Version 55.6 by Kilight Cao on 2025/07/03 15:19

Show last authors
1 [[image:image-20220523163353-1.jpeg||data-xwiki-image-style-alignment="center" height="604" width="500"]]
2
3
4
5
6
7
8
9 **Table of Contents:**
10
11 {{toc/}}
12
13
14
15
16
17 = 1. Introduction =
18
19 == 1.1 What is the LT-22222-LA I/O Controller? ==
20
21
22 (((
23 (((
24 The Dragino (% style="color:blue" %)**LT-22222-LA I/O Controller**(%%) is an advanced LoRaWAN end device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
25
26 The LT-22222-LA I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
27 )))
28 )))
29
30 (((
31 With the LT-22222-LA I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
32 )))
33
34 (((
35 You can connect the LT-22222-LA I/O Controller to a LoRaWAN network service provider in several ways:
36
37 * If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Stack Community Network), you can select a network and register the LT-22222-LA I/O controller with it.
38 * If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-LA I/O controller with this network.
39 * Setup your own private LoRaWAN network.
40 )))
41
42 (((
43
44
45 The network diagram below illustrates how the LT-22222-LA communicates with a typical LoRaWAN network.
46 )))
47
48
49 [[image:lorawan-nw.jpg]]
50
51 == 1.2 Specifications ==
52
53
54 (% style="color:#037691" %)**Hardware System:**
55
56 * Power Consumption:
57 ** Idle: 4mA@12V
58 ** 20dB Transmit: 34mA@12V
59 * Operating Temperature: -40 ~~ 85 Degrees, No Dew
60
61 (% style="color:#037691" %)**Interface for Model: LT22222-LA:**
62
63 * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50V, or 220V with optional external resistor)
64 * 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
65 * 2 x Relay Output (5A@250VAC / 30VDC)
66 * 2 x 0~~20mA Analog Input (res:0.01mA)
67 * 2 x 0~~30V Analog Input (res:0.01V)
68 * Power Input 7~~ 24V DC. 
69
70 (% style="color:#037691" %)**LoRa Spec:**
71
72 * Frequency Range:
73 ** Band 1 (HF): 862 ~~ 1020 MHz
74 ** Band 2 (LF): 410 ~~ 528 MHz
75 * 168 dB maximum link budget.
76 * +20 dBm - 100 mW constant RF output vs.
77 * +14 dBm high-efficiency PA.
78 * Programmable bit rate up to 300 kbps.
79 * High sensitivity: down to -148 dBm.
80 * Bullet-proof front end: IIP3 = -12.5 dBm.
81 * Excellent blocking immunity.
82 * Low RX current of 10.3 mA, 200 nA register retention.
83 * Fully integrated synthesizer with a resolution of 61 Hz.
84 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
85 * Built-in bit synchronizer for clock recovery.
86 * Preamble detection.
87 * 127 dB Dynamic Range RSSI.
88 * Automatic RF Sense and CAD with ultra-fast AFC.
89 * Packet engine up to 256 bytes with CRC.
90
91 == 1.3 Features ==
92
93
94 * LoRaWAN Class A & Class C modes
95 * Optional Customized LoRa Protocol
96 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
97 * AT Commands to change parameters
98 * Remotely configure parameters via LoRaWAN Downlink
99 * Firmware upgradable via program port
100 * Counting
101
102 == 1.4 Applications ==
103
104
105 * Smart buildings & home automation
106 * Logistics and supply chain management
107 * Smart metering
108 * Smart agriculture
109 * Smart cities
110 * Smart factory
111
112 == 1.5 Hardware Variants ==
113
114
115 (% border="1" cellspacing="3" style="width:531.222px" %)
116 |(% style="background-color:#4f81bd; color:white; width:108px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:158px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:261px" %)**Description**
117 |(% style="width:108px" %)**LT-22222-LA**|(% style="width:158px" %)(((
118 [[image:lt33222-l.jpg]]
119 )))|(% style="width:261px" %)(((
120 * 3 x Digital Input (Bi-direction)
121 * 3 x Digital Output
122 * 2 x Relay Output (5A@250VAC / 30VDC)
123 * 2 x 0~~20mA Analog Input (res:0.01mA)
124 * 2 x 0~~30V Analog Input (res:0.01v)
125 * 1 x Counting Port
126 )))
127
128 = 2. Assembling the device =
129
130 == 2.1 Connecting the antenna ==
131
132
133 Connect the LoRa antenna to the antenna connector, **ANT**,** **located on the top right side of the device, next to the upper screw terminal block. Secure the antenna by tightening it clockwise.
134
135 {{warning}}
136 **Warning! Do not power on the device without connecting the antenna.**
137 {{/warning}}
138
139
140 == 2.2 Terminals ==
141
142
143 The  LT-22222-LA has two screw terminal blocks. The upper screw terminal block has 6 screw terminals and the lower screw terminal block has 10 screw terminals.
144
145 **Upper screw terminal block (from left to right):**
146
147 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:381px" %)
148 |=(% style="width: 139px;background-color:#4f81bd;color:white" %)Screw Terminal|=(% style="width: 242px;background-color:#4f81bd;color:white" %)Function
149 |(% style="width:139px" %)GND|(% style="width:242px" %)Ground
150 |(% style="width:139px" %)VIN|(% style="width:242px" %)Input Voltage
151 |(% style="width:139px" %)AVI2|(% style="width:242px" %)Analog Voltage Input Terminal 2
152 |(% style="width:139px" %)AVI1|(% style="width:242px" %)Analog Voltage Input Terminal 1
153 |(% style="width:139px" %)ACI2|(% style="width:242px" %)Analog Current Input Terminal 2
154 |(% style="width:139px" %)ACI1|(% style="width:242px" %)Analog Current Input Terminal 1
155
156 **Lower screw terminal block (from left to right):**
157
158 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:253px" %)
159 |=(% style="width: 125px;background-color:#4f81bd;color:white" %)Screw Terminal|=(% style="width: 128px;background-color:#4f81bd;color:white" %)Function
160 |(% style="width:125px" %)RO1-2|(% style="width:128px" %)Relay Output 1
161 |(% style="width:125px" %)RO1-1|(% style="width:128px" %)Relay Output 1
162 |(% style="width:125px" %)RO2-2|(% style="width:128px" %)Relay Output 2
163 |(% style="width:125px" %)RO2-1|(% style="width:128px" %)Relay Output 2
164 |(% style="width:125px" %)DI2+|(% style="width:128px" %)Digital Input 2
165 |(% style="width:125px" %)DI2-|(% style="width:128px" %)Digital Input 2
166 |(% style="width:125px" %)DI1+|(% style="width:128px" %)Digital Input 1
167 |(% style="width:125px" %)DI1-|(% style="width:128px" %)Digital Input 1
168 |(% style="width:125px" %)DO2|(% style="width:128px" %)Digital Output 2
169 |(% style="width:125px" %)DO1|(% style="width:128px" %)Digital Output 1
170
171 == 2.3 Connecting LT-22222-LA to a Power Source ==
172
173
174 The LT-22222-LA I/O Controller can be powered by a **7–24V DC** power source. Connect your power supply’s **positive wire** to the **VIN** and the **negative wire** to the **GND** screw terminals. The power indicator **(PWR) LED** will turn on when the device is properly powered.
175
176 {{warning}}
177 **We recommend that you power on the LT-22222-LA after adding its registration information to the LoRaWAN network server. Otherwise, the device will continuously send join-request messages to attempt to join a LoRaWAN network but will fail.**
178 {{/warning}}
179
180 [[image:1653297104069-180.png]]
181
182
183
184 = 3. Registering LT-22222-LA with a LoRaWAN Network Server =
185
186
187 The LT-22222-LA supports both OTAA (Over-the-Air Activation) and ABP (Activation By Personalization) methods to activate with a LoRaWAN Network Server. However, OTAA is the most secure method for activating a device with a LoRaWAN Network Server. OTAA regenerates session keys upon initial registration and regenerates new session keys after any subsequent reboots. By default, the LT-22222-LA is configured to operate in LoRaWAN Class C mode.
188
189
190 == 3.1 Prerequisites ==
191
192
193 The LT-22222-LA comes with device registration information such as DevEUI, AppEUI, and AppKey which allows you to register it with a LoRaWAN network. This registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
194
195 {{info}}
196 If you are unable to set the provided root key and other identifiers in the network server, you must generate new keys and identifiers with the network server and configure the device with them using AT commands.
197 {{/info}}
198
199 The following subsections explain how to register the LT-22222-LA with different LoRaWAN network server providers.
200
201 [[image:image-20230425173427-2.png]]
202
203 == 3.2 The Things Stack ==
204
205
206 This section guides you through how to register your LT-22222-LA with The Things Stack Sandbox.
207
208 {{info}}
209 The Things Stack Sandbox was formally called The Things Stack Community Edition.
210 {{/info}}
211
212
213 The network diagram below illustrates the connection between the LT-22222-LA and The Things Stack, as well as how the data can be integrated with the ThingsEye IoT platform.
214
215 [[image:1751523649311-511.png||height="407" width="1378"]]
216
217 {{info}}
218 You can use a LoRaWAN gateway, such as the [[Dragino LPS8N>>https://www.dragino.com/products/lora-lorawan-gateway/item/200-lps8n.html]], to expand or create LoRaWAN coverage in your area.
219 {{/info}}
220
221
222 === 3.2.1 Setting up ===
223
224
225 * Sign up for a free account with [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] if you do not have one yet.
226 * Log in to your The Things Stack Sandbox account.
227 * Create an **application** with The Things Stack if you do not have one yet (E.g., dragino-docs).
228 * Go to your application's page and click on the **End devices** in the left menu.
