Version 57.1 by Kilight Cao on 2025/07/03 15:22

Show last authors
1 [[image:image-20220523163353-1.jpeg||data-xwiki-image-style-alignment="center" height="604" width="500"]]
2
3
4
5
6
7
8
9 **Table of Contents:**
10
11 {{toc/}}
12
13
14
15
16
17 = 1. Introduction =
18
19 == 1.1 What is the LT-22222-LA I/O Controller? ==
20
21
22 (((
23 (((
24 The Dragino (% style="color:blue" %)**LT-22222-LA I/O Controller**(%%) is an advanced LoRaWAN end device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
25
26 The LT-22222-LA I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
27 )))
28 )))
29
30 (((
31 With the LT-22222-LA I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
32 )))
33
34 (((
35 You can connect the LT-22222-LA I/O Controller to a LoRaWAN network service provider in several ways:
36
37 * If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Stack Community Network), you can select a network and register the LT-22222-LA I/O controller with it.
38 * If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-LA I/O controller with this network.
39 * Setup your own private LoRaWAN network.
40 )))
41
42 (((
43
44
45 The network diagram below illustrates how the LT-22222-LA communicates with a typical LoRaWAN network.
46 )))
47
48
49 [[image:lorawan-nw.jpg]]
50
51 == 1.2 Specifications ==
52
53
54 (% style="color:#037691" %)**Hardware System:**
55
56 * Power Consumption:
57 ** Idle: 4mA@12V
58 ** 20dB Transmit: 34mA@12V
59 * Operating Temperature: -40 ~~ 85 Degrees, No Dew
60
61 (% style="color:#037691" %)**Interface for Model: LT22222-LA:**
62
63 * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50V, or 220V with optional external resistor)
64 * 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
65 * 2 x Relay Output (5A@250VAC / 30VDC)
66 * 2 x 0~~20mA Analog Input (res:0.01mA)
67 * 2 x 0~~30V Analog Input (res:0.01V)
68 * Power Input 7~~ 24V DC. 
69
70 (% style="color:#037691" %)**LoRa Spec:**
71
72 * Frequency Range:
73 ** Band 1 (HF): 862 ~~ 1020 MHz
74 ** Band 2 (LF): 410 ~~ 528 MHz
75 * 168 dB maximum link budget.
76 * +20 dBm - 100 mW constant RF output vs.
77 * +14 dBm high-efficiency PA.
78 * Programmable bit rate up to 300 kbps.
79 * High sensitivity: down to -148 dBm.
80 * Bullet-proof front end: IIP3 = -12.5 dBm.
81 * Excellent blocking immunity.
82 * Low RX current of 10.3 mA, 200 nA register retention.
83 * Fully integrated synthesizer with a resolution of 61 Hz.
84 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
85 * Built-in bit synchronizer for clock recovery.
86 * Preamble detection.
87 * 127 dB Dynamic Range RSSI.
88 * Automatic RF Sense and CAD with ultra-fast AFC.
89 * Packet engine up to 256 bytes with CRC.
90
91 == 1.3 Features ==
92
93
94 * LoRaWAN Class A & Class C modes
95 * Optional Customized LoRa Protocol
96 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
97 * AT Commands to change parameters
98 * Remotely configure parameters via LoRaWAN Downlink
99 * Firmware upgradable via program port
100 * Counting
101
102 == 1.4 Applications ==
103
104
105 * Smart buildings & home automation
106 * Logistics and supply chain management
107 * Smart metering
108 * Smart agriculture
109 * Smart cities
110 * Smart factory
111
112 == 1.5 Hardware Variants ==
113
114
115 (% border="1" cellspacing="3" style="width:531.222px" %)
116 |(% style="background-color:#4f81bd; color:white; width:108px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:158px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:261px" %)**Description**
117 |(% style="width:108px" %)**LT-22222-LA**|(% style="width:158px" %)(((
118 [[image:lt33222-l.jpg]]
119 )))|(% style="width:261px" %)(((
120 * 3 x Digital Input (Bi-direction)
121 * 3 x Digital Output
122 * 2 x Relay Output (5A@250VAC / 30VDC)
123 * 2 x 0~~20mA Analog Input (res:0.01mA)
124 * 2 x 0~~30V Analog Input (res:0.01v)
125 * 1 x Counting Port
126 )))
127
128 = 2. Assembling the device =
129
130 == 2.1 Connecting the antenna ==
131
132
133 Connect the LoRa antenna to the antenna connector, **ANT**,** **located on the top right side of the device, next to the upper screw terminal block. Secure the antenna by tightening it clockwise.
134
135 {{warning}}
136 **Warning! Do not power on the device without connecting the antenna.**
137 {{/warning}}
138
139
140 == 2.2 Terminals ==
141
142
143 The  LT-22222-LA has two screw terminal blocks. The upper screw terminal block has 6 screw terminals and the lower screw terminal block has 10 screw terminals.
144
145 **Upper screw terminal block (from left to right):**
146
147 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:381px" %)
148 |=(% style="width: 139px;background-color:#4f81bd;color:white" %)Screw Terminal|=(% style="width: 242px;background-color:#4f81bd;color:white" %)Function
149 |(% style="width:139px" %)GND|(% style="width:242px" %)Ground
150 |(% style="width:139px" %)VIN|(% style="width:242px" %)Input Voltage
151 |(% style="width:139px" %)AVI2|(% style="width:242px" %)Analog Voltage Input Terminal 2
152 |(% style="width:139px" %)AVI1|(% style="width:242px" %)Analog Voltage Input Terminal 1
153 |(% style="width:139px" %)ACI2|(% style="width:242px" %)Analog Current Input Terminal 2
154 |(% style="width:139px" %)ACI1|(% style="width:242px" %)Analog Current Input Terminal 1
155
156 **Lower screw terminal block (from left to right):**
157
158 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:253px" %)
159 |=(% style="width: 125px;background-color:#4f81bd;color:white" %)Screw Terminal|=(% style="width: 128px;background-color:#4f81bd;color:white" %)Function
160 |(% style="width:125px" %)RO1-2|(% style="width:128px" %)Relay Output 1
161 |(% style="width:125px" %)RO1-1|(% style="width:128px" %)Relay Output 1
162 |(% style="width:125px" %)RO2-2|(% style="width:128px" %)Relay Output 2
163 |(% style="width:125px" %)RO2-1|(% style="width:128px" %)Relay Output 2
164 |(% style="width:125px" %)DI2+|(% style="width:128px" %)Digital Input 2
165 |(% style="width:125px" %)DI2-|(% style="width:128px" %)Digital Input 2
166 |(% style="width:125px" %)DI1+|(% style="width:128px" %)Digital Input 1
167 |(% style="width:125px" %)DI1-|(% style="width:128px" %)Digital Input 1
168 |(% style="width:125px" %)DO2|(% style="width:128px" %)Digital Output 2
169 |(% style="width:125px" %)DO1|(% style="width:128px" %)Digital Output 1
170
171 == 2.3 Connecting LT-22222-LA to a Power Source ==
172
173
174 The LT-22222-LA I/O Controller can be powered by a **7–24V DC** power source. Connect your power supply’s **positive wire** to the **VIN** and the **negative wire** to the **GND** screw terminals. The power indicator **(PWR) LED** will turn on when the device is properly powered.
175
176 {{warning}}
177 **We recommend that you power on the LT-22222-LA after adding its registration information to the LoRaWAN network server. Otherwise, the device will continuously send join-request messages to attempt to join a LoRaWAN network but will fail.**
178 {{/warning}}
179
180 [[image:1653297104069-180.png]]
181
182
183
184 = 3. Registering LT-22222-LA with a LoRaWAN Network Server =
185
186
187 The LT-22222-LA supports both OTAA (Over-the-Air Activation) and ABP (Activation By Personalization) methods to activate with a LoRaWAN Network Server. However, OTAA is the most secure method for activating a device with a LoRaWAN Network Server. OTAA regenerates session keys upon initial registration and regenerates new session keys after any subsequent reboots. By default, the LT-22222-LA is configured to operate in LoRaWAN Class C mode.
188
189
190 == 3.1 Prerequisites ==
191
192
193 The LT-22222-LA comes with device registration information such as DevEUI, AppEUI, and AppKey which allows you to register it with a LoRaWAN network. This registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
194
195 {{info}}
196 If you are unable to set the provided root key and other identifiers in the network server, you must generate new keys and identifiers with the network server and configure the device with them using AT commands.
197 {{/info}}
198
199 The following subsections explain how to register the LT-22222-LA with different LoRaWAN network server providers.
200
201 [[image:image-20230425173427-2.png]]
202
203 == 3.2 The Things Stack ==
204
205
206 This section guides you through how to register your LT-22222-LA with The Things Stack Sandbox.
207
208 {{info}}
209 The Things Stack Sandbox was formally called The Things Stack Community Edition.
210 {{/info}}
211
212
213 The network diagram below illustrates the connection between the LT-22222-LA and The Things Stack, as well as how the data can be integrated with the ThingsEye IoT platform.
214
215 [[image:1751523649311-511.png||height="407" width="1378"]]
216
217 {{info}}
218 You can use a LoRaWAN gateway, such as the [[Dragino LPS8N>>https://www.dragino.com/products/lora-lorawan-gateway/item/200-lps8n.html]], to expand or create LoRaWAN coverage in your area.
219 {{/info}}
220
221
222 === 3.2.1 Setting up ===
223
224
225 * Sign up for a free account with [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] if you do not have one yet.
226 * Log in to your The Things Stack Sandbox account.
227 * Create an **application** with The Things Stack if you do not have one yet (E.g., dragino-docs).
228 * Go to your application's page and click on the **End devices** in the left menu.
229 * On the End devices page, click on **+ Register end device**. Two registration options are available:
230
231 ==== 3.2.1.1 Using the LoRaWAN Device Repository ====
232
233
234 * On the **Register end device** page:
235 ** Select the option **Select the end device in the LoRaWAN Device Repository **under **Input method**.
236 ** Select the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)** from the respective dropdown lists.
237 *** **End device brand**: Dragino Technology Co., Limited
238 *** **Model**: LT22222-L I/O Controller
239 *** **Hardware ver**: Unknown
240 *** **Firmware ver**: 1.6.0
241 *** **Profile (Region)**: Select the region that matches your device.
242 ** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
243
244 [[image:lt-22222-l-dev-repo-reg-p1.png]]
245
246
247 * Register end device page continued...
248 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message 'This end device can be registered on the network'.
249 ** In the **DevEUI** field, enter the **DevEUI**.
250 ** In the **AppKey** field, enter the **AppKey.**
251 ** In the **End device ID** field, enter a unique name for your LT-22222-LA within this application.
252 ** Under **After registration**, select the **View registered end device** option.
253 ** Click **Register end device** button.
254
255 [[image:lt-22222-l-dev-repo-reg-p2.png]]
256
257
258 * You will be navigated to the **Device overview** page.
259
260 [[image:lt-22222-device-overview.png]]
261
262
263 ==== 3.2.1.2 Adding device manually ====
264
265
266 * On the **Register end device** page:
267 ** Select the option **Enter end device specifies manually** under **Input method**.
268 ** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
269 ** Select the **LoRaWAN version** as **LoRaWAN Specification 1.0.3**
270 ** Select the **Regional Parameters version** as** RP001 Regional Parameters 1.0.3 revision A**
271 ** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the hidden section.
272 ** Select the option **Over the air activation (OTAA)** under the **Activation mode.**
273 ** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities** dropdown list.
274
275 [[image:lt-22222-l-manually-p1.png]]
276
277
278 * Register end device page continued...
279 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message '//**This end device can be registered on the network**//'
280 ** In the **DevEUI** field, enter the **DevEUI**.
281 ** In the **AppKey** field, enter the **AppKey**.
282 ** In the **End device ID** field, enter a unique name for your LT-22222-LA within this application.
283 ** Under **After registration**, select the **View registered end device** option.
284 ** Click the **Register end device** button.
