Connection diagram:**
2345
2346 [[image:1653357640609-758.png]]
2347
2348 [[image:1653357648330-671.png]]
2349
2350
2351 Example: Connecting to a regulated power supply to measure voltage
2352
2353 [[image:image-20230608101532-1.png]]
2354
2355 [[image:image-20230608101608-2.jpeg]]
2356
2357 [[image:image-20230608101722-3.png]]
2358
2359
2360 (% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
2361
2362 (% style="color:red" %)**Red:  12~~24v**
2363
2364 **Black:  GND**
2365
2366
2367 === 3.6.5 Relay Output ===
2368
2369
2370 (((
2371 The LT-22222-LA has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
2372
2373 (% style="color:red" %)**Note:**(%%) The ROx pins will be in the Open (NO) state when the LT-22222-LA is powered off.
2374 )))
2375
2376 [[image:image-20220524100215-9.png]]
2377
2378 [[image:image-20220524100215-10.png]]
2379
2380
2381
2382 == 3.7 LED Indicators ==
2383
2384
2385 The table below lists the behaviour of LED indicators for each port function.
2386
2387 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
2388 |(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
2389 |**PWR**|Always on when there is power
2390 |**TX**|(((
2391 (((
2392 Device booting: TX blinks 5 times.
2393 )))
2394
2395 (((
2396 Successful network joins: TX remains ON for 5 seconds.
2397 )))
2398
2399 (((
2400 Transmit a LoRa packet: TX blinks once
2401 )))
2402 )))
2403 |**RX**|RX blinks once when a packet is received.
2404 |**DO1**|For LT-22222-LA: ON when DO1 is low, OFF when DO1 is high
2405 |**DO2**|For LT-22222-LA: ON when DO2 is low, OFF when DO2 is high
2406 |**DI1**|(((
2407 For LT-22222-LA: ON when DI1 is high, OFF when DI1 is low
2408 )))
2409 |**DI2**|(((
2410 For LT-22222-LA: ON when DI2 is high, OFF when DI2 is low
2411 )))
2412 |**RO1**|For LT-22222-LA: ON when RO1 is closed, OFF when RO1 is open
2413 |**RO2**|For LT-22222-LA: ON when RO2 is closed, OFF when RO2 is open
2414
2415 = 4. Using AT Commands =
2416
2417
2418 The LT-22222-LA supports programming using AT Commands.
2419
2420
2421 == 4.1 Connecting the LT-22222-LA to a PC ==
2422
2423
2424 (((
2425 You can use a USB-to-TTL adapter/converter along with a 3.5mm Program Cable to connect the LT-22222-LA to a PC, as shown below.
2426
2427 (% title="Click and drag to resize" %)​​[[image:1751525987713-642.png]]​
2428
2429
2430 )))
2431
2432 (((
2433 On the PC, you need to set the (% style="color:#4f81bd" %)**serial tool **(%%)(such as [[PuTTY>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]] or [[SecureCRT>>https://www.vandyke.com/cgi-bin/releases.php?product=securecrt]]) to a baud rate of (% style="color:green" %)**9600**(%%) to access the serial console of LT-22222-LA. Access to AT commands is disabled by default, and a password (default: (% style="color:green" %)**123456**)(%%) must be entered to enable AT command access, as shown below:
2434 )))
2435
2436 [[image:1653358355238-883.png]]
2437
2438
2439 (((
2440 == 4.2 LT-22222-LA related AT commands ==
2441
2442
2443 )))
2444
2445 (((
2446 The following is the list of all the AT commands related to the LT-22222-LA, except for those used for switching between working modes.