229 * On the End devices page, click on **+ Register end device**. Two registration options are available:
230
231 ==== 3.2.1.1 Using the LoRaWAN Device Repository ====
232
233
234 * On the **Register end device** page:
235 ** Select the option **Select the end device in the LoRaWAN Device Repository **under **Input method**.
236 ** Select the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)** from the respective dropdown lists.
237 *** **End device brand**: Dragino Technology Co., Limited
238 *** **Model**: LT22222-L I/O Controller
239 *** **Hardware ver**: Unknown
240 *** **Firmware ver**: 1.6.0
241 *** **Profile (Region)**: Select the region that matches your device.
242 ** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
243
244 [[image:lt-22222-l-dev-repo-reg-p1.png]]
245
246
247 * Register end device page continued...
248 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message 'This end device can be registered on the network'.
249 ** In the **DevEUI** field, enter the **DevEUI**.
250 ** In the **AppKey** field, enter the **AppKey.**
251 ** In the **End device ID** field, enter a unique name for your LT-22222-LA within this application.
252 ** Under **After registration**, select the **View registered end device** option.
253 ** Click **Register end device** button.
254
255 [[image:lt-22222-l-dev-repo-reg-p2.png]]
256
257
258 * You will be navigated to the **Device overview** page.
259
260 [[image:lt-22222-device-overview.png]]
261
262
263 ==== 3.2.1.2 Adding device manually ====
264
265
266 * On the **Register end device** page:
267 ** Select the option **Enter end device specifies manually** under **Input method**.
268 ** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
269 ** Select the **LoRaWAN version** as **LoRaWAN Specification 1.0.3**
270 ** Select the **Regional Parameters version** as** RP001 Regional Parameters 1.0.3 revision A**
271 ** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the hidden section.
272 ** Select the option **Over the air activation (OTAA)** under the **Activation mode.**
273 ** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities** dropdown list.
274
275 [[image:lt-22222-l-manually-p1.png]]
276
277
278 * Register end device page continued...
279 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message '//**This end device can be registered on the network**//'
280 ** In the **DevEUI** field, enter the **DevEUI**.
281 ** In the **AppKey** field, enter the **AppKey**.
282 ** In the **End device ID** field, enter a unique name for your LT-22222-LA within this application.
283 ** Under **After registration**, select the **View registered end device** option.
284 ** Click the **Register end device** button.
285
286 [[image:lt-22222-l-manually-p2.png]]
287
288
289 You will be navigated to the **Device overview** page.
290
291 [[image:lt-22222-device-overview.png]]
292
293
294
295 === 3.2.2 Joining ===
296
297
298 On the end device's page (in this case, lt-22222-la), click on **Live data** tab. The Live data panel for your device will display. Initially, it is blank.
299
300 Now power on your LT-22222-LA. The **TX LED** will **fast-blink 5 times** which means the LT-22222-LA will enter the **work mode** and start to **join** The Things Stack network server. The **TX LED** will be on for **5 seconds** after joining the network. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server.
301
302 [[image:lt-22222-l-joining.png]]
303
304
305
306 === 3.2.3 Uplinks ===
307
308
309 After successfully joining, the device will send its first **uplink data message** to The Things Stack application it belongs to (in this example, it is **dragino-docs**). When the LT-22222-LA sends an uplink message to the server, the **TX LED** turns on for **1 second**. By default, you will receive an uplink data message from the device every 10 minutes.
310
311 Click on one of the **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the **decode_payload {}** JSON object.
312
313 [[image:lt-22222-ul-payload-decoded.png]]
314
315
316 If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **Applications > [your application] > End devices** > [**your end device]** > **Payload formatters** > **Uplink**. Then select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes.
317
318 {{info}}
319 The Things Stack provides two levels of payload formatters: application level and device level. The device-level payload formatters **override **the application-level payload formatters.
320 {{/info}}
321
322 [[image:lt-22222-ul-payload-fmt.png]]
323
324
325 We have written a payload formatter that resolves some decoding issues present in The Things Stack Device Repository payload formatter. You can add it under the **Custom JavaScript formatter**. It can be found [[here>>https://github.com/dragino/dragino-end-node-decoder/blob/main/LT22222-L/v1.6_decoder_ttn%20.txt]]:
326
327 [[image:lt-22222-l-js-custom-payload-formatter.png]]
328
329
330 === 3.2.4 Downlinks ===
331
332
333 When the LT-22222-L receives a downlink message from the LoRaWAN Network Server, the **RX LED** turns on for **1 second**.
334
335
336 == 3.3 Working Modes and Uplink Payload formats ==
337
338
339 The LT-22222-LA has 5 **working modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any working mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
340
341 * (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO
342
343 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
344
345 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
346
347 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
348
349 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
350
351 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
352
353 The uplink messages are sent over LoRaWAN FPort=2. By default, an uplink message is sent every 10 minutes.
354
355
356 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
357
358
359 (((
360 This is the default mode.
361
362 The uplink payload is 11 bytes long.
363 (% wfd-invisible="true" style="display:none" %)
364
365 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
366 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
367 |Value|(((
368 AVI1 voltage
369 )))|(((
370 AVI2 voltage
371 )))|(((
372 ACI1 Current
373 )))|(((
374 ACI2 Current
375 )))|**DIDORO***|(((
376 Reserve
377 )))|MOD
378 )))
379
380 (((
381 (% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below.
382
383 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
384 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
385 |RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
386 )))
387
388 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
389 * DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW.
390 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
391
392 (% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-LA**
393
394 For example, if the payload is: [[image:image-20220523175847-2.png]]
395
396
397 **The interface values can be calculated as follows:  **
398
399 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
400
401 AVI2 channel voltage is 0x04AC/1000=1.196V
402
403 ACI1 channel current is 0x1310/1000=4.880mA
404
405 ACI2 channel current is 0x1300/1000=4.864mA
406
407 The last byte 0xAA= **10101010**(b) means,
408
409 * [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
410 * [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
411 * **[1] DI3 - not used for LT-22222-LA.**
412 * [0] DI2 channel input is LOW, and the DI2 LED is OFF.
413 * [1] DI1 channel input state:
414 ** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
415 ** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
416 ** DI1 LED is ON in both cases.
417 * **[0] DO3 - not used for LT-22222-LA.**
418 * [1] DO2 channel output is LOW, and the DO2 LED is ON.
419 * [0] DO1 channel output state:
420 ** DO1 is FLOATING when there is no load between DO1 and V+.
421 ** DO1 is HIGH and there is a load between DO1 and V+.
422 ** DO1 LED is OFF in both cases.
423
424 Reserve = 0
425
426 MOD = 1
427
428
429 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
430
431
432 (((
433 **For LT-22222-LA**: In this mode, **DI1 and DI2** are used as counting pins.
434 )))
435
436 (((
437 The uplink payload is 11 bytes long.
438
439 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
440 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
441 It starts counting again when it reaches the maximum value.**
442
443 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
444 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
445 |Value|COUNT1|COUNT2 |DIDORO*|(((
446 Reserve
447 )))|MOD
448 )))
449
450 (((
451 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, FIRST, Reserve, Reserve, DO3, DO2 and DO1, and its size is 1 byte long as shown below.
452
453 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
454 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
455 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
456
457 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
458 )))
459
460 * FIRST: Indicates that this is the first packet after joining the network.
461 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
462
463 (((
464 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-LA**
465
466
467 )))
468
469 (((
470 **To activate this mode, run the following AT commands:**
471 )))
472
473 (((
474 (% class="box infomessage" %)
475 (((
476 **AT+MOD=2**
477
478 **ATZ**
479 )))
480 )))
481
482 (((
483
484
485 (% style="color:#4f81bd" %)**AT Commands for counting:**
486 )))
487
488 (((
489 **For LT22222-LA:**
490
491 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
492
493 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
494
495 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
496
497 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
498
499 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
500
501 (% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
502 )))
503
504
505
506
507
508
509
510 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
511
512
513 (% style="color:red" %)**Note: The maximum count depends on the bytes it is.
514 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
515 It starts counting again when it reaches the maximum value.**
516
517 **LT22222-LA**: In this mode, the DI1 is used as a counting pin.
518
519 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
520 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
521 |Value|COUNT1|(((
522 ACI1 Current
523 )))|(((
524 ACI2 Current
525 )))|DIDORO*|Reserve|MOD
526
527 (((
528 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
529
530 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
531 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
532 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
533 )))
534
535 * RO is for the relay. ROx=1: closed, ROx=0 always open.
536 * FIRST: Indicates that this is the first packet after joining the network.
537 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
538
539 (((
540 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-LA.**
541 )))
542
543
544
545
546
547
548
549 (((
550 **To activate this mode, run the following AT commands:**
551 )))
552
553 (((
554 (% class="box infomessage" %)
555 (((
556 **AT+MOD=3**
557
558 **ATZ**
559 )))
560 )))
561
562 (((
563 AT Commands for counting:
564
565 The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
566 )))
567
568
569 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
570
571
572 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
573 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
574 It starts counting again when it reaches the maximum value.**
575
576
577 (((
578 **LT22222-LA**: In this mode, the DI1 is used as a counting pin.
579 )))
580
581 (((
582 The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
583
584 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
585 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
586 |Value|COUNT1|AVI1 Counting|DIDORO*|(((
587 Reserve
588 )))|MOD
589 )))
590
591 (((
592 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
593
594 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
595 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
596 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
597 )))
598
599 * RO is for the relay. ROx=1: closed, ROx=0 always open.
600 * FIRST: Indicates that this is the first packet after joining the network.