285
286 [[image:lt-22222-l-manually-p2.png]]
287
288
289 You will be navigated to the **Device overview** page.
290
291 [[image:lt-22222-device-overview.png]]
292
293
294
295 === 3.2.2 Joining ===
296
297
298 On the end device's page (in this case, lt-22222-la), click on **Live data** tab. The Live data panel for your device will display. Initially, it is blank.
299
300 Now power on your LT-22222-LA. The **TX LED** will **fast-blink 5 times** which means the LT-22222-LA will enter the **work mode** and start to **join** The Things Stack network server. The **TX LED** will be on for **5 seconds** after joining the network. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server.
301
302 [[image:lt-22222-l-joining.png]]
303
304
305
306 === 3.2.3 Uplinks ===
307
308
309 After successfully joining, the device will send its first **uplink data message** to The Things Stack application it belongs to (in this example, it is **dragino-docs**). When the LT-22222-LA sends an uplink message to the server, the **TX LED** turns on for **1 second**. By default, you will receive an uplink data message from the device every 10 minutes.
310
311 Click on one of the **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the **decode_payload {}** JSON object.
312
313 [[image:lt-22222-ul-payload-decoded.png]]
314
315
316 If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **Applications > [your application] > End devices** > [**your end device]** > **Payload formatters** > **Uplink**. Then select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes.
317
318 {{info}}
319 The Things Stack provides two levels of payload formatters: application level and device level. The device-level payload formatters **override **the application-level payload formatters.
320 {{/info}}
321
322 [[image:lt-22222-ul-payload-fmt.png]]
323
324
325 We have written a payload formatter that resolves some decoding issues present in The Things Stack Device Repository payload formatter. You can add it under the **Custom JavaScript formatter**. It can be found [[here>>https://github.com/dragino/dragino-end-node-decoder/blob/main/LT22222-L/v1.6_decoder_ttn%20.txt]]:
326
327 [[image:lt-22222-l-js-custom-payload-formatter.png]]
328
329
330 === 3.2.4 Downlinks ===
331
332
333 When the LT-22222-L receives a downlink message from the LoRaWAN Network Server, the **RX LED** turns on for **1 second**.
334
335
336 == 3.3 Working Modes and Uplink Payload formats ==
337
338
339 The LT-22222-LA has 5 **working modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any working mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
340
341 * (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO
342
343 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
344
345 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
346
347 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
348
349 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
350
351 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
352
353 The uplink messages are sent over LoRaWAN FPort=2. By default, an uplink message is sent every 10 minutes.
354
355
356 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
357
358
359 (((
360 This is the default mode.
361
362 The uplink payload is 11 bytes long.
363 (% wfd-invisible="true" style="display:none" %)
364
365 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
366 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
367 |Value|(((
368 AVI1 voltage
369 )))|(((
370 AVI2 voltage
371 )))|(((
372 ACI1 Current
373 )))|(((
374 ACI2 Current
375 )))|**DIDORO***|(((
376 Reserve
377 )))|MOD
378 )))
379
380 (((
381 (% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below.
382
383 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
384 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
385 |RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
386 )))
387
388 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
389 * DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW.
390 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
391
392 (% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-LA**
393
394 For example, if the payload is: [[image:image-20220523175847-2.png]]
395
396
397 **The interface values can be calculated as follows:  **
398
399 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
400
401 AVI2 channel voltage is 0x04AC/1000=1.196V
402
403 ACI1 channel current is 0x1310/1000=4.880mA
404
405 ACI2 channel current is 0x1300/1000=4.864mA
406
407 The last byte 0xAA= **10101010**(b) means,
408
409 * [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
410 * [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
411 * **[1] DI3 - not used for LT-22222-LA.**
412 * [0] DI2 channel input is LOW, and the DI2 LED is OFF.
413 * [1] DI1 channel input state:
414 ** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
415 ** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
416 ** DI1 LED is ON in both cases.
417 * **[0] DO3 - not used for LT-22222-LA.**
418 * [1] DO2 channel output is LOW, and the DO2 LED is ON.
419 * [0] DO1 channel output state:
420 ** DO1 is FLOATING when there is no load between DO1 and V+.
421 ** DO1 is HIGH and there is a load between DO1 and V+.
422 ** DO1 LED is OFF in both cases.
423
424 Reserve = 0
425
426 MOD = 1
427
428
429 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
430
431
432 (((
433 **For LT-22222-LA**: In this mode, **DI1 and DI2** are used as counting pins.
434 )))
435
436 (((
437 The uplink payload is 11 bytes long.
438
439 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
440 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
441 It starts counting again when it reaches the maximum value.**
442
443 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
444 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
445 |Value|COUNT1|COUNT2 |DIDORO*|(((
446 Reserve
447 )))|MOD
448 )))
449
450 (((
451 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, FIRST, Reserve, Reserve, DO3, DO2 and DO1, and its size is 1 byte long as shown below.
452
453 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
454 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
455 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
456
457 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
458 )))
459
460 * FIRST: Indicates that this is the first packet after joining the network.
461 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
462
463 (((
464 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-LA**
465
466
467 )))
468
469 (((
470 **To activate this mode, run the following AT commands:**
471 )))
472
473 (((
474 (% class="box infomessage" %)
475 (((
476 **AT+MOD=2**
477
478 **ATZ**
479 )))
480 )))
481
482 (((
483
484
485 (% style="color:#4f81bd" %)**AT Commands for counting:**
486 )))
487
488 (((
489 **For LT22222-LA:**
490
491 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
492
493 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
494
495 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
496
497 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
498
499 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
500
501 (% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
502 )))
503
504
505
506
507
508
509
510
511 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
512
513
514 (% style="color:red" %)**Note: The maximum count depends on the bytes it is.
515 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
516 It starts counting again when it reaches the maximum value.**
517
518 **LT22222-LA**: In this mode, the DI1 is used as a counting pin.
519
520 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
521 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
522 |Value|COUNT1|(((
523 ACI1 Current
524 )))|(((
525 ACI2 Current
526 )))|DIDORO*|Reserve|MOD
527
528 (((
529 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
530
531 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
532 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
533 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
534 )))
535
536 * RO is for the relay. ROx=1: closed, ROx=0 always open.
537 * FIRST: Indicates that this is the first packet after joining the network.
538 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
539
540 (((
541 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-LA.**
542 )))
543
544
545
546
547
548
549
550
551 (((
552 **To activate this mode, run the following AT commands:**
553 )))
554
555 (((
556 (% class="box infomessage" %)
557 (((
558 **AT+MOD=3**
559
560 **ATZ**
561 )))
562 )))
563
564 (((
565 AT Commands for counting:
566
567 The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
568 )))
569
570
571 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
572
573
574 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
575 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
576 It starts counting again when it reaches the maximum value.**
577
578
579 (((
580 **LT22222-LA**: In this mode, the DI1 is used as a counting pin.
581 )))
582
583 (((
584 The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
585
586 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
587 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
588 |Value|COUNT1|AVI1 Counting|DIDORO*|(((
589 Reserve
590 )))|MOD
591 )))
592
593 (((
594 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
595
596 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
597 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
598 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
599 )))
600
601 * RO is for the relay. ROx=1: closed, ROx=0 always open.
602 * FIRST: Indicates that this is the first packet after joining the network.
603 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
604
605 (((
606 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
607
608
609 )))
610
611 (((
612 **To activate this mode, run the following AT commands:**
613 )))
614
615 (((
616 (% class="box infomessage" %)
617 (((
618 **AT+MOD=4**
619
620 **ATZ**
621 )))
622 )))
623
624 (((
625 AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
626 )))
627
628 (((
629 **In addition to that, below are the commands for AVI1 Counting:**
630
631 (% style="color:blue" %)**AT+SETCNT=3,60 **(%%)**(Sets AVI1 Count to 60)**
632
633 (% style="color:blue" %)**AT+VOLMAX=20000 **(%%)**(If the AVI1 voltage is higher than VOLMAX (20000mV =20V), the counter increases by 1)**
634
635 (% style="color:blue" %)**AT+VOLMAX=20000,0 **(%%)**(If the AVI1 voltage is lower than VOLMAX (20000mV =20V), counter increases by 1)**
636
637 (% style="color:blue" %)**AT+VOLMAX=20000,1 **(%%)**(If the AVI1 voltage is higher than VOLMAX (20000mV =20V), counter increases by 1)**
638 )))
639
640
641
642
643
644
645
646
647 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
648
649
650 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
651 The maximum count for four bytes is FFFF (hex) = 65535 (dec).
652 It starts counting again when it reaches the maximum value.**
653
654
655 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
656
657 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
658 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
659 |Value|(((
660 AVI1 voltage
661 )))|(((
662 AVI2 voltage
663 )))|(((
664 ACI1 Current
665 )))|COUNT1|DIDORO*|(((
666 Reserve
667 )))|MOD
668
669 (((
670 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
671
672 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
673 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
674 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
675 )))
676
677 * RO is for the relay. ROx=1: closed, ROx=0 always open.
678 * FIRST: Indicates that this is the first packet after joining the network.
679 * (((
680 DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
681 )))
682
683 (((
684 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-LA.**
685 )))
686
687 (((
688 **To activate this mode, run the following AT commands:**
689 )))
690
691 (((
692 (% class="box infomessage" %)
693 (((
694 **AT+MOD=5**
695
696 **ATZ**
697 )))
698 )))
699
700 (((
701 Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
702 )))
703
704
705
706
707
708
709
710
711 === 3.3.6 AT+ADDMOD~=6 (Trigger Mode, Optional) ===
712
713
714 (% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate __alongside__ with other modes.**
715
716 For example, if you configure the following commands:
717
718 * **AT+MOD=1 ** **~-~->**  Sets the default working mode
719 * **AT+ADDMOD6=1**   **~-~->**  Enables trigger mode
720
721 The LT-22222-LA will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. It will send uplink packets in two cases:
722
723 1. Periodic uplink: Based on TDC time. The payload is the same as in normal mode (MOD=1 as set above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
724 1. (((
725 Trigger uplink: sent when a trigger condition is met. In this case, LT will send two packets
726
727 * The first uplink uses the payload specified in trigger mode (MOD=6).
728 * The second packet uses the normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**confirmed uplinks.**
729 )))
730
731 (% style="color:#037691" %)**AT Commands to set Trigger Conditions**:
732
733 (% style="color:#4f81bd" %)**Trigger based on voltage**:
734
735 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
736
737
738 **Example:**
739
740 AT+AVLIM=3000,6000,0,2000 (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
741
742 AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0 for parameters that are not in use)
743
744
745 (% style="color:#4f81bd" %)**Trigger based on current**:
746
747 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
748
749
750 **Example:**
751
752 AT+ACLIM=10000,15000,0,0 (triggers an uplink if AC1 current is lower than 10mA or higher than 15mA)
753
754
755 (% style="color:#4f81bd" %)**Trigger based on DI status**:
756
757 DI status triggers Flag.
758
759 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
760
761
762 **Example:**
763
764 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
765
766
767 (% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
768
769 **Type Code**: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
770
771 **Format**: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
772
773 AA: Type Code for this downlink Command:
774
775 xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
776
777 yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
778
779 yy2 yy2: AC1 or AV1 HIGH limit.
780
781 yy3 yy3: AC2 or AV2 LOW limit.
782
783 Yy4 yy4: AC2 or AV2 HIGH limit.
784
785
786 **Example 1**: AA 00 13 88 00 00 00 00 00 00
787
788 Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
789
790
791 **Example 2**: AA 02 01 00
792
793 Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
794
795
796 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
797
798 MOD6 Payload: a total of 11 bytes
799
800 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
801 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
802 |Value|(((
803 TRI_A FLAG
804 )))|(((
805 TRI_A Status
806 )))|(((
807 TRI_DI FLAG+STA
808 )))|Reserve|Enable/Disable MOD6|(((
809 MOD(6)
810 )))
811
812 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Total 1 byte as below.