2447
2448 * **##AT##+<CMD>?** : Help on <CMD>
2449 * **##AT##+<CMD>** : Run <CMD>
2450 * **##AT##+<CMD>=<value>** : Set the value
2451 * **##AT##+<CMD>=?** : Get the value
2452 * ##**ATZ**##: Trigger a reset of the MCU
2453 * ##**AT+FDR**##: Reset Parameters to factory default, reserve keys 
2454 * **##AT+DEUI##**: Get or set the Device EUI (DevEUI)
2455 * **##AT+DADDR##**: Get or set the Device Address (DevAddr)
2456 * **##AT+APPKEY##**: Get or set the Application Key (AppKey)
2457 * ##**AT+NWKSKEY**##: Get or set the Network Session Key (NwkSKey)
2458 * **##AT+APPSKEY##**: Get or set the Application Session Key (AppSKey)
2459 * **##AT+APPEUI##**: Get or set the Application EUI (AppEUI)
2460 * **##AT+ADR##**: Get or set the Adaptive Data Rate setting. (0: OFF, 1: ON)
2461 * ##**AT+TXP**##: Get or set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Specification)
2462 * **##AT+DR##**:  Get or set the Data Rate. (0-7 corresponding to DR_X)  
2463 * **##AT+DCS##**: Get or set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
2464 * ##**AT+PNM**##: Get or set the public network mode. (0: off, 1: on)
2465 * ##**AT+RX2FQ**##: Get or set the Rx2 window frequency
2466 * ##**AT+RX2DR**##: Get or set the Rx2 window data rate (0-7 corresponding to DR_X)
2467 * ##**AT+RX1DL**##: Get or set the delay between the end of the Tx and the Rx Window 1 in ms
2468 * ##**AT+RX2DL**##: Get or set the delay between the end of the Tx and the Rx Window 2 in ms
2469 * ##**AT+JN1DL**##: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
2470 * ##**AT+JN2DL**##: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
2471 * ##**AT+NJM**##: Get or set the Network Join Mode. (0: ABP, 1: OTAA)
2472 * ##**AT+NWKID**##: Get or set the Network ID
2473 * ##**AT+FCU**##: Get or set the Frame Counter Uplink (FCntUp)
2474 * ##**AT+FCD**##: Get or set the Frame Counter Downlink (FCntDown)
2475 * ##**AT+CLASS**##: Get or set the Device Class
2476 * ##**AT+JOIN**##: Join Network
2477 * ##**AT+NJS**##: Get OTAA Join Status
2478 * ##**AT+SENDB**##: Send hexadecimal data along with the application port
2479 * ##**AT+SEND**##: Send text data along with the application port
2480 * ##**AT+RECVB**##: Print the last received data in binary format (with hexadecimal values)
2481 * ##**AT+RECV**##: Print the last received data in raw format
2482 * ##**AT+VER**##: Get the current image version and Frequency Band
2483 * ##**AT+CFM**##: Get or Set the confirmation mode (0-1)
2484 * ##**AT+CFS**##: Get confirmation status of the last AT+SEND (0-1)
2485 * ##**AT+SNR**##: Get the SNR of the last received packet
2486 * ##**AT+RSSI**##: Get the RSSI of the last received packet
2487 * ##**AT+TDC**##: Get or set the application data transmission interval in ms
2488 * ##**AT+PORT**##: Get or set the application port
2489 * ##**AT+DISAT**##: Disable AT commands
2490 * ##**AT+PWORD**##: Set password, max 9 digits
2491 * ##**AT+CHS**##: Get or set the Frequency (Unit: Hz) for Single Channel Mode
2492 * ##**AT+CHE**##: Get or set eight channels mode, Only for US915, AU915, CN470
2493 * ##**AT+CFG**##: Print all settings
2494 )))
2495
2496
2497 == 4.2 Common AT Command Sequence ==
2498
2499 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
2500
2501 (((
2502
2503
2504 (((
2505 (% style="color:blue" %)**If the device has not yet joined the network:**
2506 )))
2507 )))
2508
2509 (((
2510 (% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT command access**##
2511 )))
2512
2513 (((
2514 (% style="background-color:#dcdcdc" %)##**AT+FDR ~/~/Reset parameters to factory default, Reserve keys**##
2515 )))
2516
2517 (((
2518 (% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT command access**##
2519 )))
2520
2521 (((
2522 (% style="background-color:#dcdcdc" %)##**AT+NJM=0 ~/~/Set to ABP mode**##
2523 )))
2524
2525 (((
2526 (% style="background-color:#dcdcdc" %)##**ATZ ~/~/Reset MCU**##
2527 )))
2528
2529
2530 (((
2531 (% style="color:blue" %)**If the device has already joined the network:**
2532 )))
2533
2534 (((
2535 (% style="background-color:#dcdcdc" %)##**AT+NJM=0**##
2536 )))
2537
2538 (((
2539 (% style="background-color:#dcdcdc" %)##**ATZ**##
2540 )))
2541
2542
2543 (((
2544
2545 )))
2546
2547
2548 === 4.2.3 Change to Class A ===
2549
2550
2551 (((
2552 (% style="color:blue" %)**If the sensor has JOINED:**
2553
2554 (% style="background-color:#dcdcdc" %)**AT+CLASS=A**
2555
2556 (% style="background-color:#dcdcdc" %)**ATZ**
2557 )))
2558
2559
2560 = 5. Case Study =
2561
2562 == 5.1 Counting how many objects pass through the flow line ==
2563
2564
2565 See [[How to set up to setup counting for objects passing through the flow line>>https://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LT-22222-L/How%20to%20set%20up%20to%20count%20objects%20pass%20in%20flow%20line/]].