601 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
602
603 (((
604 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
605
606
607 )))
608
609 (((
610 **To activate this mode, run the following AT commands:**
611 )))
612
613 (((
614 (% class="box infomessage" %)
615 (((
616 **AT+MOD=4**
617
618 **ATZ**
619 )))
620 )))
621
622 (((
623 AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
624 )))
625
626 (((
627 **In addition to that, below are the commands for AVI1 Counting:**
628
629 (% style="color:blue" %)**AT+SETCNT=3,60 **(%%)**(Sets AVI1 Count to 60)**
630
631 (% style="color:blue" %)**AT+VOLMAX=20000 **(%%)**(If the AVI1 voltage is higher than VOLMAX (20000mV =20V), the counter increases by 1)**
632
633 (% style="color:blue" %)**AT+VOLMAX=20000,0 **(%%)**(If the AVI1 voltage is lower than VOLMAX (20000mV =20V), counter increases by 1)**
634
635 (% style="color:blue" %)**AT+VOLMAX=20000,1 **(%%)**(If the AVI1 voltage is higher than VOLMAX (20000mV =20V), counter increases by 1)**
636 )))
637
638
639
640
641
642
643
644 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
645
646
647 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
648 The maximum count for four bytes is FFFF (hex) = 65535 (dec).
649 It starts counting again when it reaches the maximum value.**
650
651
652 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
653
654 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
655 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
656 |Value|(((
657 AVI1 voltage
658 )))|(((
659 AVI2 voltage
660 )))|(((
661 ACI1 Current
662 )))|COUNT1|DIDORO*|(((
663 Reserve
664 )))|MOD
665
666 (((
667 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
668
669 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
670 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
671 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
672 )))
673
674 * RO is for the relay. ROx=1: closed, ROx=0 always open.
675 * FIRST: Indicates that this is the first packet after joining the network.
676 * (((
677 DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
678 )))
679
680 (((
681 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-LA.**
682 )))
683
684 (((
685 **To activate this mode, run the following AT commands:**
686 )))
687
688 (((
689 (% class="box infomessage" %)
690 (((
691 **AT+MOD=5**
692
693 **ATZ**
694 )))
695 )))
696
697 (((
698 Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
699 )))
700
701
702
703
704
705
706
707 === 3.3.6 AT+ADDMOD~=6 (Trigger Mode, Optional) ===
708
709
710 (% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate __alongside__ with other modes.**
711
712 For example, if you configure the following commands:
713
714 * **AT+MOD=1 ** **~-~->**  Sets the default working mode
715 * **AT+ADDMOD6=1**   **~-~->**  Enables trigger mode
716
717 The LT-22222-LA will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. It will send uplink packets in two cases:
718
719 1. Periodic uplink: Based on TDC time. The payload is the same as in normal mode (MOD=1 as set above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
720 1. (((
721 Trigger uplink: sent when a trigger condition is met. In this case, LT will send two packets
722
723 * The first uplink uses the payload specified in trigger mode (MOD=6).
724 * The second packet uses the normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**confirmed uplinks.**
725 )))
726
727 (% style="color:#037691" %)**AT Commands to set Trigger Conditions**:
728
729 (% style="color:#4f81bd" %)**Trigger based on voltage**:
730
731 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
732
733
734 **Example:**
735
736 AT+AVLIM=3000,6000,0,2000 (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
737
738 AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0 for parameters that are not in use)
739
740
741 (% style="color:#4f81bd" %)**Trigger based on current**:
742
743 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
744
745
746 **Example:**
747
748 AT+ACLIM=10000,15000,0,0 (triggers an uplink if AC1 current is lower than 10mA or higher than 15mA)
749
750
751 (% style="color:#4f81bd" %)**Trigger based on DI status**:
752
753 DI status triggers Flag.
754
755 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
756
757
758 **Example:**
759
760 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
761
762
763 (% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
764
765 **Type Code**: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
766
767 **Format**: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
768
769 AA: Type Code for this downlink Command:
770
771 xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
772
773 yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
774
775 yy2 yy2: AC1 or AV1 HIGH limit.
776
777 yy3 yy3: AC2 or AV2 LOW limit.
778
779 Yy4 yy4: AC2 or AV2 HIGH limit.
780
781
782 **Example 1**: AA 00 13 88 00 00 00 00 00 00
783
784 Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
785
786
787 **Example 2**: AA 02 01 00
788
789 Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
790
791
792 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
793
794 MOD6 Payload: a total of 11 bytes
795
796 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
797 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
798 |Value|(((
799 TRI_A FLAG
800 )))|(((
801 TRI_A Status
802 )))|(((
803 TRI_DI FLAG+STA
804 )))|Reserve|Enable/Disable MOD6|(((
805 MOD(6)
806 )))
807
808 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Total 1 byte as below.
809
810 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
811 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
812 |(((
813 AV1_LOW
814 )))|(((
815 AV1_HIGH
816 )))|(((
817 AV2_LOW
818 )))|(((
819 AV2_HIGH
820 )))|(((
821 AC1_LOW
822 )))|(((
823 AC1_HIGH
824 )))|(((
825 AC2_LOW
826 )))|(((
827 AC2_HIGH
828 )))
829
830 * Each bit shows if the corresponding trigger has been configured.
831
832 **Example:**
833
834 10100000: This means the system is configured to use the triggers AV1_LOW and AV2_LOW.
835
836
837 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is triggered. Total 1 byte as below.
838
839 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
840 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
841 |(((
842 AV1_LOW
843 )))|(((
844 AV1_HIGH
845 )))|(((
846 AV2_LOW
847 )))|(((
848 AV2_HIGH
849 )))|(((
850 AC1_LOW
851 )))|(((
852 AC1_HIGH
853 )))|(((
854 AC2_LOW
855 )))|(((
856 AC2_HIGH
857 )))
858
859 * Each bit shows which status has been triggered on this uplink.
860
861 **Example:**
862
863 10000000: The uplink is triggered by AV1_LOW, indicating that the voltage is too low.
864
865
866 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is triggered. Total 1 byte as below.
867
868 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
869 |(% style="width:50px" %)**bit 7**|(% style="width:50px" %)**bit 6**|(% style="width:50px" %)**bit 5**|(% style="width:50px" %)**bit 4**|(% style="width:90px" %)**bit 3**|(% style="width:80px" %)**bit 2**|(% style="width:90px" %)**bit 1**|(% style="width:95px" %)**bit 0**
870 |(% style="width:49px" %)N/A|(% style="width:53px" %)N/A|(% style="width:53px" %)N/A|(% style="width:55px" %)N/A|(% style="width:99px" %)DI2_STATUS|(% style="width:83px" %)DI2_FLAG|(% style="width:98px" %)DI1_STATUS|(% style="width:85px" %)DI1_FLAG
871
872 * Each bit shows which status has been triggered on this uplink.
873
874 **Example:**
875
876 00000111: This means both DI1 and DI2 triggers are enabled, and this packet is triggered by DI1.
877
878 00000101: This means both DI1 and DI2 triggers are enabled.
879
880
881 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enabled. 0x00: MOD6 is disabled.
882
883 Downlink command to poll/request MOD6 status:
884
885 **AB 06**
886
887 When the device receives this command, it will send the MOD6 payload.
888
889
890 === 3.3.7 Payload Decoder ===
891
892 (((
893
894
895 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder/tree/main/LT22222-L]]
896 )))
897
898
899 == 3.4 ​Configure LT-22222-LA via AT Commands or Downlinks ==
900
901
902 (((
903 You can configure LT-22222-LA I/O Controller via AT Commands or LoRaWAN Downlinks.
904 )))
905
906 (((
907 (((
908 There are two types of commands:
909 )))
910 )))
911
912 * (% style="color:blue" %)**Common commands**(%%):
913
914 * (% style="color:blue" %)**Sensor-related commands**(%%):
915
916 === 3.4.1 Common commands ===
917
918
919 (((
920 These are available for each sensor and include actions such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]s.
921
922
923 )))
924
925 === 3.4.2 Sensor-related commands ===
926
927
928 These commands are specially designed for the LT-22222-LA. Commands can be sent to the device using options such as an AT command or a LoRaWAN downlink payload.
929
930
931 ==== 3.4.2.1 Set Transmit/Uplink Interval ====
932
933
934 Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes.
935
936 (% style="color:#037691" %)**AT command**
937
938 (% border="2" style="width:500px" %)
939 |**Command**|AT+TDC=<time>
940 |**Parameters**|**time **: uplink interval in milliseconds
941 |**Get**|AT+TDC=?
942 |**Response**|(((
943 current uplink interval
944
945 OK
946 )))
947 |**Set**|AT+TDC=<time>
948 |**Response**|OK
949 |**Example**|(((
950 AT+TDC=30000
951
952 Sets the uplink interval to **30 seconds** (30000 milliseconds)
953 )))
954
955 (% style="color:#037691" %)**Downlink payload**
956
957 (% border="2" style="width:500px" %)
958 |**Payload**|(((
959 <prefix><time>
960 )))
961 |**Parameters**|(((
962 **prefix** : 0x01
963
964 **time** : uplink interval in **seconds**, represented by **3  bytes** in **hexadecimal**.