813
814 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
815 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
816 |(((
817 AV1_LOW
818 )))|(((
819 AV1_HIGH
820 )))|(((
821 AV2_LOW
822 )))|(((
823 AV2_HIGH
824 )))|(((
825 AC1_LOW
826 )))|(((
827 AC1_HIGH
828 )))|(((
829 AC2_LOW
830 )))|(((
831 AC2_HIGH
832 )))
833
834 * Each bit shows if the corresponding trigger has been configured.
835
836 **Example:**
837
838 10100000: This means the system is configured to use the triggers AV1_LOW and AV2_LOW.
839
840
841 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is triggered. Total 1 byte as below.
842
843 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
844 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
845 |(((
846 AV1_LOW
847 )))|(((
848 AV1_HIGH
849 )))|(((
850 AV2_LOW
851 )))|(((
852 AV2_HIGH
853 )))|(((
854 AC1_LOW
855 )))|(((
856 AC1_HIGH
857 )))|(((
858 AC2_LOW
859 )))|(((
860 AC2_HIGH
861 )))
862
863 * Each bit shows which status has been triggered on this uplink.
864
865 **Example:**
866
867 10000000: The uplink is triggered by AV1_LOW, indicating that the voltage is too low.
868
869
870 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is triggered. Total 1 byte as below.
871
872 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
873 |(% style="width:50px" %)**bit 7**|(% style="width:50px" %)**bit 6**|(% style="width:50px" %)**bit 5**|(% style="width:50px" %)**bit 4**|(% style="width:90px" %)**bit 3**|(% style="width:80px" %)**bit 2**|(% style="width:90px" %)**bit 1**|(% style="width:95px" %)**bit 0**
874 |(% style="width:49px" %)N/A|(% style="width:53px" %)N/A|(% style="width:53px" %)N/A|(% style="width:55px" %)N/A|(% style="width:99px" %)DI2_STATUS|(% style="width:83px" %)DI2_FLAG|(% style="width:98px" %)DI1_STATUS|(% style="width:85px" %)DI1_FLAG
875
876 * Each bit shows which status has been triggered on this uplink.
877
878 **Example:**
879
880 00000111: This means both DI1 and DI2 triggers are enabled, and this packet is triggered by DI1.
881
882 00000101: This means both DI1 and DI2 triggers are enabled.
883
884
885 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enabled. 0x00: MOD6 is disabled.
886
887 Downlink command to poll/request MOD6 status:
888
889 **AB 06**
890
891 When the device receives this command, it will send the MOD6 payload.
892
893
894 === 3.3.7 Payload Decoder ===
895
896 (((
897
898
899 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder/tree/main/LT22222-L]]
900 )))
901
902
903 == 3.4 ​Configure LT-22222-LA via AT Commands or Downlinks ==
904
905
906 (((
907 You can configure LT-22222-LA I/O Controller via AT Commands or LoRaWAN Downlinks.
908 )))
909
910 (((
911 (((
912 There are two types of commands:
913 )))
914 )))
915
916 * (% style="color:blue" %)**Common commands**(%%):
917
918 * (% style="color:blue" %)**Sensor-related commands**(%%):
919
920 === 3.4.1 Common commands ===
921
922
923 (((
924 These are available for each sensor and include actions such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]s.
925
926
927 )))
928
929 === 3.4.2 Sensor-related commands ===
930
931
932 These commands are specially designed for the LT-22222-LA. Commands can be sent to the device using options such as an AT command or a LoRaWAN downlink payload.
933
934
935 ==== 3.4.2.1 Set Transmit/Uplink Interval ====
936
937
938 Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes.
939
940 (% style="color:#037691" %)**AT command**
941
942 (% border="2" style="width:500px" %)
943 |**Command**|AT+TDC=<time>
944 |**Parameters**|**time **: uplink interval in milliseconds
945 |**Get**|AT+TDC=?
946 |**Response**|(((
947 current uplink interval
948
949 OK
950 )))
951 |**Set**|AT+TDC=<time>
952 |**Response**|OK
953 |**Example**|(((
954 AT+TDC=30000
955
956 Sets the uplink interval to **30 seconds** (30000 milliseconds)
957 )))
958
959 (% style="color:#037691" %)**Downlink payload**
960
961 (% border="2" style="width:500px" %)
962 |**Payload**|(((
963 <prefix><time>
964 )))
965 |**Parameters**|(((
966 **prefix** : 0x01
967
968 **time** : uplink interval in **seconds**, represented by **3  bytes** in **hexadecimal**.
969 )))
970 |**Example**|(((
971 01 **00 00 1E**
972
973 Sets the uplink interval to **30 seconds**
974
975 Conversion: 30 (dec) = 00 00 1E (hex)
976
977 See [[RapidTables>>https://www.rapidtables.com/convert/number/decimal-to-hex.html?x=30]]
978
979 [[image:Screenshot%202024-11-23%20at%2018.27.11.png||alt="Screenshot 2024-11-23 at 18.27.11.png"]]
980 )))
981
982 ==== 3.4.2.2 Set the Working Mode (AT+MOD) ====
983
984
985 Sets the working mode.
986
987 (% style="color:#037691" %)**AT command**
988
989 (% border="2" style="width:500px" %)
990 |(% style="width:97px" %)**Command**|(% style="width:413px" %)AT+MOD=<working_mode>
991 |(% style="width:97px" %)**Parameters**|(% style="width:413px" %)(((
992 **working_mode** :
993
994 1 = (Default mode/factory set):  2ACI + 2AVI + DI + DO + RO
995
996 2 = Double DI Counting + DO + RO
997
998 3 = Single DI Counting + 2 x ACI + DO + RO
999
1000 4 = Single DI Counting + 1 x Voltage Counting + DO + RO
1001
1002 5 = Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
1003
1004 6 = Trigger Mode, Optional, used together with MOD1 ~~ MOD5
1005 )))
1006 |(% style="width:97px" %)**Get**|(% style="width:413px" %)AT+MOD=?
1007 |(% style="width:97px" %)**Response**|(% style="width:413px" %)(((
1008 Current working mode
1009
1010 OK
1011 )))
1012 |(% style="width:97px" %)**Set**|(% style="width:413px" %)AT+MOD=<working_mode>
1013 |(% style="width:97px" %)**Response**|(% style="width:413px" %)(((
1014 Attention:Take effect after ATZ
1015
1016 OK
1017 )))
1018 |(% style="width:97px" %)**Example**|(% style="width:413px" %)(((
1019 AT+MOD=2
1020
1021 Sets the device to working mode 2 (Double DI Counting + DO + RO)
1022 )))
1023
1024 (% class="wikigeneratedid" %)
1025 (% style="color:#037691" %)**Downlink payload**
1026
1027 (% border="2" style="width:500px" %)
1028 |(% style="width:98px" %)**Payload**|(% style="width:400px" %)<prefix><working_mode>
1029 |(% style="width:98px" %)**Parameters**|(% style="width:400px" %)(((
1030 **prefix** : 0x0A
1031
1032 **working_mode** : Working mode, represented by 1 byte in hexadecimal.
1033 )))
1034 |(% style="width:98px" %)**Example**|(% style="width:400px" %)(((
1035 0A **02**
1036
1037 Sets the device to working mode 2 (Double DI Counting + DO + RO)
1038 )))
1039
1040 ==== 3.4.2.3 Request an uplink from the device ====
1041
1042
1043 Requests an uplink from LT-22222-LA. The content of the uplink payload varies based on the device's current working mode.
1044
1045 (% style="color:#037691" %)**AT command**
1046
1047 There is no AT Command available for this feature.
1048
1049 (% style="color:#037691" %)**Downlink payload**
1050
1051 (% border="2" style="width:500px" %)
1052 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix>FF
1053 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)**prefix** : 0x08
1054 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1055 08 **FF**
1056
1057 Requests an uplink from LT-22222-L.
1058 )))
1059
1060 ==== 3.4.2.4 Enable/Disable Trigger Mode ====
1061
1062
1063 Enable or disable the trigger mode for the current working mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D628TriggerMode2COptional29"]]).
1064
1065 (% style="color:#037691" %)**AT Command**
1066
1067 (% border="2" style="width:500px" %)
1068 |(% style="width:95px" %)**Command**|(% style="width:403px" %)AT+ADDMOD6=<enable/disable trigger_mode>
1069 |(% style="width:95px" %)**Response**|(% style="width:403px" %)
1070 |(% style="width:95px" %)**Parameters**|(% style="width:403px" %)(((
1071 **enable/disable trigger_mode** :
1072
1073 1 = enable trigger mode
1074
1075 0 = disable trigger mode
1076 )))
1077 |(% style="width:95px" %)**Example**|(% style="width:403px" %)(((
1078 AT+ADDMOD6=1
1079
1080 Enable trigger mode for the current working mode
1081 )))
1082
1083 (% style="color:#037691" %)**Downlink payload**
1084
1085 (% border="2" style="width:500px" %)
1086 |(% style="width:97px" %)**Payload**|(% style="width:401px" %)<prefix><enable/disable trigger_mode>
1087 |(% style="width:97px" %)**Parameters**|(% style="width:401px" %)(((
1088 **prefix** : 0x0A 06 (two bytes in hexadecimal)
1089
1090 **enable/disable trigger_mode** : enable (1) or disable (0), represented by 1 byte in hexadecimal.
1091 )))
1092 |(% style="width:97px" %)**Example**|(% style="width:401px" %)(((
1093 0A 06 **01**
1094
1095 Enable trigger mode for the current working mode
1096 )))
1097
1098 ==== 3.4.2.5 Request trigger settings ====
1099
1100
1101 Requests the trigger settings.
1102
1103 (% style="color:#037691" %)**AT Command:**
1104
1105 There is no AT Command available for this feature.
1106
1107 (% style="color:#037691" %)**Downlink Payload**
1108
1109 (% border="2" style="width:500px" %)
1110 |(% style="width:95px" %)**Payload**|(% style="width:403px" %)<prefix>
1111 |(% style="width:95px" %)**Parameters**|(% style="width:403px" %)**prefix **: AB 06 (two bytes in hexadecimal)
1112 |(% style="width:95px" %)**Example**|(% style="width:403px" %)(((
1113 AB 06
1114
1115 Uplink the trigger settings.
1116 )))
1117
1118 ==== 3.4.2.6 Enable/Disable DI1/DI2/DI3 as a trigger ====
1119
1120
1121 Enable or disable DI1/DI2/DI3 as a trigger.
1122
1123 (% style="color:#037691" %)**AT Command**
1124
1125 (% border="2" style="width:500px" %)
1126 |(% style="width:98px" %)**Command**|(% style="width:400px" %)AT+DTRI=<DI1_trigger>,<DI2_trigger>
1127 |(% style="width:98px" %)**Response**|(% style="width:400px" %)
1128 |(% style="width:98px" %)**Parameters**|(% style="width:400px" %)(((
1129 **DI1_trigger:**
1130
1131 1 = enable DI1 trigger
1132
1133 0 = disable DI1 trigger
1134
1135 **DI2 _trigger**
1136
1137 1 = enable DI2 trigger
1138
1139 0 = disable DI2 trigger
1140 )))
1141 |(% style="width:98px" %)**Example**|(% style="width:400px" %)(((
1142 AT+DTRI=1,0
1143
1144 Enable DI1 trigger, disable DI2 trigger
1145 )))
1146
1147 (% class="wikigeneratedid" %)
1148 (% style="color:#037691" %)**Downlink Payload**
1149
1150 (% border="2" style="width:500px" %)
1151 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix><DI1_trigger><DI2_trigger>
1152 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1153 **prefix :** AA 02 (two bytes in hexadecimal)
1154
1155 **DI1_trigger:**
1156
1157 1 = enable DI1 trigger, represented by 1 byte in hexadecimal.
1158
1159 0 = disable DI1 trigger, represented by 1 byte in hexadecimal.
1160
1161 **DI2 _trigger**
1162
1163 1 = enable DI2 trigger, represented by 1 byte in hexadecimal.