2566
2567
2568 = 6. OTA Firmware update =
2569
2570
2571 (% class="wikigeneratedid" %)
2572 User can change firmware LT-22222-LA to:
2573
2574 * Change Frequency band/ region.
2575 * Update with new features.
2576 * Fix bugs.
2577
2578 Firmware and changelog can be downloaded from : **[[Firmware download link>>https://www.dropbox.com/sh/fis3g6nmhv0eokg/AAC6BcCZaX4BdqZkduUvZ3jIa?dl=0]]**
2579
2580
2581 Methods to Update Firmware:
2582
2583 * (Recommanded way) OTA firmware update via wireless : **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
2584 * Update through UART TTL interface : **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
2585
2586
2587
2588 = 7. FAQ =
2589
2590
2591 This section contains some frequently asked questions, which can help you resolve common issues and find solutions quickly.
2592
2593
2594
2595
2596 (((
2597 (((
2598 == 7.2 How to change the LoRaWAN frequency band/region? ==
2599
2600
2601 )))
2602 )))
2603
2604 (((
2605 You can follow the introductions on [[how to upgrade the image>>doc:]]. When downloading, select the required image file.
2606 )))
2607
2608 (((
2609
2610
2611 == 7.3 How to set up LT-22222-LA to work with a Single Channel Gateway, such as LG01/LG02? ==
2612
2613
2614 )))
2615
2616 (((
2617 (((
2618 In this case, you need to set the LT-22222-LA to work in ABP mode and transmit on only one frequency.
2619 )))
2620 )))
2621
2622 (((
2623 (((
2624 We assume you have an LG01/LG02 working on the frequency 868400000. Below are the steps.
2625
2626
2627 )))
2628 )))
2629
2630 (((
2631 (% style="color:#0000ff" %)**Step 1**(%%): Log in to The Things Stack Sandbox account and create an ABP device in the application. To do this, use the manual registration option as explained in section 3.2.2.2, //Adding a Device Manually//. Select //Activation by Personalization (ABP)// under Activation Mode. Enter the DevEUI exactly as shown on the registration information sticker, then generate the Device Address, Application Session Key (AppSKey), and Network Session Key (NwkSKey).
2632
2633
2634 )))
2635
2636 (((
2637
2638 )))
2639
2640 {{warning}}
2641 Ensure that the Device Address (DevAddr) and the two keys match between the LT-22222-LA and The Things Stack. You can modify them either in The Things Stack or on the LT-22222-LA to make them align. In The Things Stack, you can configure the NwkSKey and AppSKey on the settings page, but note that the Device Address is generated by The Things Stack.
2642 {{/warning}}
2643
2644
2645 (((
2646 (% style="color:blue" %)**Step 2**(%%)**:  **(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)Run AT commands to configure the LT-22222-LA to operate in single-frequency and ABP mode. The AT commands are as follows:
2647
2648
2649 )))
2650
2651 (((
2652 (% style="background-color:#dcdcdc" %)**123456** (%%) : Enter the password to enable AT access.
2653
2654 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Reset parameters to factory default, keeping keys reserved.
2655
2656 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) : Set to ABP mode.
2657
2658 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) : Disable the Adaptive Data Rate (ADR).
2659
2660 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) : Set Data Rate (Use AT+DR=3 for the 915 MHz band).
2661
2662 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) : Set transmit interval to 60 seconds.
2663
2664 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4 MHz.
2665
2666 (% style="background-color:#dcdcdc" %)**AT+DADDR=xxxx**(%%) : Set the Device Address (DevAddr)
2667
2668 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:700; text-decoration:none; white-space:pre-wrap" %)**AT+APPKEY=xxxx**(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %): Get or set the Application Key (AppKey)
2669
2670 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)**AT+NWKSKEY=xxxx**: Get or set the Network Session Key (NwkSKey)
2671
2672 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)**AT+APPSKEY=xxxx**: Get or set the Application Session Key (AppSKey)
2673
2674 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) : Reset MCU.
2675 )))
2676
2677
2678 (((
2679 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)The following figure shows the screenshot of the command set above, issued using a serial tool:
2680 )))
2681
2682 [[image:1653360498588-932.png]]
2683
2684
2685 == 6.4 How to change the uplink interval? ==
2686
2687
2688 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2689
2690
2691 == 6.5 Can I see the counting event in the serial output? ==
2692
2693
2694 (((
2695 You can run the AT command **AT+DEBUG** to view the counting event in the serial output. If the firmware is too old and doesn’t support AT+DEBUG, update to the latest firmware first.