965 )))
966 |**Example**|(((
967 01 **00 00 1E**
968
969 Sets the uplink interval to **30 seconds**
970
971 Conversion: 30 (dec) = 00 00 1E (hex)
972
973 See [[RapidTables>>https://www.rapidtables.com/convert/number/decimal-to-hex.html?x=30]]
974
975 [[image:Screenshot%202024-11-23%20at%2018.27.11.png||alt="Screenshot 2024-11-23 at 18.27.11.png"]]
976 )))
977
978 ==== 3.4.2.2 Set the Working Mode (AT+MOD) ====
979
980
981 Sets the working mode.
982
983 (% style="color:#037691" %)**AT command**
984
985 (% border="2" style="width:500px" %)
986 |(% style="width:97px" %)**Command**|(% style="width:413px" %)AT+MOD=<working_mode>
987 |(% style="width:97px" %)**Parameters**|(% style="width:413px" %)(((
988 **working_mode** :
989
990 1 = (Default mode/factory set):  2ACI + 2AVI + DI + DO + RO
991
992 2 = Double DI Counting + DO + RO
993
994 3 = Single DI Counting + 2 x ACI + DO + RO
995
996 4 = Single DI Counting + 1 x Voltage Counting + DO + RO
997
998 5 = Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
999
1000 6 = Trigger Mode, Optional, used together with MOD1 ~~ MOD5
1001 )))
1002 |(% style="width:97px" %)**Get**|(% style="width:413px" %)AT+MOD=?
1003 |(% style="width:97px" %)**Response**|(% style="width:413px" %)(((
1004 Current working mode
1005
1006 OK
1007 )))
1008 |(% style="width:97px" %)**Set**|(% style="width:413px" %)AT+MOD=<working_mode>
1009 |(% style="width:97px" %)**Response**|(% style="width:413px" %)(((
1010 Attention:Take effect after ATZ
1011
1012 OK
1013 )))
1014 |(% style="width:97px" %)**Example**|(% style="width:413px" %)(((
1015 AT+MOD=2
1016
1017 Sets the device to working mode 2 (Double DI Counting + DO + RO)
1018 )))
1019
1020 (% class="wikigeneratedid" %)
1021 (% style="color:#037691" %)**Downlink payload**
1022
1023 (% border="2" style="width:500px" %)
1024 |(% style="width:98px" %)**Payload**|(% style="width:400px" %)<prefix><working_mode>
1025 |(% style="width:98px" %)**Parameters**|(% style="width:400px" %)(((
1026 **prefix** : 0x0A
1027
1028 **working_mode** : Working mode, represented by 1 byte in hexadecimal.
1029 )))
1030 |(% style="width:98px" %)**Example**|(% style="width:400px" %)(((
1031 0A **02**
1032
1033 Sets the device to working mode 2 (Double DI Counting + DO + RO)
1034 )))
1035
1036 ==== 3.4.2.3 Request an uplink from the device ====
1037
1038
1039 Requests an uplink from LT-22222-LA. The content of the uplink payload varies based on the device's current working mode.
1040
1041 (% style="color:#037691" %)**AT command**
1042
1043 There is no AT Command available for this feature.
1044
1045 (% style="color:#037691" %)**Downlink payload**
1046
1047 (% border="2" style="width:500px" %)
1048 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix>FF
1049 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)**prefix** : 0x08
1050 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1051 08 **FF**
1052
1053 Requests an uplink from LT-22222-L.
1054 )))
1055
1056 ==== 3.4.2.4 Enable/Disable Trigger Mode ====
1057
1058
1059 Enable or disable the trigger mode for the current working mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D628TriggerMode2COptional29"]]).
1060
1061 (% style="color:#037691" %)**AT Command**
1062
1063 (% border="2" style="width:500px" %)
1064 |(% style="width:95px" %)**Command**|(% style="width:403px" %)AT+ADDMOD6=<enable/disable trigger_mode>
1065 |(% style="width:95px" %)**Response**|(% style="width:403px" %)
1066 |(% style="width:95px" %)**Parameters**|(% style="width:403px" %)(((
1067 **enable/disable trigger_mode** :
1068
1069 1 = enable trigger mode
1070
1071 0 = disable trigger mode
1072 )))
1073 |(% style="width:95px" %)**Example**|(% style="width:403px" %)(((
1074 AT+ADDMOD6=1
1075
1076 Enable trigger mode for the current working mode
1077 )))
1078
1079 (% style="color:#037691" %)**Downlink payload**
1080
1081 (% border="2" style="width:500px" %)
1082 |(% style="width:97px" %)**Payload**|(% style="width:401px" %)<prefix><enable/disable trigger_mode>
1083 |(% style="width:97px" %)**Parameters**|(% style="width:401px" %)(((
1084 **prefix** : 0x0A 06 (two bytes in hexadecimal)
1085
1086 **enable/disable trigger_mode** : enable (1) or disable (0), represented by 1 byte in hexadecimal.
1087 )))
1088 |(% style="width:97px" %)**Example**|(% style="width:401px" %)(((
1089 0A 06 **01**
1090
1091 Enable trigger mode for the current working mode
1092 )))
1093
1094 ==== 3.4.2.5 Request trigger settings ====
1095
1096
1097 Requests the trigger settings.
1098
1099 (% style="color:#037691" %)**AT Command:**
1100
1101 There is no AT Command available for this feature.
1102
1103 (% style="color:#037691" %)**Downlink Payload**
1104
1105 (% border="2" style="width:500px" %)
1106 |(% style="width:95px" %)**Payload**|(% style="width:403px" %)<prefix>
1107 |(% style="width:95px" %)**Parameters**|(% style="width:403px" %)**prefix **: AB 06 (two bytes in hexadecimal)
1108 |(% style="width:95px" %)**Example**|(% style="width:403px" %)(((
1109 AB 06
1110
1111 Uplink the trigger settings.
1112 )))
1113
1114 ==== 3.4.2.6 Enable/Disable DI1/DI2/DI3 as a trigger ====
1115
1116
1117 Enable or disable DI1/DI2/DI3 as a trigger.
1118
1119 (% style="color:#037691" %)**AT Command**
1120
1121 (% border="2" style="width:500px" %)
1122 |(% style="width:98px" %)**Command**|(% style="width:400px" %)AT+DTRI=<DI1_trigger>,<DI2_trigger>
1123 |(% style="width:98px" %)**Response**|(% style="width:400px" %)
1124 |(% style="width:98px" %)**Parameters**|(% style="width:400px" %)(((
1125 **DI1_trigger:**
1126
1127 1 = enable DI1 trigger
1128
1129 0 = disable DI1 trigger
1130
1131 **DI2 _trigger**
1132
1133 1 = enable DI2 trigger
1134
1135 0 = disable DI2 trigger
1136 )))
1137 |(% style="width:98px" %)**Example**|(% style="width:400px" %)(((
1138 AT+DTRI=1,0
1139
1140 Enable DI1 trigger, disable DI2 trigger
1141 )))
1142
1143 (% class="wikigeneratedid" %)
1144 (% style="color:#037691" %)**Downlink Payload**
1145
1146 (% border="2" style="width:500px" %)
1147 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix><DI1_trigger><DI2_trigger>
1148 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1149 **prefix :** AA 02 (two bytes in hexadecimal)
1150
1151 **DI1_trigger:**
1152
1153 1 = enable DI1 trigger, represented by 1 byte in hexadecimal.
1154
1155 0 = disable DI1 trigger, represented by 1 byte in hexadecimal.
1156
1157 **DI2 _trigger**
1158
1159 1 = enable DI2 trigger, represented by 1 byte in hexadecimal.
1160
1161 0 = disable DI2 trigger, represented by 1 byte in hexadecimal.
1162 )))
1163 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1164 AA 02 **01 00**
1165
1166 Enable DI1 trigger, disable DI2 trigger
1167 )))
1168
1169 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as a trigger ====
1170
1171
1172 Sets DI1 or DI3 (for LT-33222-L) as a trigger.
1173
1174 (% style="color:#037691" %)**AT Command**
1175
1176 (% border="2" style="width:500px" %)
1177 |(% style="width:101px" %)**Command**|(% style="width:397px" %)AT+TRIG1=<interrupt_mode>,<minimum_signal_duration>
1178 |(% style="width:101px" %)**Response**|(% style="width:397px" %)
1179 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1180 **interrupt_mode** :  0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
1181
1182 **minimum_signal_duration** : the **minimum signal duration** required for the DI1 port to recognize a valid trigger.
1183 )))
1184 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1185 AT+TRIG1=1,100
1186
1187 Set the DI1 port to trigger on a rising edge; the valid signal duration is 100 ms.
1188 )))
1189
1190 (% class="wikigeneratedid" %)
1191 (% style="color:#037691" %)**Downlink Payload**
1192
1193 (% border="2" style="width:500px" %)
1194 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix><interrupt_mode><minimum_signal_duration>
1195 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1196 **prefix** : 09 01 (hexadecimal)
1197
1198 **interrupt_mode** : 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1), represented by 1 byte in hexadecimal.
1199
1200 **minimum_signal_duration** : in milliseconds, represented two bytes in hexadecimal.
1201 )))
1202 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1203 09 01 **01 00 64**
1204
1205 Set the DI1 port to trigger on a rising edge; the valid signal duration is 100 ms.
1206 )))
1207
1208 ==== 3.4.2.8 Trigger2 – Set DI2 as a trigger ====
1209
1210
1211 Sets DI2 as a trigger.
1212
1213 (% style="color:#037691" %)**AT Command**
1214
1215 (% border="2" style="width:500px" %)
1216 |(% style="width:94px" %)**Command**|(% style="width:404px" %)AT+TRIG2=<interrupt_mode>,<minimum_signal_duration>
1217 |(% style="width:94px" %)**Response**|(% style="width:404px" %)
1218 |(% style="width:94px" %)**Parameters**|(% style="width:404px" %)(((
1219 **interrupt_mode **:  0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
1220
1221 **minimum_signal_duration** : the **minimum signal duration** required for the DI1 port to recognize a valid trigger.