1164
1165 0 = disable DI2 trigger, represented by 1 byte in hexadecimal.
1166 )))
1167 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1168 AA 02 **01 00**
1169
1170 Enable DI1 trigger, disable DI2 trigger
1171 )))
1172
1173 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as a trigger ====
1174
1175
1176 Sets DI1 or DI3 (for LT-33222-L) as a trigger.
1177
1178 (% style="color:#037691" %)**AT Command**
1179
1180 (% border="2" style="width:500px" %)
1181 |(% style="width:101px" %)**Command**|(% style="width:397px" %)AT+TRIG1=<interrupt_mode>,<minimum_signal_duration>
1182 |(% style="width:101px" %)**Response**|(% style="width:397px" %)
1183 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1184 **interrupt_mode** :  0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
1185
1186 **minimum_signal_duration** : the **minimum signal duration** required for the DI1 port to recognize a valid trigger.
1187 )))
1188 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1189 AT+TRIG1=1,100
1190
1191 Set the DI1 port to trigger on a rising edge; the valid signal duration is 100 ms.
1192 )))
1193
1194 (% class="wikigeneratedid" %)
1195 (% style="color:#037691" %)**Downlink Payload**
1196
1197 (% border="2" style="width:500px" %)
1198 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix><interrupt_mode><minimum_signal_duration>
1199 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1200 **prefix** : 09 01 (hexadecimal)
1201
1202 **interrupt_mode** : 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1), represented by 1 byte in hexadecimal.
1203
1204 **minimum_signal_duration** : in milliseconds, represented two bytes in hexadecimal.
1205 )))
1206 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1207 09 01 **01 00 64**
1208
1209 Set the DI1 port to trigger on a rising edge; the valid signal duration is 100 ms.
1210 )))
1211
1212 ==== 3.4.2.8 Trigger2 – Set DI2 as a trigger ====
1213
1214
1215 Sets DI2 as a trigger.
1216
1217 (% style="color:#037691" %)**AT Command**
1218
1219 (% border="2" style="width:500px" %)
1220 |(% style="width:94px" %)**Command**|(% style="width:404px" %)AT+TRIG2=<interrupt_mode>,<minimum_signal_duration>
1221 |(% style="width:94px" %)**Response**|(% style="width:404px" %)
1222 |(% style="width:94px" %)**Parameters**|(% style="width:404px" %)(((
1223 **interrupt_mode **:  0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
1224
1225 **minimum_signal_duration** : the **minimum signal duration** required for the DI1 port to recognize a valid trigger.
1226 )))
1227 |(% style="width:94px" %)**Example**|(% style="width:404px" %)(((
1228 AT+TRIG2=0,100
1229
1230 Set the DI1 port to trigger on a falling edge; the valid signal duration is 100 ms.
1231 )))
1232
1233 (% style="color:#037691" %)**Downlink Payload**
1234
1235 (% border="2" style="width:500px" %)
1236 |(% style="width:96px" %)**Payload**|(% style="width:402px" %)<prefix><interrupt_mode><minimum_signal_duration>
1237 |(% style="width:96px" %)**Parameters**|(% style="width:402px" %)(((
1238 **prefix** : 09 02 (hexadecimal)
1239
1240 **interrupt_mode **: 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1), represented by 1 byte in hexadecimal.
1241
1242 **minimum_signal_duration** : in milliseconds, represented two bytes in hexadecimal
1243 )))
1244 |(% style="width:96px" %)**Example**|(% style="width:402px" %)09 02 **00 00 64**
1245
1246 ==== 3.4.2.9 Trigger – Set AC (current) as a trigger ====
1247
1248
1249 Sets the current trigger based on the AC port. See also [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D628TriggerMode2COptional29"]]
1250
1251 (% style="color:#037691" %)**AT Command**
1252
1253 (% border="2" style="width:500px" %)
1254 |(% style="width:104px" %)**Command**|(% style="width:394px" %)(((
1255 AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
1256 )))
1257 |(% style="width:104px" %)**Response**|(% style="width:394px" %)
1258 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1259 **AC1_LIMIT_LOW** : lower limit of the current to be checked
1260
1261 **AC1_LIMIT_HIGH **: higher limit of the current to be checked
1262
1263 **AC2_LIMIT_HIGH **: lower limit of the current to be checked
1264
1265 **AC2_LIMIT_LOW** : higher limit of the current to be checked
1266 )))
1267 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1268 AT+ACLIM=10000,15000,0,0
1269
1270 Triggers an uplink if AC1 current is lower than 10mA or higher than 15mA
1271 )))
1272 |(% style="width:104px" %)Note|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D628TriggerMode2COptional29"]]
1273
1274 (% style="color:#037691" %)**Downlink Payload**
1275
1276 (% border="2" style="width:500px" %)
1277 |(% style="width:104px" %)**Payload**|(% style="width:394px" %)<prefix><AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
1278 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1279 **prefix **: AA 01 (hexadecimal)
1280
1281 **AC1_LIMIT_LOW** : lower limit of the current to be checked, two bytes in hexadecimal
1282
1283 **AC1_LIMIT_HIGH **: higher limit of the current to be checked, two bytes in hexadecimal
1284
1285 **AC2_LIMIT_HIGH **: lower limit of the current to be checked, two bytes in hexadecimal
1286
1287 **AC2_LIMIT_LOW** : higher limit of the current to be checked, two bytes in hexadecimal
1288 )))
1289 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1290 AA 01 **27** **10 3A** **98** 00 00 00 00
1291
1292 Triggers an uplink if AC1 current is lower than 10mA or higher than 15mA. Set all values to zero for AC2 limits because we are only checking AC1 limits.
1293 )))
1294 |(% style="width:104px" %)Note|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D628TriggerMode2COptional29"]]
1295
1296 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
1297
1298
1299 Sets the current trigger based on the AV port. See also [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D628TriggerMode2COptional29"]]
1300
1301 (% style="color:#037691" %)**AT Command**
1302
1303 (% border="2" style="width:500px" %)
1304 |(% style="width:104px" %)**Command**|(% style="width:387px" %)AT+AVLIM= AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
1305 |(% style="width:104px" %)**Response**|(% style="width:387px" %)
1306 |(% style="width:104px" %)**Parameters**|(% style="width:387px" %)(((
1307 **AC1_LIMIT_LOW** : lower limit of the current to be checked
1308
1309 **AC1_LIMIT_HIGH **: higher limit of the current to be checked
1310
1311 **AC2_LIMIT_HIGH **: lower limit of the current to be checked
1312
1313 **AC2_LIMIT_LOW** : higher limit of the current to be checked
1314 )))
1315 |(% style="width:104px" %)**Example**|(% style="width:387px" %)(((
1316 AT+AVLIM=3000,6000,0,2000
1317
1318 Triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V
1319 )))
1320 |(% style="width:104px" %)**Note**|(% style="width:387px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D628TriggerMode2COptional29"]]
1321
1322 (% style="color:#037691" %)**Downlink Payload**
1323
1324 (% border="2" style="width:500px" %)
1325 |(% style="width:104px" %)**Payload**|(% style="width:394px" %)<prefix><AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
1326 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1327 **prefix **: AA 00 (hexadecimal)
1328
1329 **AV1_LIMIT_LOW** : lower limit of the voltage to be checked, two bytes in hexadecimal
1330
1331 **AV1_LIMIT_HIGH **: higher limit of the voltage to be checked, two bytes in hexadecimal
1332
1333 **AV2_LIMIT_HIGH **: lower limit of the voltage to be checked, two bytes in hexadecimal
1334
1335 **AV2_LIMIT_LOW** : higher limit of the voltage to be checked, two bytes in hexadecimal
1336 )))
1337 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1338 AA 00 **0B B8 17 70 00 00 07 D0**
1339
1340 Triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V.
1341 )))
1342 |(% style="width:104px" %)**Note**|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D628TriggerMode2COptional29"]]
1343
1344 ==== 3.4.2.11 Trigger – Set the minimum interval ====
1345
1346
1347 Sets the AV and AC trigger minimum interval. The device won't respond to a second trigger within this set time after the first trigger.
1348
1349 (% style="color:#037691" %)**AT Command**
1350
1351 (% border="2" style="width:500px" %)
1352 |(% style="width:113px" %)**Command**|(% style="width:385px" %)AT+ATDC=<time>
1353 |(% style="width:113px" %)**Response**|(% style="width:385px" %)
1354 |(% style="width:113px" %)**Parameters**|(% style="width:385px" %)(((
1355 **time** : in minutes
1356 )))
1357 |(% style="width:113px" %)**Example**|(% style="width:385px" %)(((
1358 AT+ATDC=5
1359
1360 The device won't respond to the second trigger within 5 minutes after the first trigger.
1361 )))
1362 |(% style="width:113px" %)**Note**|(% style="width:385px" %)(% style="color:red" %)**The time must be greater than 5 minutes.**
1363
1364 (% style="color:#037691" %)**Downlink Payload**
1365
1366 (% border="2" style="width:500px" %)
1367 |(% style="width:112px" %)**Payload**|(% style="width:386px" %)<prefix><time>
1368 |(% style="width:112px" %)**Parameters**|(% style="width:386px" %)(((
1369 **prefix** : AC (hexadecimal)
1370
1371 **time **: in minutes (two bytes in hexadecimal)
1372 )))
1373 |(% style="width:112px" %)**Example**|(% style="width:386px" %)(((
1374 AC **00 05**
1375
1376 The device won't respond to the second trigger within 5 minutes after the first trigger.
1377 )))
1378 |(% style="width:112px" %)**Note**|(% style="width:386px" %)(% style="color:red" %)**The time must be greater than 5 minutes.**
1379
1380 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1381
1382
1383 Controls the digital outputs DO1, DO2, and DO3
1384
1385 (% style="color:#037691" %)**AT Command**
1386
1387 There is no AT Command to control the Digital Output.
1388
1389
1390 (% style="color:#037691" %)**Downlink Payload**
1391
1392 (% border="2" style="width:500px" %)
1393 |(% style="width:115px" %)**Payload**|(% style="width:383px" %)<prefix><DO1><DO2><DO3>
1394 |(% style="width:115px" %)**Parameters**|(% style="width:383px" %)(((
1395 **prefix** : 02 (hexadecimal)
1396
1397 **DOI** : 01: Low,  00: High, 11: No action (1 byte in hex)
1398
1399 **DO2** : 01: Low,  00: High, 11: No action (1 byte in hex)
1400
1401 **DO3 **: 01: Low,  00: High, 11: No action (1 byte in hex)
1402 )))
1403 |(% style="width:115px" %)**Examples**|(% style="width:383px" %)(((
1404 02 **01 00 01**
1405
1406 If there is a load between V+ and DOx, it means DO1 is set to low, DO2 is set to high, and DO3 is set to low.
1407
1408 **More examples:**
1409
1410 (((
1411 01: Low,  00: High,  11: No action
1412
1413 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:383px" %)
1414 |(% style="background-color:#4f81bd; color:white; width:126px" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white; width:85px" %)**DO1**|(% style="background-color:#4f81bd; color:white; width:86px" %)**DO2**|(% style="background-color:#4f81bd; color:white; width:86px" %)**DO3**
1415 |(% style="width:126px" %)02  01  00  11|(% style="width:85px" %)Low|(% style="width:86px" %)High|(% style="width:86px" %)No Action
1416 |(% style="width:126px" %)02  00  11  01|(% style="width:85px" %)High|(% style="width:86px" %)No Action|(% style="width:86px" %)Low
1417 |(% style="width:126px" %)02  11  01  00|(% style="width:85px" %)No Action|(% style="width:86px" %)Low|(% style="width:86px" %)High
1418 )))
1419
1420 (((
1421 (((
1422 (% style="color:red" %)**Note: For the LT-22222-L, there is no DO3; the last byte can have any value.**
1423 )))
1424
1425 (((
1426 (% style="color:red" %)**The device will upload a packet if downlink code executes successfully.**
1427 )))
1428 )))
1429 )))
1430
1431 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1432
1433
1434 (% style="color:#037691" %)**AT command**
1435
1436 There is no AT command to control the digital output.
1437
1438
1439 (% style="color:#037691" %)**Downlink payload**
1440
1441 (% border="2" style="width:500px" %)
1442 |(% style="width:116px" %)**Prefix**|(% style="width:382px" %)0xA9
1443 |(% style="width:116px" %)**Parameters**|(% style="width:382px" %)(((
1444 **inverter_mode**: 1 byte in hex.