2696
2697
2698
2699 )))
2700
2701 (((
2702 == 6.6 Why does the relay output default to an open relay after the LT-22222-LA is powered off? ==
2703
2704
2705 * If the device is not properly shut down and is directly powered off.
2706 * It will default to a power-off state.
2707 * In modes 2 to 5, the DO/RO status and pulse count are saved to flash memory.
2708 * After a restart, the status before the power failure will be read from Flash.
2709
2710 == 6.7 Can I set up LT-22222-LA as an NC (Normally Closed) relay? ==
2711
2712
2713 The LT-22222-LA's built-in relay is Normally Open (NO). You can use an external relay to achieve a Normally Closed (NC) configuration. The circuit diagram is shown below:
2714
2715 [[image:image-20221006170630-1.png]]
2716
2717
2718
2719
2720 == 6.8 Why does the LT-22222-LA always report 15.585V when measuring the AVI? ==
2721
2722
2723 It is likely that the GND is not connected during the measurement, or that the wire connected to the GND is loose.
2724
2725
2726 = 7. Troubleshooting =
2727
2728
2729 This section provides some known troubleshooting tips.
2730
2731
2732 )))
2733
2734 (((
2735 (((
2736 == 7.1 Downlink isn't working. How can I solve this? ==
2737
2738
2739 )))
2740 )))
2741
2742 (((
2743 Please refer to this link for debugging instructions: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2744 )))
2745
2746 (((
2747
2748
2749 == 7.2 Having trouble uploading an image? ==
2750
2751
2752 )))
2753
2754 (((
2755 Please refer to this link for troubleshooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2756 )))
2757
2758 (((
2759
2760
2761 == 7.3 Why can't I join TTN in the US915 /AU915 bands? ==
2762
2763
2764 )))
2765
2766 (((
2767 It might be related to the channel mapping. [[Please refer to this link for details.>>https://github.com/dragino/LT-22222-L/releases]]
2768 )))
2769
2770
2771 == 7.4 Why can the LT-22222-LA perform uplink normally, but cannot receive downlink? ==
2772
2773
2774 The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue.
2775 Use this command to synchronize their counts: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resettingthedownlinkpacketcount"]]
2776
2777
2778 = 8. Ordering information =
2779
2780
2781 (% style="color:#4f81bd" %)**LT-22222-LA-XXX:**
2782
2783 (% style="color:#4f81bd" %)**XXX:**
2784
2785 * (% style="color:red" %)**EU433**(%%): LT with frequency bands EU433
2786 * (% style="color:red" %)**EU868**(%%): LT with frequency bands EU868
2787 * (% style="color:red" %)**KR920**(%%): LT with frequency bands KR920
2788 * (% style="color:red" %)**CN470**(%%): LT with frequency bands CN470
2789 * (% style="color:red" %)**AS923**(%%): LT with frequency bands AS923
2790 * (% style="color:red" %)**AU915**(%%): LT with frequency bands AU915
2791 * (% style="color:red" %)**US915**(%%): LT with frequency bands US915
2792 * (% style="color:red" %)**IN865**(%%): LT with frequency bands IN865
2793 * (% style="color:red" %)**CN779**(%%): LT with frequency bands CN779
2794
2795 = 9. Package information =
2796
2797
2798 (% style="color:#037691" %)**Package Includes**:
2799
2800 * 1 x LT-22222-LA I/O Controller
2801 * 1 x LoRa antenna matched to the frequency of the LT-22222-LA
2802 * 1 x bracket for DIN rail mounting
2803 * 1 x 3.5 mm programming cable
2804
2805 (% style="color:#037691" %)**Dimension and weight**:
2806
2807 * Package Size / pcs : 145×80×50 mm
2808 * Weight / pcs : 180 g
2809
2810 = 10. Support =
2811
2812
2813 * (((
2814 Support is available Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different time zones, we cannot offer live support. However, your questions will be answered as soon as possible within the aforementioned schedule.
2815 )))
2816 * (((
2817 Please provide as much information as possible regarding your inquiry (e.g., product models, a detailed description of the problem, steps to replicate it, etc.) and send an email to [[support@dragino.cc>>mailto:support@dragino.cc]]
2818
2819
2820 )))
2821
2822 = 11. Reference​​​​​ =
2823
2824
2825 * LT-22222-LA: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2826 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2827 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]