1222 )))
1223 |(% style="width:94px" %)**Example**|(% style="width:404px" %)(((
1224 AT+TRIG2=0,100
1225
1226 Set the DI1 port to trigger on a falling edge; the valid signal duration is 100 ms.
1227 )))
1228
1229 (% style="color:#037691" %)**Downlink Payload**
1230
1231 (% border="2" style="width:500px" %)
1232 |(% style="width:96px" %)**Payload**|(% style="width:402px" %)<prefix><interrupt_mode><minimum_signal_duration>
1233 |(% style="width:96px" %)**Parameters**|(% style="width:402px" %)(((
1234 **prefix** : 09 02 (hexadecimal)
1235
1236 **interrupt_mode **: 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1), represented by 1 byte in hexadecimal.
1237
1238 **minimum_signal_duration** : in milliseconds, represented two bytes in hexadecimal
1239 )))
1240 |(% style="width:96px" %)**Example**|(% style="width:402px" %)09 02 **00 00 64**
1241
1242 ==== 3.4.2.9 Trigger – Set AC (current) as a trigger ====
1243
1244
1245 Sets the current trigger based on the AC port. See also [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D628TriggerMode2COptional29"]]
1246
1247 (% style="color:#037691" %)**AT Command**
1248
1249 (% border="2" style="width:500px" %)
1250 |(% style="width:104px" %)**Command**|(% style="width:394px" %)(((
1251 AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
1252 )))
1253 |(% style="width:104px" %)**Response**|(% style="width:394px" %)
1254 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1255 **AC1_LIMIT_LOW** : lower limit of the current to be checked
1256
1257 **AC1_LIMIT_HIGH **: higher limit of the current to be checked
1258
1259 **AC2_LIMIT_HIGH **: lower limit of the current to be checked
1260
1261 **AC2_LIMIT_LOW** : higher limit of the current to be checked
1262 )))
1263 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1264 AT+ACLIM=10000,15000,0,0
1265
1266 Triggers an uplink if AC1 current is lower than 10mA or higher than 15mA
1267 )))
1268 |(% style="width:104px" %)Note|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D628TriggerMode2COptional29"]]
1269
1270 (% style="color:#037691" %)**Downlink Payload**
1271
1272 (% border="2" style="width:500px" %)
1273 |(% style="width:104px" %)**Payload**|(% style="width:394px" %)<prefix><AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
1274 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1275 **prefix **: AA 01 (hexadecimal)
1276
1277 **AC1_LIMIT_LOW** : lower limit of the current to be checked, two bytes in hexadecimal
1278
1279 **AC1_LIMIT_HIGH **: higher limit of the current to be checked, two bytes in hexadecimal
1280
1281 **AC2_LIMIT_HIGH **: lower limit of the current to be checked, two bytes in hexadecimal
1282
1283 **AC2_LIMIT_LOW** : higher limit of the current to be checked, two bytes in hexadecimal
1284 )))
1285 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1286 AA 01 **27** **10 3A** **98** 00 00 00 00
1287
1288 Triggers an uplink if AC1 current is lower than 10mA or higher than 15mA. Set all values to zero for AC2 limits because we are only checking AC1 limits.
1289 )))
1290 |(% style="width:104px" %)Note|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D628TriggerMode2COptional29"]]
1291
1292 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
1293
1294
1295 Sets the current trigger based on the AV port. See also [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D628TriggerMode2COptional29"]]
1296
1297 (% style="color:#037691" %)**AT Command**
1298
1299 (% border="2" style="width:500px" %)
1300 |(% style="width:104px" %)**Command**|(% style="width:387px" %)AT+AVLIM= AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
1301 |(% style="width:104px" %)**Response**|(% style="width:387px" %)
1302 |(% style="width:104px" %)**Parameters**|(% style="width:387px" %)(((
1303 **AC1_LIMIT_LOW** : lower limit of the current to be checked
1304
1305 **AC1_LIMIT_HIGH **: higher limit of the current to be checked
1306
1307 **AC2_LIMIT_HIGH **: lower limit of the current to be checked
1308
1309 **AC2_LIMIT_LOW** : higher limit of the current to be checked
1310 )))
1311 |(% style="width:104px" %)**Example**|(% style="width:387px" %)(((
1312 AT+AVLIM=3000,6000,0,2000
1313
1314 Triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V
1315 )))
1316 |(% style="width:104px" %)**Note**|(% style="width:387px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D628TriggerMode2COptional29"]]
1317
1318 (% style="color:#037691" %)**Downlink Payload**
1319
1320 (% border="2" style="width:500px" %)
1321 |(% style="width:104px" %)**Payload**|(% style="width:394px" %)<prefix><AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
1322 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1323 **prefix **: AA 00 (hexadecimal)
1324
1325 **AV1_LIMIT_LOW** : lower limit of the voltage to be checked, two bytes in hexadecimal
1326
1327 **AV1_LIMIT_HIGH **: higher limit of the voltage to be checked, two bytes in hexadecimal
1328
1329 **AV2_LIMIT_HIGH **: lower limit of the voltage to be checked, two bytes in hexadecimal
1330
1331 **AV2_LIMIT_LOW** : higher limit of the voltage to be checked, two bytes in hexadecimal
1332 )))
1333 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1334 AA 00 **0B B8 17 70 00 00 07 D0**
1335
1336 Triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V.
1337 )))
1338 |(% style="width:104px" %)**Note**|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D628TriggerMode2COptional29"]]
1339
1340 ==== 3.4.2.11 Trigger – Set the minimum interval ====
1341
1342
1343 Sets the AV and AC trigger minimum interval. The device won't respond to a second trigger within this set time after the first trigger.
1344
1345 (% style="color:#037691" %)**AT Command**
1346
1347 (% border="2" style="width:500px" %)
1348 |(% style="width:113px" %)**Command**|(% style="width:385px" %)AT+ATDC=<time>
1349 |(% style="width:113px" %)**Response**|(% style="width:385px" %)
1350 |(% style="width:113px" %)**Parameters**|(% style="width:385px" %)(((
1351 **time** : in minutes
1352 )))
1353 |(% style="width:113px" %)**Example**|(% style="width:385px" %)(((
1354 AT+ATDC=5
1355
1356 The device won't respond to the second trigger within 5 minutes after the first trigger.
1357 )))
1358 |(% style="width:113px" %)**Note**|(% style="width:385px" %)(% style="color:red" %)**The time must be greater than 5 minutes.**
1359
1360 (% style="color:#037691" %)**Downlink Payload**
1361
1362 (% border="2" style="width:500px" %)
1363 |(% style="width:112px" %)**Payload**|(% style="width:386px" %)<prefix><time>
1364 |(% style="width:112px" %)**Parameters**|(% style="width:386px" %)(((
1365 **prefix** : AC (hexadecimal)
1366
1367 **time **: in minutes (two bytes in hexadecimal)
1368 )))
1369 |(% style="width:112px" %)**Example**|(% style="width:386px" %)(((
1370 AC **00 05**
1371
1372 The device won't respond to the second trigger within 5 minutes after the first trigger.
1373 )))
1374 |(% style="width:112px" %)**Note**|(% style="width:386px" %)(% style="color:red" %)**The time must be greater than 5 minutes.**
1375
1376 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1377
1378
1379 Controls the digital outputs DO1, DO2, and DO3
1380
1381 (% style="color:#037691" %)**AT Command**
1382
1383 There is no AT Command to control the Digital Output.
1384
1385
1386 (% style="color:#037691" %)**Downlink Payload**
1387
1388 (% border="2" style="width:500px" %)
1389 |(% style="width:115px" %)**Payload**|(% style="width:383px" %)<prefix><DO1><DO2><DO3>
1390 |(% style="width:115px" %)**Parameters**|(% style="width:383px" %)(((
1391 **prefix** : 02 (hexadecimal)
1392
1393 **DOI** : 01: Low,  00: High, 11: No action (1 byte in hex)
1394
1395 **DO2** : 01: Low,  00: High, 11: No action (1 byte in hex)
1396
1397 **DO3 **: 01: Low,  00: High, 11: No action (1 byte in hex)
1398 )))
1399 |(% style="width:115px" %)**Examples**|(% style="width:383px" %)(((
1400 02 **01 00 01**
1401
1402 If there is a load between V+ and DOx, it means DO1 is set to low, DO2 is set to high, and DO3 is set to low.
1403
1404 **More examples:**
1405
1406 (((
1407 01: Low,  00: High,  11: No action
1408
1409 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:383px" %)
1410 |(% style="background-color:#4f81bd; color:white; width:126px" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white; width:85px" %)**DO1**|(% style="background-color:#4f81bd; color:white; width:86px" %)**DO2**|(% style="background-color:#4f81bd; color:white; width:86px" %)**DO3**
1411 |(% style="width:126px" %)02  01  00  11|(% style="width:85px" %)Low|(% style="width:86px" %)High|(% style="width:86px" %)No Action
1412 |(% style="width:126px" %)02  00  11  01|(% style="width:85px" %)High|(% style="width:86px" %)No Action|(% style="width:86px" %)Low
1413 |(% style="width:126px" %)02  11  01  00|(% style="width:85px" %)No Action|(% style="width:86px" %)Low|(% style="width:86px" %)High
1414 )))
1415
1416 (((
1417 (((
1418 (% style="color:red" %)**Note: For the LT-22222-L, there is no DO3; the last byte can have any value.**
1419 )))
1420
1421 (((
1422 (% style="color:red" %)**The device will upload a packet if downlink code executes successfully.**
1423 )))
1424 )))
1425 )))
1426
1427 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1428
1429
1430 (% style="color:#037691" %)**AT command**
1431
1432 There is no AT command to control the digital output.
1433
1434
1435 (% style="color:#037691" %)**Downlink payload**
1436
1437 (% border="2" style="width:500px" %)
1438 |(% style="width:116px" %)**Prefix**|(% style="width:382px" %)0xA9
1439 |(% style="width:116px" %)**Parameters**|(% style="width:382px" %)(((
1440 **inverter_mode**: 1 byte in hex.