1445
1446 **01:** DO pins revert to their original state after the timeout.
1447 **00:** DO pins switch to an inverted state after the timeout.
1448
1449
1450 **DO1_control_method_and_port_status **- 1 byte in hex
1451
1452 0x01 : DO1 set to low
1453
1454 0x00 : DO1 set to high
1455
1456 0x11 : DO1 NO action
1457
1458
1459 **DO2_control_method_and_port_status** - 1 byte in hex
1460
1461 0x01 : DO2 set to low
1462
1463 0x00 : DO2 set to high
1464
1465 0x11 : DO2 NO action
1466
1467
1468 **DO3_control_method_and_port_status **- 1 byte in hex
1469
1470 0x01 : DO3 set to low
1471
1472 0x00 : DO3 set to high
1473
1474 0x11 : DO3 NO action
1475
1476
1477 **latching_time** : 4 bytes in hex
1478
1479 (% style="color:red" %)**Note: **
1480
1481 Since firmware v1.6.0, the latch time supports 4 bytes or 2 bytes
1482
1483 Before firmware v1.6.0, the latch time only supported 2 bytes.
1484
1485 (% style="color:red" %)**The device will uplink a packet if the downlink code executes successfully.**
1486 )))
1487 |(% style="width:116px" %)**Payload format**|(% style="width:382px" %)<prefix><inverter_mode><DO1_control_method_and_port_status><DO2_control_method_and_port_status><DO2_control_method_and_port_status><latching_time>
1488 |(% style="width:116px" %)**Example**|(% style="width:382px" %)(((
1489 **A9 01 01 01 01 07 D0**
1490
1491 DO1 pin, DO2 pin, and DO3 pin will be set to low, last for 2 seconds, and then revert to their original state.
1492
1493
1494 **A9 01 00 01 11 07 D0**
1495
1496 DO1 pin is set to high, DO2 pin is set to low, and DO3 pin takes no action. This lasts for 2 seconds and then reverts to the original state.
1497
1498
1499 **A9 00 00 00 00 07 D0**
1500
1501 DO1 pin, DO2 pin, and DO3 pin will be set to high, last for 2 seconds, and then all change to low.
1502
1503
1504 **A9 00 11 01 00 07 D0**
1505
1506 DO1 pin takes no action, DO2 pin is set to low, and DO3 pin is set to high. This lasts for 2 seconds, after which the DO1 pin takes no action, the DO2 pin is set to high, and the DO3 pin is set to low.
1507 )))
1508
1509 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1510
1511
1512 (% style="color:#037691" %)**AT Command:**
1513
1514 There is no AT Command to control the Relay Output.
1515
1516
1517 (% style="color:#037691" %)**Downlink Payload**
1518
1519 (% border="2" style="width:500px" %)
1520 |(% style="width:113px" %)**Prefix**|(% style="width:384px" %)0x03
1521 |(% style="width:113px" %)**Parameters**|(% style="width:384px" %)(((
1522 **RO1_status** : 1 byte in hex
1523
1524 00: Open
1525
1526 01: Close
1527
1528 11: No action
1529
1530
1531 **RO2_status** : 1 byte in hex
1532
1533 00: Open
1534
1535 01: Close
1536
1537 11: No action
1538 )))
1539 |(% style="width:113px" %)**Payload format**|(% style="width:384px" %)<prefix><RO1_status><RO2_status>
1540 |(% style="width:113px" %)**Example**|(% style="width:384px" %)(((
1541 (% border="2" %)
1542 |=Payload|=RO1|=RO2
1543 |03  00  11|Open|No action
1544 |03  01  11|Close|No action
1545 |03 11  00|No action|Open
1546 |03 11  01|No action|Close
1547 |03 00 00|Open|Open
1548 |03 01 01|Close|Close
1549 |03 01 00|Close|Open
1550 |03 00 01|Open|Close
1551
1552 (% style="color:red" %)**The device will transmit an uplink packet if the downlink payload is executed successfully.**
1553 )))
1554
1555 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1556
1557
1558 Controls the relay output time.
1559
1560
1561 (% style="color:#037691" %)**AT Command:**
1562
1563 There is no AT Command to control the Relay Output
1564
1565
1566 (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1567
1568 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Sets RO1/RO2 relays with time control
1569
1570
1571 This controls the relay output time and includes 4 bytes:
1572
1573 (% style="color:#4f81bd" %)**First byte **(%%)**:** Type code (0x05)
1574
1575 (% style="color:#4f81bd" %)**Second byte (aa)**(%%): Inverter Mode
1576
1577 01: Relays will change back to their original state after a timeout.
1578
1579 00: Relays will change to the inverter state after a timeout.
1580
1581
1582 (% style="color:#4f81bd" %)**Third byte (bb)**(%%): Control Method and Ports status:
1583
1584 [[image:image-20221008095908-1.png]]
1585
1586
1587 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh bytes (cc)**(%%): Latching time. Unit: ms
1588
1589
1590 (% style="color:red" %)**Note:**
1591
1592 Since firmware v1.6.0, the latch time supports both 4 bytes and 2 bytes.
1593
1594 Before firmware v1.6.0, the latch time only supported 2 bytes.
1595
1596
1597 (% style="color:red" %)**The device will uplink a packet if the downlink code executes successfully.**
1598
1599
1600 **Example payload:**
1601
1602 **~1. 05 01 11 07 D0**
1603
1604 Relay1 and Relay2 will be set to NC, lasting 2 seconds, then revert to their original state
1605
1606 **2. 05 01 10 07 D0**
1607
1608 Relay1 will change to NC, Relay2 will change to NO, lasting 2 seconds, and then both will revert to their original state.
1609
1610 **3. 05 00 01 07 D0**
1611
1612 Relay1 will change to NO, Relay2 will change to NC, lasting 2 seconds, then Relay1 will change to NC, and Relay2 will change to NO.
1613
1614 **4. 05 00 00 07 D0**
1615
1616 Relay1 and Relay2 will change to NO, lasting 2 seconds, then both will change to NC.
1617
1618
1619
1620 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1621
1622
1623 When the voltage exceeds the threshold, counting begins. For details, see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1624
1625 (% style="color:#037691" %)**AT Command**
1626
1627 (% border="2" style="width:500px" %)
1628 |(% style="width:137px" %)**Command**|(% style="width:361px" %)AT+VOLMAX=<voltage>,<logic>
1629 |(% style="width:137px" %)**Response**|(% style="width:361px" %)
1630 |(% style="width:137px" %)**Parameters**|(% style="width:361px" %)(((
1631 **voltage** : voltage threshold in mV
1632
1633 **logic**:
1634
1635 **0** : lower than
1636
1637 **1**: higher than
1638
1639 if you leave the logic parameter blank, it is considered 0
1640 )))
1641 |(% style="width:137px" %)**Examples**|(% style="width:361px" %)(((
1642 AT+VOLMAX=20000
1643
1644 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1645
1646 AT+VOLMAX=20000,0
1647
1648 If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1
1649
1650 AT+VOLMAX=20000,1
1651
1652 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1653 )))
1654
1655 (% style="color:#037691" %)**Downlink Payload**
1656
1657 (% border="2" style="width:500px" %)
1658 |(% style="width:140px" %)**Payload**|(% style="width:358px" %)<prefix><voltage><logic>
1659 |(% style="width:140px" %)**Parameters**|(% style="width:358px" %)(((
1660 **prefix** : A5 (hex)
1661
1662 **voltage** : voltage threshold in mV (2 bytes in hex)
1663
1664 **logic**: (1 byte in hexadecimal)
1665
1666 **0** : lower than
1667
1668 **1**: higher than
1669
1670 if you leave the logic parameter blank, it is considered 1 (higher than)
1671 )))
1672 |(% style="width:140px" %)**Example**|(% style="width:358px" %)(((
1673 A5 **4E 20**
1674
1675 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1676
1677 A5 **4E 20 00**
1678
1679 If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1
1680
1681 A5 **4E 20 01**
1682
1683 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1684 )))
1685
1686 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1687
1688
1689 This command allows users to pre-configure specific count numbers for various counting parameters such as Count1, Count2, or AVI1 Count. Use the AT command to set the desired count number for each configuration.
1690
1691 (% style="color:#037691" %)**AT Command**
1692
1693 (% border="2" style="width:500px" %)
1694 |(% style="width:134px" %)**Command**|(% style="width:364px" %)AT+SETCNT=<counting_parameter>,<number>
1695 |(% style="width:134px" %)**Response**|(% style="width:364px" %)
1696 |(% style="width:134px" %)**Parameters**|(% style="width:364px" %)(((
1697 **counting_parameter** :
1698
1699 1: COUNT1
1700
1701 2: COUNT2
1702
1703 3: AVI1 Count
1704
1705 **number** : Start number
1706 )))
1707 |(% style="width:134px" %)**Example**|(% style="width:364px" %)(((
1708 AT+SETCNT=1,10
1709
1710 Sets the COUNT1 to 10.
1711 )))
1712
1713 (% style="color:#037691" %)**Downlink Payload**
1714
1715 (% border="2" style="width:500px" %)
1716 |(% style="width:135px" %)**Payload**|(% style="width:363px" %)<prefix><counting_parameter><number>
1717 |(% style="width:135px" %)**Parameters**|(% style="width:363px" %)(((
1718 prefix : A8 (hex)
1719
1720 **counting_parameter** : (1 byte in hexadecimal)
1721
1722 1: COUNT1
1723
1724 2: COUNT2
1725
1726 3: AVI1 Count
1727
1728 **number** : Start number, 4 bytes in hexadecimal
1729 )))
1730 |(% style="width:135px" %)**Example**|(% style="width:363px" %)(((
1731 A8 **01 00 00 00 0A**
1732
1733 Sets the COUNT1 to 10.
1734 )))
1735
1736 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1737
1738
1739 This command clears the counting in counting mode.
1740
1741 (% style="color:#037691" %)**AT Command**
1742
1743 (% border="2" style="width:500px" %)
1744 |(% style="width:142px" %)**Command**|(% style="width:356px" %)AT+CLRCOUNT
1745 |(% style="width:142px" %)**Response**|(% style="width:356px" %)-
1746
1747 (% style="color:#037691" %)**Downlink Payload**
1748
1749 (% border="2" style="width:500px" %)
1750 |(% style="width:141px" %)**Payload**|(% style="width:357px" %)<prefix><clear?>
1751 |(% style="width:141px" %)**Parameters**|(% style="width:357px" %)(((
1752 prefix : A6 (hex)
1753
1754 clear? : 01 (hex)
1755 )))
1756 |(% style="width:141px" %)**Example**|(% style="width:357px" %)A6 **01**
1757
1758 ==== 3.4.2.19 Set the save intervals of the counting results, RO (Relay Output), and DO (Digital Output) states ====
1759
1760 This command configures the device to periodically save the counting results, RO (Relay Output), and DO (Digital Output) states to internal flash memory at a user-defined interval. By setting a save interval, the device ensures that critical data (counting values and output states) is preserved in case of power loss.
1761 The save interval can be adjusted to the user's needs, with a minimum value of (% style="color:blue" %)**30**(%%) seconds.
1762 The saved RO/DO states can be restored after a device reset by combining this function with the (% style="color:blue" %)**AT+RODORESET**(%%) command.