1441
1442 **01:** DO pins revert to their original state after the timeout.
1443 **00:** DO pins switch to an inverted state after the timeout.
1444
1445
1446 **DO1_control_method_and_port_status **- 1 byte in hex
1447
1448 0x01 : DO1 set to low
1449
1450 0x00 : DO1 set to high
1451
1452 0x11 : DO1 NO action
1453
1454
1455 **DO2_control_method_and_port_status** - 1 byte in hex
1456
1457 0x01 : DO2 set to low
1458
1459 0x00 : DO2 set to high
1460
1461 0x11 : DO2 NO action
1462
1463
1464 **DO3_control_method_and_port_status **- 1 byte in hex
1465
1466 0x01 : DO3 set to low
1467
1468 0x00 : DO3 set to high
1469
1470 0x11 : DO3 NO action
1471
1472
1473 **latching_time** : 4 bytes in hex
1474
1475 (% style="color:red" %)**Note: **
1476
1477 Since firmware v1.6.0, the latch time supports 4 bytes or 2 bytes
1478
1479 Before firmware v1.6.0, the latch time only supported 2 bytes.
1480
1481 (% style="color:red" %)**The device will uplink a packet if the downlink code executes successfully.**
1482 )))
1483 |(% style="width:116px" %)**Payload format**|(% style="width:382px" %)<prefix><inverter_mode><DO1_control_method_and_port_status><DO2_control_method_and_port_status><DO2_control_method_and_port_status><latching_time>
1484 |(% style="width:116px" %)**Example**|(% style="width:382px" %)(((
1485 **A9 01 01 01 01 07 D0**
1486
1487 DO1 pin, DO2 pin, and DO3 pin will be set to low, last for 2 seconds, and then revert to their original state.
1488
1489
1490 **A9 01 00 01 11 07 D0**
1491
1492 DO1 pin is set to high, DO2 pin is set to low, and DO3 pin takes no action. This lasts for 2 seconds and then reverts to the original state.
1493
1494
1495 **A9 00 00 00 00 07 D0**
1496
1497 DO1 pin, DO2 pin, and DO3 pin will be set to high, last for 2 seconds, and then all change to low.
1498
1499
1500 **A9 00 11 01 00 07 D0**
1501
1502 DO1 pin takes no action, DO2 pin is set to low, and DO3 pin is set to high. This lasts for 2 seconds, after which the DO1 pin takes no action, the DO2 pin is set to high, and the DO3 pin is set to low.
1503 )))
1504
1505 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1506
1507
1508 (% style="color:#037691" %)**AT Command:**
1509
1510 There is no AT Command to control the Relay Output.
1511
1512
1513 (% style="color:#037691" %)**Downlink Payload**
1514
1515 (% border="2" style="width:500px" %)
1516 |(% style="width:113px" %)**Prefix**|(% style="width:384px" %)0x03
1517 |(% style="width:113px" %)**Parameters**|(% style="width:384px" %)(((
1518 **RO1_status** : 1 byte in hex
1519
1520 00: Open
1521
1522 01: Close
1523
1524 11: No action
1525
1526
1527 **RO2_status** : 1 byte in hex
1528
1529 00: Open
1530
1531 01: Close
1532
1533 11: No action
1534 )))
1535 |(% style="width:113px" %)**Payload format**|(% style="width:384px" %)<prefix><RO1_status><RO2_status>
1536 |(% style="width:113px" %)**Example**|(% style="width:384px" %)(((
1537 (% border="2" %)
1538 |=Payload|=RO1|=RO2
1539 |03  00  11|Open|No action
1540 |03  01  11|Close|No action
1541 |03 11  00|No action|Open
1542 |03 11  01|No action|Close
1543 |03 00 00|Open|Open
1544 |03 01 01|Close|Close
1545 |03 01 00|Close|Open
1546 |03 00 01|Open|Close
1547
1548 (% style="color:red" %)**The device will transmit an uplink packet if the downlink payload is executed successfully.**
1549 )))
1550
1551 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1552
1553
1554 Controls the relay output time.
1555
1556
1557 (% style="color:#037691" %)**AT Command:**
1558
1559 There is no AT Command to control the Relay Output
1560
1561
1562 (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1563
1564 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Sets RO1/RO2 relays with time control
1565
1566
1567 This controls the relay output time and includes 4 bytes:
1568
1569 (% style="color:#4f81bd" %)**First byte **(%%)**:** Type code (0x05)
1570
1571 (% style="color:#4f81bd" %)**Second byte (aa)**(%%): Inverter Mode
1572
1573 01: Relays will change back to their original state after a timeout.
1574
1575 00: Relays will change to the inverter state after a timeout.
1576
1577
1578 (% style="color:#4f81bd" %)**Third byte (bb)**(%%): Control Method and Ports status:
1579
1580 [[image:image-20221008095908-1.png]]
1581
1582
1583 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh bytes (cc)**(%%): Latching time. Unit: ms
1584
1585
1586 (% style="color:red" %)**Note:**
1587
1588 Since firmware v1.6.0, the latch time supports both 4 bytes and 2 bytes.
1589
1590 Before firmware v1.6.0, the latch time only supported 2 bytes.
1591
1592
1593 (% style="color:red" %)**The device will uplink a packet if the downlink code executes successfully.**
1594
1595
1596 **Example payload:**
1597
1598 **~1. 05 01 11 07 D0**
1599
1600 Relay1 and Relay2 will be set to NC, lasting 2 seconds, then revert to their original state
1601
1602 **2. 05 01 10 07 D0**
1603
1604 Relay1 will change to NC, Relay2 will change to NO, lasting 2 seconds, and then both will revert to their original state.
1605
1606 **3. 05 00 01 07 D0**
1607
1608 Relay1 will change to NO, Relay2 will change to NC, lasting 2 seconds, then Relay1 will change to NC, and Relay2 will change to NO.
1609
1610 **4. 05 00 00 07 D0**
1611
1612 Relay1 and Relay2 will change to NO, lasting 2 seconds, then both will change to NC.
1613
1614
1615
1616 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1617
1618
1619 When the voltage exceeds the threshold, counting begins. For details, see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1620
1621 (% style="color:#037691" %)**AT Command**
1622
1623 (% border="2" style="width:500px" %)
1624 |(% style="width:137px" %)**Command**|(% style="width:361px" %)AT+VOLMAX=<voltage>,<logic>
1625 |(% style="width:137px" %)**Response**|(% style="width:361px" %)
1626 |(% style="width:137px" %)**Parameters**|(% style="width:361px" %)(((
1627 **voltage** : voltage threshold in mV
1628
1629 **logic**:
1630
1631 **0** : lower than
1632
1633 **1**: higher than
1634
1635 if you leave the logic parameter blank, it is considered 0
1636 )))
1637 |(% style="width:137px" %)**Examples**|(% style="width:361px" %)(((
1638 AT+VOLMAX=20000
1639
1640 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1641
1642 AT+VOLMAX=20000,0
1643
1644 If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1
1645
1646 AT+VOLMAX=20000,1
1647
1648 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1649 )))
1650
1651 (% style="color:#037691" %)**Downlink Payload**
1652
1653 (% border="2" style="width:500px" %)
1654 |(% style="width:140px" %)**Payload**|(% style="width:358px" %)<prefix><voltage><logic>
1655 |(% style="width:140px" %)**Parameters**|(% style="width:358px" %)(((
1656 **prefix** : A5 (hex)
1657
1658 **voltage** : voltage threshold in mV (2 bytes in hex)
1659
1660 **logic**: (1 byte in hexadecimal)
1661
1662 **0** : lower than
1663
1664 **1**: higher than
1665
1666 if you leave the logic parameter blank, it is considered 1 (higher than)
1667 )))
1668 |(% style="width:140px" %)**Example**|(% style="width:358px" %)(((
1669 A5 **4E 20**
1670
1671 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1672
1673 A5 **4E 20 00**
1674
1675 If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1
1676
1677 A5 **4E 20 01**
1678
1679 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1680 )))
1681
1682 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1683
1684
1685 This command allows users to pre-configure specific count numbers for various counting parameters such as Count1, Count2, or AVI1 Count. Use the AT command to set the desired count number for each configuration.
1686
1687 (% style="color:#037691" %)**AT Command**
1688
1689 (% border="2" style="width:500px" %)
1690 |(% style="width:134px" %)**Command**|(% style="width:364px" %)AT+SETCNT=<counting_parameter>,<number>
1691 |(% style="width:134px" %)**Response**|(% style="width:364px" %)
1692 |(% style="width:134px" %)**Parameters**|(% style="width:364px" %)(((
1693 **counting_parameter** :
1694
1695 1: COUNT1
1696
1697 2: COUNT2
1698
1699 3: AVI1 Count
1700
1701 **number** : Start number
1702 )))
1703 |(% style="width:134px" %)**Example**|(% style="width:364px" %)(((
1704 AT+SETCNT=1,10
1705
1706 Sets the COUNT1 to 10.
1707 )))
1708
1709 (% style="color:#037691" %)**Downlink Payload**
1710
1711 (% border="2" style="width:500px" %)
1712 |(% style="width:135px" %)**Payload**|(% style="width:363px" %)<prefix><counting_parameter><number>
1713 |(% style="width:135px" %)**Parameters**|(% style="width:363px" %)(((
1714 prefix : A8 (hex)
1715
1716 **counting_parameter** : (1 byte in hexadecimal)
1717
1718 1: COUNT1
1719
1720 2: COUNT2
1721
1722 3: AVI1 Count
1723
1724 **number** : Start number, 4 bytes in hexadecimal
1725 )))
1726 |(% style="width:135px" %)**Example**|(% style="width:363px" %)(((
1727 A8 **01 00 00 00 0A**
1728
1729 Sets the COUNT1 to 10.
1730 )))
1731
1732 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1733
1734
1735 This command clears the counting in counting mode.
1736
1737 (% style="color:#037691" %)**AT Command**
1738
1739 (% border="2" style="width:500px" %)
1740 |(% style="width:142px" %)**Command**|(% style="width:356px" %)AT+CLRCOUNT
1741 |(% style="width:142px" %)**Response**|(% style="width:356px" %)-
1742
1743 (% style="color:#037691" %)**Downlink Payload**
1744
1745 (% border="2" style="width:500px" %)
1746 |(% style="width:141px" %)**Payload**|(% style="width:357px" %)<prefix><clear?>
1747 |(% style="width:141px" %)**Parameters**|(% style="width:357px" %)(((
1748 prefix : A6 (hex)
1749
1750 clear? : 01 (hex)
1751 )))
1752 |(% style="width:141px" %)**Example**|(% style="width:357px" %)A6 **01**
1753
1754 ==== 3.4.2.19 Set the save intervals of the counting results, RO (Relay Output), and DO (Digital Output) states ====
1755
1756 This command configures the device to periodically save the counting results, RO (Relay Output), and DO (Digital Output) states to internal flash memory at a user-defined interval. By setting a save interval, the device ensures that critical data (counting values and output states) is preserved in case of power loss.
1757 The save interval can be adjusted to the user's needs, with a minimum value of (% style="color:blue" %)**30**(%%) seconds.
1758 The saved RO/DO states can be restored after a device reset by combining this function with the (% style="color:blue" %)**AT+RODORESET**(%%) command.
1759
1760 (% style="color:#037691" %)**AT Command**
1761
1762 (% border="2" style="width:500px" %)
1763 |(% style="width:124px" %)**Command**|(% style="width:374px" %)AT+COUTIME=<time>
1764 |(% style="width:124px" %)**Response**|(% style="width:374px" %)
1765 |(% style="width:124px" %)**Parameters**|(% style="width:374px" %)time : seconds (0 to 16777215)
1766 |(% style="width:124px" %)**Example**|(% style="width:374px" %)(((
1767 AT+COUTIME=60
1768
1769 Sets the device to save its counting results, RO and DO states to the memory every 60 seconds.
1770 )))
1771
1772 (% style="color:#037691" %)**Downlink Payload**
1773
1774 (% border="2" style="width:500px" %)
1775 |(% style="width:123px" %)**Payload**|(% style="width:375px" %)<prefix><time>
1776 |(% style="width:123px" %)**Parameters**|(% style="width:375px" %)(((
1777 prefix : A7
1778
1779 time : seconds, 3 bytes in hexadecimal
1780 )))
1781 |(% style="width:123px" %)**Example**|(% style="width:375px" %)(((
1782 A7 **00 00 3C**
1783
1784 SSets the device to save its counting results, RO and DO states to the memory every 60 seconds.
1785 )))
1786
1787 ==== 3.4.2.20 Reset saved RO and DO states ====
1788
1789
1790 This command allows you to reset the saved relay output (RO) and digital output (DO) states when the device joins the network. By configuring this setting, you can control whether the device should retain or reset the relay states after a reset and rejoin to the network.
1791
1792 (% style="color:#037691" %)**AT Command**
1793
1794 (% border="2" style="width:500px" %)
1795 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+RODORESET=<state>
1796 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1797 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1798 **state** :
1799
1800 **0** : RODO will close when the device joins the network. (default)
1801
1802 **1**: After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1803 )))
1804 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1805 (% style="color:blue" %)**AT+RODORESET=1 **
1806
1807 RODO will close when the device joins the network. (default)
1808
1809 (% style="color:blue" %)**AT+RODORESET=0 **
1810
1811 After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1812 )))
1813
1814 (% style="color:#037691" %)**Downlink Payload**
1815
1816 (% border="2" style="width:500px" %)
1817 |(% style="width:127px" %)**Payload**|(% style="width:371px" %)<prefix><state>
1818 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1819 **prefix** : AD
1820
1821 **state** :
1822
1823 **0** : RODO will close when the device joins the network. (default), represents as 1 byte in hexadecimal.
1824
1825 **1**: After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network. - represents as 1 byte in hexadecimal
1826 )))
1827 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1828 AD **01**
1829
1830 RODO will close when the device joins the network. (default)
1831
1832 AD **00**
1833
1834 After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1835 )))
1836
1837 ==== 3.4.2.21 Encrypted payload ====
1838
1839
1840 This command allows you to configure whether the device should upload data in an encrypted format or in plaintext. By default, the device encrypts the payload before uploading. You can toggle this setting to either upload encrypted data or transmit it without encryption.
1841
1842 (% style="color:#037691" %)**AT Command:**
1843
1844 (% border="2" style="width:500px" %)
1845 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+DECRYPT=<state>
1846 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1847 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1848 **state** :
1849
1850 **1** : The payload is uploaded without encryption
1851
1852 **0** : The payload is encrypted when uploaded (default)
1853 )))
1854 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1855 AT+DECRYPT=1
1856
1857 The payload is uploaded without encryption
1858
1859 AT+DECRYPT=0
1860
1861 The payload is encrypted when uploaded (default)
1862 )))
1863
1864 There is no downlink payload for this configuration.
1865
1866
1867 ==== 3.4.2.22 Get sensor value ====
1868
1869
1870 This command allows you to retrieve and optionally uplink sensor readings through the serial port.
1871
1872 (% style="color:#037691" %)**AT Command**
1873
1874 (% border="2" style="width:500px" %)
1875 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+GETSENSORVALUE=<state>
1876 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1877 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1878 **state** :
1879
1880 **0 **: Retrieves the current sensor reading via the serial port.
1881
1882 **1 **: Retrieves and uploads the current sensor reading via the serial port.
1883 )))
1884 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1885 AT+GETSENSORVALUE=0
1886
1887 Retrieves the current sensor reading via the serial port.
1888
1889 AT+GETSENSORVALUE=1
1890
1891 Retrieves and uplinks the current sensor reading via the serial port.
1892 )))
1893
1894 There is no downlink payload for this configuration.
1895
1896
1897 ==== 3.4.2.23 Resetting the downlink packet count ====
1898
1899
1900 This command manages how the node handles mismatched downlink packet counts. It offers two modes: one disables the reception of further downlink packets if discrepancies occur, while the other resets the downlink packet count to align with the server, ensuring continued communication.
1901
1902 (% style="color:#037691" %)**AT Command**
1903
1904 (% border="2" style="width:500px" %)
1905 |(% style="width:130px" %)**Command**|(% style="width:368px" %)AT+DISFCNTCHECK=<state>
1906 |(% style="width:130px" %)**Response**|(% style="width:368px" %)(((
1907
1908 )))
1909 |(% style="width:130px" %)**Parameters**|(% style="width:368px" %)(((
1910 **state **:
1911
1912 **0** : When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node stops receiving further downlink packets (default).
1913
1914
1915 **1** : When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node resets its downlink packet count to match the server's, ensuring consistency.
1916 )))
1917 |(% style="width:130px" %)**Example**|(% style="width:368px" %)(((
1918 AT+DISFCNTCHECK=0
1919
1920 When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node stops receiving further downlink packets (default).
1921
1922 AT+DISFCNTCHECK=1
1923
1924 When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node resets its downlink packet count to match the server's, ensuring consistency.
1925 )))
1926
1927 There is no downlink payload for this configuration.
1928
1929
1930 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1931
1932
1933 This command controls the behavior of the node when the combined size of the MAC commands (MACANS) from the server and the payload exceed the allowed byte limit for the current data rate (DR). The command provides two modes: one enables splitting the data into batches to ensure compliance with the byte limit, while the other prioritizes the payload and ignores the MACANS in cases of overflow.
1934
1935 (% style="color:#037691" %)**AT Command**
1936
1937 (% border="2" style="width:500px" %)
1938 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+DISMACANS=<state>
1939 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1940 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1941 **state** :
1942
1943 **0** : When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1944
1945 **1** : When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1946 )))
1947 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1948 AT+DISMACANS=0
1949
1950 When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1951
1952 AT+DISMACANS=1
1953
1954 When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1955 )))
1956
1957 (% style="color:#037691" %)**Downlink Payload**
1958
1959 (% border="2" style="width:500px" %)
1960 |(% style="width:126px" %)**Payload**|(% style="width:372px" %)<prefix><state>
1961 |(% style="width:126px" %)**Parameters**|(% style="width:372px" %)(((
1962 **prefix** : 21
1963
1964 **state** : (2 bytes in hexadecimal)
1965
1966 **0** : When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1967
1968 **1 **: When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1969 )))
1970 |(% style="width:126px" %)**Example**|(% style="width:372px" %)(((
1971 21 **00 01**
1972
1973 Set DISMACANS=1
1974 )))
1975
1976 ==== 3.4.2.25 Copy downlink to uplink ====
1977
1978
1979 This command enables the device to immediately uplink the payload of a received downlink packet back to the server. The command allows for quick data replication from downlink to uplink, with a fixed port number of 100.
1980
1981 (% style="color:#037691" %)**AT Command**(%%)**:**
1982
1983 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving a downlink payload from the server, the device will immediately uplink the payload back to the server using port number 100.
1984
1985 Example:**aa xx xx xx xx**         ~/~/ **aa** indicates whether the configuration has changed: **00** means YES, and **01** means NO. **xx xx xx xx** are the bytes uplinked back.