1763
1764 (% style="color:#037691" %)**AT Command**
1765
1766 (% border="2" style="width:500px" %)
1767 |(% style="width:124px" %)**Command**|(% style="width:374px" %)AT+COUTIME=<time>
1768 |(% style="width:124px" %)**Response**|(% style="width:374px" %)
1769 |(% style="width:124px" %)**Parameters**|(% style="width:374px" %)time : seconds (0 to 16777215)
1770 |(% style="width:124px" %)**Example**|(% style="width:374px" %)(((
1771 AT+COUTIME=60
1772
1773 Sets the device to save its counting results, RO and DO states to the memory every 60 seconds.
1774 )))
1775
1776 (% style="color:#037691" %)**Downlink Payload**
1777
1778 (% border="2" style="width:500px" %)
1779 |(% style="width:123px" %)**Payload**|(% style="width:375px" %)<prefix><time>
1780 |(% style="width:123px" %)**Parameters**|(% style="width:375px" %)(((
1781 prefix : A7
1782
1783 time : seconds, 3 bytes in hexadecimal
1784 )))
1785 |(% style="width:123px" %)**Example**|(% style="width:375px" %)(((
1786 A7 **00 00 3C**
1787
1788 SSets the device to save its counting results, RO and DO states to the memory every 60 seconds.
1789 )))
1790
1791 ==== 3.4.2.20 Reset saved RO and DO states ====
1792
1793
1794 This command allows you to reset the saved relay output (RO) and digital output (DO) states when the device joins the network. By configuring this setting, you can control whether the device should retain or reset the relay states after a reset and rejoin to the network.
1795
1796 (% style="color:#037691" %)**AT Command**
1797
1798 (% border="2" style="width:500px" %)
1799 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+RODORESET=<state>
1800 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1801 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1802 **state** :
1803
1804 **0** : RODO will close when the device joins the network. (default)
1805
1806 **1**: After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1807 )))
1808 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1809 (% style="color:blue" %)**AT+RODORESET=1 **
1810
1811 RODO will close when the device joins the network. (default)
1812
1813 (% style="color:blue" %)**AT+RODORESET=0 **
1814
1815 After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1816 )))
1817
1818 (% style="color:#037691" %)**Downlink Payload**
1819
1820 (% border="2" style="width:500px" %)
1821 |(% style="width:127px" %)**Payload**|(% style="width:371px" %)<prefix><state>
1822 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1823 **prefix** : AD
1824
1825 **state** :
1826
1827 **0** : RODO will close when the device joins the network. (default), represents as 1 byte in hexadecimal.
1828
1829 **1**: After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network. - represents as 1 byte in hexadecimal
1830 )))
1831 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1832 AD **01**
1833
1834 RODO will close when the device joins the network. (default)
1835
1836 AD **00**
1837
1838 After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1839 )))
1840
1841 ==== 3.4.2.21 Encrypted payload ====
1842
1843
1844 This command allows you to configure whether the device should upload data in an encrypted format or in plaintext. By default, the device encrypts the payload before uploading. You can toggle this setting to either upload encrypted data or transmit it without encryption.
1845
1846 (% style="color:#037691" %)**AT Command:**
1847
1848 (% border="2" style="width:500px" %)
1849 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+DECRYPT=<state>
1850 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1851 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1852 **state** :
1853
1854 **1** : The payload is uploaded without encryption
1855
1856 **0** : The payload is encrypted when uploaded (default)
1857 )))
1858 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1859 AT+DECRYPT=1
1860
1861 The payload is uploaded without encryption
1862
1863 AT+DECRYPT=0
1864
1865 The payload is encrypted when uploaded (default)
1866 )))
1867
1868 There is no downlink payload for this configuration.
1869
1870
1871 ==== 3.4.2.22 Get sensor value ====
1872
1873
1874 This command allows you to retrieve and optionally uplink sensor readings through the serial port.
1875
1876 (% style="color:#037691" %)**AT Command**
1877
1878 (% border="2" style="width:500px" %)
1879 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+GETSENSORVALUE=<state>
1880 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1881 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1882 **state** :
1883
1884 **0 **: Retrieves the current sensor reading via the serial port.
1885
1886 **1 **: Retrieves and uploads the current sensor reading via the serial port.
1887 )))
1888 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1889 AT+GETSENSORVALUE=0
1890
1891 Retrieves the current sensor reading via the serial port.
1892
1893 AT+GETSENSORVALUE=1
1894
1895 Retrieves and uplinks the current sensor reading via the serial port.
1896 )))
1897
1898 There is no downlink payload for this configuration.
1899
1900
1901 ==== 3.4.2.23 Resetting the downlink packet count ====
1902
1903
1904 This command manages how the node handles mismatched downlink packet counts. It offers two modes: one disables the reception of further downlink packets if discrepancies occur, while the other resets the downlink packet count to align with the server, ensuring continued communication.
1905
1906 (% style="color:#037691" %)**AT Command**
1907
1908 (% border="2" style="width:500px" %)
1909 |(% style="width:130px" %)**Command**|(% style="width:368px" %)AT+DISFCNTCHECK=<state>
1910 |(% style="width:130px" %)**Response**|(% style="width:368px" %)(((
1911
1912 )))
1913 |(% style="width:130px" %)**Parameters**|(% style="width:368px" %)(((
1914 **state **:
1915
1916 **0** : When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node stops receiving further downlink packets (default).
1917
1918
1919 **1** : When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node resets its downlink packet count to match the server's, ensuring consistency.
1920 )))
1921 |(% style="width:130px" %)**Example**|(% style="width:368px" %)(((
1922 AT+DISFCNTCHECK=0
1923
1924 When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node stops receiving further downlink packets (default).
1925
1926 AT+DISFCNTCHECK=1
1927
1928 When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node resets its downlink packet count to match the server's, ensuring consistency.
1929 )))
1930
1931 There is no downlink payload for this configuration.
1932
1933
1934 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1935
1936
1937 This command controls the behavior of the node when the combined size of the MAC commands (MACANS) from the server and the payload exceed the allowed byte limit for the current data rate (DR). The command provides two modes: one enables splitting the data into batches to ensure compliance with the byte limit, while the other prioritizes the payload and ignores the MACANS in cases of overflow.
1938
1939 (% style="color:#037691" %)**AT Command**
1940
1941 (% border="2" style="width:500px" %)
1942 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+DISMACANS=<state>
1943 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1944 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1945 **state** :
1946
1947 **0** : When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1948
1949 **1** : When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1950 )))
1951 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1952 AT+DISMACANS=0
1953
1954 When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1955
1956 AT+DISMACANS=1
1957
1958 When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1959 )))
1960
1961 (% style="color:#037691" %)**Downlink Payload**
1962
1963 (% border="2" style="width:500px" %)
1964 |(% style="width:126px" %)**Payload**|(% style="width:372px" %)<prefix><state>
1965 |(% style="width:126px" %)**Parameters**|(% style="width:372px" %)(((
1966 **prefix** : 21
1967
1968 **state** : (2 bytes in hexadecimal)
1969
1970 **0** : When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1971
1972 **1 **: When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1973 )))
1974 |(% style="width:126px" %)**Example**|(% style="width:372px" %)(((
1975 21 **00 01**
1976
1977 Set DISMACANS=1
1978 )))
1979
1980 ==== 3.4.2.25 Copy downlink to uplink ====
1981
1982
1983 This command enables the device to immediately uplink the payload of a received downlink packet back to the server. The command allows for quick data replication from downlink to uplink, with a fixed port number of 100.
1984
1985 (% style="color:#037691" %)**AT Command**(%%)**:**
1986
1987 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving a downlink payload from the server, the device will immediately uplink the payload back to the server using port number 100.
1988
1989 Example:**aa xx xx xx xx**         ~/~/ **aa** indicates whether the configuration has changed: **00** means YES, and **01** means NO. **xx xx xx xx** are the bytes uplinked back.
1990
1991
1992 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1993
1994 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1995
1996 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1997
1998 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1999
2000
2001 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
2002
2003 There is no downlink option available for this feature.
2004
2005
2006 ==== 3.4.2.26 Query firmware version, frequency band, subband, and TDC time ====
2007
2008
2009 This command is used to query key information about the device, including its firmware version, frequency band, subband, and TDC time. By sending the specified payload as a downlink, the server can retrieve this essential data from the device.
2010
2011 * (((
2012 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
2013
2014 (% style="color:blue" %)**26 01  ** (%%) ~/~/  The downlink payload 26 01 is used to query the device's firmware version, frequency band, subband, and TDC time.
2015
2016
2017 )))
2018
2019 **Example:**
2020
2021 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
2022
2023
2024 == 3.5 Integrating with ThingsEye.io ==
2025
2026
2027 The Things Stack application supports integration with ThingsEye.io. Once integrated, ThingsEye.io acts as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
2028
2029
2030 === 3.5.1 Configuring The Things Stack ===
2031
2032
2033 We use The Things Stack Sandbox in this example:
2034
2035 * In **The Things Stack Sandbox**, go to the **Application **for the LT-22222-LA you added.
2036 * Select **MQTT** under **Integrations** in the left menu.
2037 * In the **Connection information **section, under **Connection credentials**, The Things Stack displays an auto-generated **username**. You can use it or provide a new one.
2038 * Click the **Generate new API key** button to generate a password. You can view it by clicking on the **visibility toggle/eye** icon. The API key works as the password.
2039
2040 {{info}}
2041 The username and  password (API key) you created here are required in the next section.
2042 {{/info}}
2043
2044 [[image:tts-mqtt-integration.png]]
2045
2046
2047 === 3.5.2 Configuring ThingsEye.io ===
2048
2049
2050 The ThingsEye.io IoT platform is not open for self-registration at the moment. If you are interested in testing the platform, please send your project information to admin@thingseye.io, and we will create an account for you.
2051
2052 * Login to your [[ThingsEye.io >>https://thingseye.io]]account.
2053 * Under the **Integrations center**, click **Integrations**.
2054 * Click the **Add integration** button (the button with the **+** symbol).
2055
2056 [[image:thingseye-io-step-1.png]]
2057
2058
2059 On the **Add integration** window, configure the following:
2060
2061 **Basic settings:**
2062
2063 * Select **The Things Stack Community** from the **Integration type** list.
2064 * Enter a suitable name for your integration in the **Name **text** **box or keep the default name.
2065 * Ensure the following options are turned on.
2066 ** Enable integration
2067 ** Debug mode
2068 ** Allow creating devices or assets
2069 * Click the **Next** button. you will be navigated to the **Uplink data converter** tab.
2070
2071 [[image:thingseye-io-step-2.png]]
2072
2073
2074 **Uplink data converter:**
2075
2076 * Click the **Create new** button if it is not selected by default.
2077 * Enter a suitable name for the uplink data converter in the **Name **text** **box or keep the default name.
2078 * Click the **JavaScript** button.
2079 * Paste the uplink decoder function into the text area (first, delete the default code). The demo uplink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]].
2080 * Click the **Next** button. You will be navigated to the **Downlink data converter **tab.
2081
2082 [[image:thingseye-io-step-3.png]]
2083
2084
2085 **Downlink data converter (this is an optional step):**
2086
2087 * Click the **Create new** button if it is not selected by default.
2088 * Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name.
2089 * Click the **JavaScript** button.
2090 * Paste the downlink decoder function into the text area (first, delete the default code). The demo downlink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Downlink_Converter.js]].
2091 * Click the **Next** button. You will be navigated to the **Connection** tab.
2092
2093 [[image:thingseye-io-step-4.png]]
2094
2095
2096 **Connection:**
2097
2098 * Choose **Region** from the **Host type**.
2099 * Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...).
2100 * Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The **username **and **password **can be found on the MQTT integration page of your The Things Stack account (see **3.5.1 Configuring The Things Stack**).
2101 * Click the **Check connection** button to test the connection. If the connection is successful, you will see the message saying **Connected**.
2102
2103 [[image:message-1.png]]
2104
2105
2106 * Click the **Add** button.
2107
2108 [[image:thingseye-io-step-5.png]]
2109
2110
2111 Your integration has been added to the** Integrations** list and will be displayed on the **Integrations** page. Check whether the status is shown as **Active**. If not, review your configuration settings and correct any errors.
2112
2113 [[image:thingseye.io_integrationsCenter_integrations.png]]
2114
2115
2116 ==== 3.5.2.1 Viewing integration details ====
2117
2118
2119 Click on your integration from the list. The **Integration details** window will appear with the **Details **tab selected. The **Details **tab shows all the settings you have provided for this integration.
2120
2121 [[image:integration-details.png]]
2122
2123
2124 If you want to edit the settings you have provided, click on the **Toggle edit mode** button. Once you have done click on the **Apply changes **button.
2125
2126 {{info}}
2127 See also [[ThingsEye documentation>>https://wiki.thingseye.io/xwiki/bin/view/Main/]].
2128 {{/info}}
2129
2130
2131 ==== 3.5.2.2 Viewing events ====
2132
2133
2134 The **Events **tab displays all the uplink messages from the LT-22222-L.
2135
2136 * Select **Debug **from the **Event type** dropdown.
2137 * Select the** time frame** from the **time window**.
2138
2139 [[image:thingseye-events.png]]
2140
2141
2142 * To view the **JSON payload** of a message, click on the **three dots (...)** in the **Message** column of the desired message.
2143
2144 [[image:thingseye-json.png]]
2145
2146
2147 ==== 3.5.2.3 Deleting an integration ====
2148
2149
2150 If you want to delete an integration, click the **Delete integratio**n button on the Integrations page.
2151
2152
2153 ==== 3.5.2.4 Viewing sensor data on a dashboard ====
2154
2155
2156 You can create a dashboard with ThingsEye to visualize the sensor data coming from the LT-22222-LA. The following image shows a dashboard created for the LT-22222-LA. See **Creating a dashboard** in ThingsEye documentation for more information.
2157
2158 [[image:lt-22222-l-dashboard.png]]
2159
2160
2161 == 3.6 Interface Details ==
2162
2163 === 3.6.1 Digital Input Ports: DI1/DI2/DI3 (For LT-33222-L, Low Active) ===
2164
2165
2166 Supports** NPN-type **sensors.
2167
2168 [[image:1653356991268-289.png]]
2169
2170
2171 === 3.6.2 Digital Input Ports: DI1/DI2 ===
2172
2173
2174 (((
2175 The DI ports of the LT-22222-LA can support **NPN**, **PNP**, or **dry contact** output sensors.
2176 )))
2177
2178 (((
2179 (((
2180 The part of the internal circuit of the LT-22222-LA shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
2181
2182 [[image:1653357170703-587.png]]
2183 )))
2184 )))
2185
2186
2187 (((
2188 (((
2189 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
2190 )))
2191 )))
2192
2193 (((
2194
2195 )))
2196
2197 (((
2198 (% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
2199 )))
2200
2201 (((
2202 This type of sensor outputs a low (GND) signal when active.
2203 )))
2204
2205 * (((
2206 Connect the sensor's output to DI1-
2207 )))
2208 * (((
2209 Connect the sensor's VCC to DI1+.
2210 )))
2211
2212 (((
2213 When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be:
2214 )))
2215
2216 (((
2217 **= DI1**+** / 1K.**
2218 )))
2219
2220 (((
2221 For example, if** DI1+ **= **12V**, the resulting current is = 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
2222 )))
2223
2224 (((
2225
2226 )))
2227
2228 (((
2229 (% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
2230 )))
2231
2232 (((
2233 This type of sensor outputs a high signal (e.g., 24V) when active.
2234 )))
2235
2236 * (((
2237 Connect the sensor's output to DI1+
2238 )))
2239 * (((
2240 Connect the sensor's GND DI1-.
2241 )))
2242
2243 (((
2244 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
2245 )))
2246
2247 (((
2248 **= DI1+ / 1K.**
2249 )))
2250
2251 (((
2252 If **DI1+ = 24V**, the resulting current is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
2253 )))
2254
2255 (((
2256
2257 )))
2258
2259 (((
2260 (% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
2261 )))
2262
2263 (((
2264 Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
2265 )))
2266
2267 * (((
2268 Connect the sensor's output to DI1+ with a 50K resistor in series.
2269 )))
2270 * (((
2271 Connect the sensor's GND DI1-.
2272 )))
2273
2274 (((
2275 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
2276 )))
2277
2278 (((
2279 **= DI1+ / 51K.**
2280 )))
2281
2282 (((
2283 If the sensor output is 220V, then (% wfd-invisible="true" id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
2284 )))
2285
2286
2287
2288
2289
2290
2291
2292
2293 (% style="color:blue" %)**Example 4**(%%): Connecting to a Dry Contact sensor
2294
2295 From the DI port circuit above, activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference on its own.
2296
2297 To detect a Dry Contact, you can supply a power source to one of the pins of the Dry Contact. A reference circuit diagram is shown below.
2298
2299 [[image:image-20230616235145-1.png]]
2300
2301 (% style="color:blue" %)**Example 5**(%%): Connecting to an Open Collector
2302
2303
2304 [[image:image-20240219115718-1.png]]
2305
2306 === 3.6.3 Digital Output Ports: DO1/DO2 ===
2307
2308
2309 (% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
2310
2311 (% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
2312
2313 [[image:1653357531600-905.png]]
2314
2315
2316 === 3.6.4 Analog Input Interfaces ===
2317
2318
2319 The analog input interface is shown below. The LT-22222-LA will measure the IN2 voltage to calculate the current passing through the load. The formula is:
2320
2321
2322 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
2323
2324 [[image:1653357592296-182.png]]
2325
2326 Example: Connecting a 4~~20mA sensor
2327
2328 We will use the wind speed sensor as an example for reference only.
2329
2330
2331 (% style="color:blue" %)**Specifications of the wind speed sensor:**
2332
2333 (% style="color:red" %)**Red:  12~~24V**
2334
2335 (% style="color:#ffc000" %)**Yellow:  4~~20mA**
2336
2337 **Black:  GND**
2338
2339 **Connection diagram:**
2340
2341 [[image:1653357640609-758.png]]
2342
2343 [[image:1653357648330-671.png]]
2344
2345
2346 Example: Connecting to a regulated power supply to measure voltage
2347
2348 [[image:image-20230608101532-1.png]]
2349
2350 [[image:image-20230608101608-2.jpeg]]
2351
2352 [[image:image-20230608101722-3.png]]
2353
2354
2355 (% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
2356
2357 (% style="color:red" %)**Red:  12~~24v**
2358
2359 **Black:  GND**
2360
2361
2362 === 3.6.5 Relay Output ===
2363
2364
2365 (((
2366 The LT-22222-LA has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
2367
2368 (% style="color:red" %)**Note:**(%%) The ROx pins will be in the Open (NO) state when the LT-22222-LA is powered off.
2369 )))
2370
2371 [[image:image-20220524100215-9.png]]
2372
2373 [[image:image-20220524100215-10.png]]
2374
2375
2376
2377 == 3.7 LED Indicators ==
2378
2379
2380 The table below lists the behaviour of LED indicators for each port function.
2381
2382 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
2383 |(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
2384 |**PWR**|Always on when there is power
2385 |**TX**|(((
2386 (((
2387 Device booting: TX blinks 5 times.
2388 )))
2389
2390 (((
2391 Successful network joins: TX remains ON for 5 seconds.
2392 )))
2393
2394 (((
2395 Transmit a LoRa packet: TX blinks once
2396 )))
2397 )))
2398 |**RX**|RX blinks once when a packet is received.
2399 |**DO1**|For LT-22222-LA: ON when DO1 is low, OFF when DO1 is high
2400 |**DO2**|For LT-22222-LA: ON when DO2 is low, OFF when DO2 is high
2401 |**DI1**|(((
2402 For LT-22222-LA: ON when DI1 is high, OFF when DI1 is low
2403 )))
2404 |**DI2**|(((
2405 For LT-22222-LA: ON when DI2 is high, OFF when DI2 is low
2406 )))
2407 |**RO1**|For LT-22222-LA: ON when RO1 is closed, OFF when RO1 is open
2408 |**RO2**|For LT-22222-LA: ON when RO2 is closed, OFF when RO2 is open
2409
2410 = 4. Using AT Commands =
2411
2412
2413 The LT-22222-LA supports programming using AT Commands.
2414
2415
2416 == 4.1 Connecting the LT-22222-LA to a PC ==
2417
2418
2419 (((
2420 You can use a USB-to-TTL adapter/converter along with a 3.5mm Program Cable to connect the LT-22222-LA to a PC, as shown below.
2421
2422 (% title="Click and drag to resize" %)​​[[image:1751525987713-642.png]]​
2423
2424
2425 )))
2426
2427 (((
2428 On the PC, you need to set the (% style="color:#4f81bd" %)**serial tool **(%%)(such as [[PuTTY>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]] or [[SecureCRT>>https://www.vandyke.com/cgi-bin/releases.php?product=securecrt]]) to a baud rate of (% style="color:green" %)**9600**(%%) to access the serial console of LT-22222-LA. Access to AT commands is disabled by default, and a password (default: (% style="color:green" %)**123456**)(%%) must be entered to enable AT command access, as shown below:
2429 )))
2430
2431 [[image:1653358355238-883.png]]
2432
2433
2434 (((
2435 == 4.2 LT-22222-LA related AT commands ==
2436
2437
2438 )))
2439
2440 (((
2441 The following is the list of all the AT commands related to the LT-22222-LA, except for those used for switching between working modes.
2442
2443 * **##AT##+<CMD>?** : Help on <CMD>
2444 * **##AT##+<CMD>** : Run <CMD>
2445 * **##AT##+<CMD>=<value>** : Set the value
2446 * **##AT##+<CMD>=?** : Get the value
2447 * ##**ATZ**##: Trigger a reset of the MCU
2448 * ##**AT+FDR**##: Reset Parameters to factory default, reserve keys 
2449 * **##AT+DEUI##**: Get or set the Device EUI (DevEUI)
2450 * **##AT+DADDR##**: Get or set the Device Address (DevAddr)
2451 * **##AT+APPKEY##**: Get or set the Application Key (AppKey)
2452 * ##**AT+NWKSKEY**##: Get or set the Network Session Key (NwkSKey)
2453 * **##AT+APPSKEY##**: Get or set the Application Session Key (AppSKey)
2454 * **##AT+APPEUI##**: Get or set the Application EUI (AppEUI)
2455 * **##AT+ADR##**: Get or set the Adaptive Data Rate setting. (0: OFF, 1: ON)
2456 * ##**AT+TXP**##: Get or set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Specification)
2457 * **##AT+DR##**:  Get or set the Data Rate. (0-7 corresponding to DR_X)  
2458 * **##AT+DCS##**: Get or set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
2459 * ##**AT+PNM**##: Get or set the public network mode. (0: off, 1: on)
2460 * ##**AT+RX2FQ**##: Get or set the Rx2 window frequency
2461 * ##**AT+RX2DR**##: Get or set the Rx2 window data rate (0-7 corresponding to DR_X)
2462 * ##**AT+RX1DL**##: Get or set the delay between the end of the Tx and the Rx Window 1 in ms
2463 * ##**AT+RX2DL**##: Get or set the delay between the end of the Tx and the Rx Window 2 in ms
2464 * ##**AT+JN1DL**##: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
2465 * ##**AT+JN2DL**##: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
2466 * ##**AT+NJM**##: Get or set the Network Join Mode. (0: ABP, 1: OTAA)
2467 * ##**AT+NWKID**##: Get or set the Network ID
2468 * ##**AT+FCU**##: Get or set the Frame Counter Uplink (FCntUp)
2469 * ##**AT+FCD**##: Get or set the Frame Counter Downlink (FCntDown)
2470 * ##**AT+CLASS**##: Get or set the Device Class
2471 * ##**AT+JOIN**##: Join Network
2472 * ##**AT+NJS**##: Get OTAA Join Status
2473 * ##**AT+SENDB**##: Send hexadecimal data along with the application port
2474 * ##**AT+SEND**##: Send text data along with the application port
2475 * ##**AT+RECVB**##: Print the last received data in binary format (with hexadecimal values)
2476 * ##**AT+RECV**##: Print the last received data in raw format
2477 * ##**AT+VER**##: Get the current image version and Frequency Band
2478 * ##**AT+CFM**##: Get or Set the confirmation mode (0-1)
2479 * ##**AT+CFS**##: Get confirmation status of the last AT+SEND (0-1)
2480 * ##**AT+SNR**##: Get the SNR of the last received packet
2481 * ##**AT+RSSI**##: Get the RSSI of the last received packet
2482 * ##**AT+TDC**##: Get or set the application data transmission interval in ms
2483 * ##**AT+PORT**##: Get or set the application port
2484 * ##**AT+DISAT**##: Disable AT commands
2485 * ##**AT+PWORD**##: Set password, max 9 digits
2486 * ##**AT+CHS**##: Get or set the Frequency (Unit: Hz) for Single Channel Mode
2487 * ##**AT+CHE**##: Get or set eight channels mode, Only for US915, AU915, CN470
2488 * ##**AT+CFG**##: Print all settings
2489 )))
2490
2491
2492 == 4.2 Common AT Command Sequence ==
2493
2494 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
2495
2496 (((
2497
2498
2499 (((
2500 (% style="color:blue" %)**If the device has not yet joined the network:**
2501 )))
2502 )))
2503
2504 (((
2505 (% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT command access**##
2506 )))
2507
2508 (((
2509 (% style="background-color:#dcdcdc" %)##**AT+FDR ~/~/Reset parameters to factory default, Reserve keys**##
2510 )))
2511
2512 (((
2513 (% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT command access**##
2514 )))
2515
2516 (((
2517 (% style="background-color:#dcdcdc" %)##**AT+NJM=0 ~/~/Set to ABP mode**##
2518 )))
2519
2520 (((
2521 (% style="background-color:#dcdcdc" %)##**ATZ ~/~/Reset MCU**##
2522 )))
2523
2524
2525 (((
2526 (% style="color:blue" %)**If the device has already joined the network:**
2527 )))
2528
2529 (((
2530 (% style="background-color:#dcdcdc" %)##**AT+NJM=0**##
2531 )))
2532
2533 (((
2534 (% style="background-color:#dcdcdc" %)##**ATZ**##
2535 )))
2536
2537
2538 (((
2539
2540 )))
2541
2542
2543 === 4.2.3 Change to Class A ===
2544
2545
2546 (((
2547 (% style="color:blue" %)**If the sensor has JOINED:**
2548
2549 (% style="background-color:#dcdcdc" %)**AT+CLASS=A**
2550
2551 (% style="background-color:#dcdcdc" %)**ATZ**
2552 )))
2553
2554
2555 = 5. Case Study =
2556
2557 == 5.1 Counting how many objects pass through the flow line ==
2558
2559
2560 See [[How to set up to setup counting for objects passing through the flow line>>https://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LT-22222-L/How%20to%20set%20up%20to%20count%20objects%20pass%20in%20flow%20line/]].
2561
2562
2563 = 6. FAQ =
2564
2565
2566 This section contains some frequently asked questions, which can help you resolve common issues and find solutions quickly.
2567
2568
2569 == 6.1 OTA Firmware update ==
2570
2571
2572 (% class="wikigeneratedid" %)
2573 User can change firmware LT-22222-LA to:
2574
2575 * Change Frequency band/ region.
2576 * Update with new features.
2577 * Fix bugs.
2578
2579 Firmware and changelog can be downloaded from : **[[Firmware download link>>https://www.dropbox.com/sh/fis3g6nmhv0eokg/AAC6BcCZaX4BdqZkduUvZ3jIa?dl=0]]**
2580
2581
2582 Methods to Update Firmware:
2583
2584 * (Recommanded way) OTA firmware update via wireless : **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
2585 * Update through UART TTL interface : **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
2586
2587
2588
2589
2590 (((
2591 (((
2592 == 6.2 How to change the LoRaWAN frequency band/region? ==
2593
2594
2595 )))
2596 )))
2597
2598 (((
2599 You can follow the introductions on [[how to upgrade the image>>https://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LT-22222-LA/#H6.1OTAFirmwareupdate]]. When downloading, select the required image file.
2600 )))
2601
2602 (((
2603
2604
2605 == 6.3 How to set up LT-22222-LA to work with a Single Channel Gateway, such as LG01/LG02? ==
2606
2607
2608 )))
2609
2610 (((
2611 (((
2612 In this case, you need to set the LT-22222-LA to work in ABP mode and transmit on only one frequency.
2613 )))
2614 )))
2615
2616 (((
2617 (((
2618 We assume you have an LG01/LG02 working on the frequency 868400000. Below are the steps.
2619
2620
2621 )))
2622 )))
2623
2624 (((
2625 (% style="color:#0000ff" %)**Step 1**(%%): Log in to The Things Stack Sandbox account and create an ABP device in the application. To do this, use the manual registration option as explained in section 3.2.2.2, //Adding a Device Manually//. Select //Activation by Personalization (ABP)// under Activation Mode. Enter the DevEUI exactly as shown on the registration information sticker, then generate the Device Address, Application Session Key (AppSKey), and Network Session Key (NwkSKey).
2626
2627
2628 )))
2629
2630 (((
2631
2632 )))
2633
2634 {{warning}}
2635 Ensure that the Device Address (DevAddr) and the two keys match between the LT-22222-LA and The Things Stack. You can modify them either in The Things Stack or on the LT-22222-LA to make them align. In The Things Stack, you can configure the NwkSKey and AppSKey on the settings page, but note that the Device Address is generated by The Things Stack.
2636 {{/warning}}
2637
2638
2639 (((
2640 (% style="color:blue" %)**Step 2**(%%)**:  **(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)Run AT commands to configure the LT-22222-LA to operate in single-frequency and ABP mode. The AT commands are as follows:
2641
2642
2643 )))
2644
2645 (((
2646 (% style="background-color:#dcdcdc" %)**123456** (%%) : Enter the password to enable AT access.
2647
2648 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Reset parameters to factory default, keeping keys reserved.
2649
2650 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) : Set to ABP mode.
2651
2652 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) : Disable the Adaptive Data Rate (ADR).
2653
2654 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) : Set Data Rate (Use AT+DR=3 for the 915 MHz band).
2655
2656 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) : Set transmit interval to 60 seconds.
2657
2658 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4 MHz.
2659
2660 (% style="background-color:#dcdcdc" %)**AT+DADDR=xxxx**(%%) : Set the Device Address (DevAddr)
2661
2662 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:700; text-decoration:none; white-space:pre-wrap" %)**AT+APPKEY=xxxx**(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %): Get or set the Application Key (AppKey)
2663
2664 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)**AT+NWKSKEY=xxxx**: Get or set the Network Session Key (NwkSKey)
2665
2666 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)**AT+APPSKEY=xxxx**: Get or set the Application Session Key (AppSKey)
2667
2668 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) : Reset MCU.
2669 )))
2670
2671
2672 (((
2673 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)The following figure shows the screenshot of the command set above, issued using a serial tool:
2674 )))
2675
2676 [[image:1653360498588-932.png]]
2677
2678
2679 == 6.4 How to change the uplink interval? ==
2680
2681
2682 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2683
2684
2685 == 6.5 Can I see the counting event in the serial output? ==
2686
2687
2688 (((
2689 You can run the AT command **AT+DEBUG** to view the counting event in the serial output. If the firmware is too old and doesn’t support AT+DEBUG, update to the latest firmware first.
2690
2691
2692
2693 )))
2694
2695 (((
2696 == 6.6 Why does the relay output default to an open relay after the LT-22222-LA is powered off? ==
2697
2698
2699 * If the device is not properly shut down and is directly powered off.
2700 * It will default to a power-off state.
2701 * In modes 2 to 5, the DO/RO status and pulse count are saved to flash memory.
2702 * After a restart, the status before the power failure will be read from Flash.
2703
2704 == 6.7 Can I set up LT-22222-LA as an NC (Normally Closed) relay? ==
2705
2706
2707 The LT-22222-LA's built-in relay is Normally Open (NO). You can use an external relay to achieve a Normally Closed (NC) configuration. The circuit diagram is shown below:
2708
2709 [[image:image-20221006170630-1.png]]
2710
2711
2712
2713
2714 == 6.8 Why does the LT-22222-LA always report 15.585V when measuring the AVI? ==
2715
2716
2717 It is likely that the GND is not connected during the measurement, or that the wire connected to the GND is loose.
2718
2719
2720 = 7. Troubleshooting =
2721
2722
2723 This section provides some known troubleshooting tips.
2724
2725
2726 )))
2727
2728 (((
2729 (((
2730 == 7.1 Downlink isn't working. How can I solve this? ==
2731
2732
2733 )))
2734 )))
2735
2736 (((
2737 Please refer to this link for debugging instructions: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2738 )))
2739
2740 (((
2741
2742
2743 == 7.2 Having trouble uploading an image? ==
2744
2745
2746 )))
2747
2748 (((
2749 Please refer to this link for troubleshooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2750 )))
2751
2752 (((
2753
2754
2755 == 7.3 Why can't I join TTN in the US915 /AU915 bands? ==
2756
2757
2758 )))
2759
2760 (((
2761 It might be related to the channel mapping. [[Please refer to this link for details.>>https://github.com/dragino/LT-22222-L/releases]]
2762 )))
2763
2764
2765 == 7.4 Why can the LT-22222-LA perform uplink normally, but cannot receive downlink? ==
2766
2767
2768 The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue.
2769 Use this command to synchronize their counts: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resettingthedownlinkpacketcount"]]
2770
2771
2772 = 8. Ordering information =
2773
2774
2775 (% style="color:#4f81bd" %)**LT-22222-LA-XXX:**
2776
2777 (% style="color:#4f81bd" %)**XXX:**
2778
2779 * (% style="color:red" %)**EU433**(%%): LT with frequency bands EU433
2780 * (% style="color:red" %)**EU868**(%%): LT with frequency bands EU868
2781 * (% style="color:red" %)**KR920**(%%): LT with frequency bands KR920
2782 * (% style="color:red" %)**CN470**(%%): LT with frequency bands CN470
2783 * (% style="color:red" %)**AS923**(%%): LT with frequency bands AS923
2784 * (% style="color:red" %)**AU915**(%%): LT with frequency bands AU915
2785 * (% style="color:red" %)**US915**(%%): LT with frequency bands US915
2786 * (% style="color:red" %)**IN865**(%%): LT with frequency bands IN865
2787 * (% style="color:red" %)**CN779**(%%): LT with frequency bands CN779
2788
2789 = 9. Package information =
2790
2791
2792 (% style="color:#037691" %)**Package Includes**:
2793
2794 * 1 x LT-22222-LA I/O Controller
2795 * 1 x LoRa antenna matched to the frequency of the LT-22222-LA
2796 * 1 x bracket for DIN rail mounting
2797 * 1 x 3.5 mm programming cable
2798
2799 (% style="color:#037691" %)**Dimension and weight**:
2800
2801 * Package Size / pcs : 145×80×50 mm
2802 * Weight / pcs : 180 g
2803
2804 = 10. Support =
2805
2806
2807 * (((
2808 Support is available Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different time zones, we cannot offer live support. However, your questions will be answered as soon as possible within the aforementioned schedule.
2809 )))
2810 * (((
2811 Please provide as much information as possible regarding your inquiry (e.g., product models, a detailed description of the problem, steps to replicate it, etc.) and send an email to [[support@dragino.cc>>mailto:support@dragino.cc]]
2812
2813
2814 )))
2815
2816 = 11. Reference​​​​​ =
2817
2818
2819 * LT-22222-LA: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2820 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2821 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]