1986
1987
1988 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1989
1990 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1991
1992 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1993
1994 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1995
1996
1997 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1998
1999 There is no downlink option available for this feature.
2000
2001
2002 ==== 3.4.2.26 Query firmware version, frequency band, subband, and TDC time ====
2003
2004
2005 This command is used to query key information about the device, including its firmware version, frequency band, subband, and TDC time. By sending the specified payload as a downlink, the server can retrieve this essential data from the device.
2006
2007 * (((
2008 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
2009
2010 (% style="color:blue" %)**26 01  ** (%%) ~/~/  The downlink payload 26 01 is used to query the device's firmware version, frequency band, subband, and TDC time.
2011
2012
2013 )))
2014
2015 **Example:**
2016
2017 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
2018
2019
2020 == 3.5 Integrating with ThingsEye.io ==
2021
2022
2023 The Things Stack application supports integration with ThingsEye.io. Once integrated, ThingsEye.io acts as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
2024
2025
2026 === 3.5.1 Configuring The Things Stack ===
2027
2028
2029 We use The Things Stack Sandbox in this example:
2030
2031 * In **The Things Stack Sandbox**, go to the **Application **for the LT-22222-LA you added.
2032 * Select **MQTT** under **Integrations** in the left menu.
2033 * In the **Connection information **section, under **Connection credentials**, The Things Stack displays an auto-generated **username**. You can use it or provide a new one.
2034 * Click the **Generate new API key** button to generate a password. You can view it by clicking on the **visibility toggle/eye** icon. The API key works as the password.
2035
2036 {{info}}
2037 The username and  password (API key) you created here are required in the next section.
2038 {{/info}}
2039
2040 [[image:tts-mqtt-integration.png]]
2041
2042
2043 === 3.5.2 Configuring ThingsEye.io ===
2044
2045
2046 The ThingsEye.io IoT platform is not open for self-registration at the moment. If you are interested in testing the platform, please send your project information to admin@thingseye.io, and we will create an account for you.
2047
2048 * Login to your [[ThingsEye.io >>https://thingseye.io]]account.
2049 * Under the **Integrations center**, click **Integrations**.
2050 * Click the **Add integration** button (the button with the **+** symbol).
2051
2052 [[image:thingseye-io-step-1.png]]
2053
2054
2055 On the **Add integration** window, configure the following:
2056
2057 **Basic settings:**
2058
2059 * Select **The Things Stack Community** from the **Integration type** list.
2060 * Enter a suitable name for your integration in the **Name **text** **box or keep the default name.
2061 * Ensure the following options are turned on.
2062 ** Enable integration
2063 ** Debug mode
2064 ** Allow creating devices or assets
2065 * Click the **Next** button. you will be navigated to the **Uplink data converter** tab.
2066
2067 [[image:thingseye-io-step-2.png]]
2068
2069
2070 **Uplink data converter:**
2071
2072 * Click the **Create new** button if it is not selected by default.
2073 * Enter a suitable name for the uplink data converter in the **Name **text** **box or keep the default name.
2074 * Click the **JavaScript** button.
2075 * Paste the uplink decoder function into the text area (first, delete the default code). The demo uplink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]].
2076 * Click the **Next** button. You will be navigated to the **Downlink data converter **tab.
2077
2078 [[image:thingseye-io-step-3.png]]
2079
2080
2081 **Downlink data converter (this is an optional step):**
2082
2083 * Click the **Create new** button if it is not selected by default.
2084 * Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name.
2085 * Click the **JavaScript** button.
2086 * Paste the downlink decoder function into the text area (first, delete the default code). The demo downlink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Downlink_Converter.js]].
2087 * Click the **Next** button. You will be navigated to the **Connection** tab.
2088
2089 [[image:thingseye-io-step-4.png]]
2090
2091
2092 **Connection:**
2093
2094 * Choose **Region** from the **Host type**.
2095 * Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...).
2096 * Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The **username **and **password **can be found on the MQTT integration page of your The Things Stack account (see **3.5.1 Configuring The Things Stack**).
2097 * Click the **Check connection** button to test the connection. If the connection is successful, you will see the message saying **Connected**.
2098
2099 [[image:message-1.png]]
2100
2101
2102 * Click the **Add** button.
2103
2104 [[image:thingseye-io-step-5.png]]
2105
2106
2107 Your integration has been added to the** Integrations** list and will be displayed on the **Integrations** page. Check whether the status is shown as **Active**. If not, review your configuration settings and correct any errors.
2108
2109 [[image:thingseye.io_integrationsCenter_integrations.png]]
2110
2111
2112 ==== 3.5.2.1 Viewing integration details ====
2113
2114
2115 Click on your integration from the list. The **Integration details** window will appear with the **Details **tab selected. The **Details **tab shows all the settings you have provided for this integration.
2116
2117 [[image:integration-details.png]]
2118
2119
2120 If you want to edit the settings you have provided, click on the **Toggle edit mode** button. Once you have done click on the **Apply changes **button.
2121
2122 {{info}}
2123 See also [[ThingsEye documentation>>https://wiki.thingseye.io/xwiki/bin/view/Main/]].
2124 {{/info}}
2125
2126
2127 ==== 3.5.2.2 Viewing events ====
2128
2129
2130 The **Events **tab displays all the uplink messages from the LT-22222-L.
2131
2132 * Select **Debug **from the **Event type** dropdown.
2133 * Select the** time frame** from the **time window**.
2134
2135 [[image:thingseye-events.png]]
2136
2137
2138 * To view the **JSON payload** of a message, click on the **three dots (...)** in the **Message** column of the desired message.
2139
2140 [[image:thingseye-json.png]]
2141
2142
2143 ==== 3.5.2.3 Deleting an integration ====
2144
2145
2146 If you want to delete an integration, click the **Delete integratio**n button on the Integrations page.
2147
2148
2149 ==== 3.5.2.4 Viewing sensor data on a dashboard ====
2150
2151
2152 You can create a dashboard with ThingsEye to visualize the sensor data coming from the LT-22222-LA. The following image shows a dashboard created for the LT-22222-LA. See **Creating a dashboard** in ThingsEye documentation for more information.
2153
2154 [[image:lt-22222-l-dashboard.png]]
2155
2156
2157 == 3.6 Interface Details ==
2158
2159 === 3.6.1 Digital Input Ports: DI1/DI2/DI3 (For LT-33222-L, Low Active) ===
2160
2161
2162 Supports** NPN-type **sensors.
2163
2164 [[image:1653356991268-289.png]]
2165
2166
2167 === 3.6.2 Digital Input Ports: DI1/DI2 ===
2168
2169
2170 (((
2171 The DI ports of the LT-22222-LA can support **NPN**, **PNP**, or **dry contact** output sensors.
2172 )))
2173
2174 (((
2175 (((
2176 The part of the internal circuit of the LT-22222-LA shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
2177
2178 [[image:1653357170703-587.png]]
2179 )))
2180 )))
2181
2182
2183 (((
2184 (((
2185 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
2186 )))
2187 )))
2188
2189 (((
2190
2191 )))
2192
2193 (((
2194 (% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
2195 )))
2196
2197 (((
2198 This type of sensor outputs a low (GND) signal when active.
2199 )))
2200
2201 * (((
2202 Connect the sensor's output to DI1-
2203 )))
2204 * (((
2205 Connect the sensor's VCC to DI1+.
2206 )))
2207
2208 (((
2209 When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be:
2210 )))
2211
2212 (((
2213 **= DI1**+** / 1K.**
2214 )))
2215
2216 (((
2217 For example, if** DI1+ **= **12V**, the resulting current is = 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
2218 )))
2219
2220 (((
2221
2222 )))
2223
2224 (((
2225 (% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
2226 )))
2227
2228 (((
2229 This type of sensor outputs a high signal (e.g., 24V) when active.
2230 )))
2231
2232 * (((
2233 Connect the sensor's output to DI1+
2234 )))
2235 * (((
2236 Connect the sensor's GND DI1-.
2237 )))
2238
2239 (((
2240 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
2241 )))
2242
2243 (((
2244 **= DI1+ / 1K.**
2245 )))
2246
2247 (((
2248 If **DI1+ = 24V**, the resulting current is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
2249 )))
2250
2251 (((
2252
2253 )))
2254
2255 (((
2256 (% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
2257 )))
2258
2259 (((
2260 Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
2261 )))
2262
2263 * (((
2264 Connect the sensor's output to DI1+ with a 50K resistor in series.
2265 )))
2266 * (((
2267 Connect the sensor's GND DI1-.
2268 )))
2269
2270 (((
2271 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
2272 )))
2273
2274 (((
2275 **= DI1+ / 51K.**
2276 )))
2277
2278 (((
2279 If the sensor output is 220V, then (% wfd-invisible="true" id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
2280 )))
2281
2282
2283
2284
2285
2286
2287
2288 (% style="color:blue" %)**Example 4**(%%): Connecting to a Dry Contact sensor
2289
2290 From the DI port circuit above, activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference on its own.
2291
2292 To detect a Dry Contact, you can supply a power source to one of the pins of the Dry Contact. A reference circuit diagram is shown below.
2293
2294 [[image:image-20230616235145-1.png]]
2295
2296 (% style="color:blue" %)**Example 5**(%%): Connecting to an Open Collector
2297
2298
2299 [[image:image-20240219115718-1.png]]
2300
2301 === 3.6.3 Digital Output Ports: DO1/DO2 ===
2302
2303
2304 (% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
2305
2306 (% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
2307
2308 [[image:1653357531600-905.png]]
2309
2310
2311 === 3.6.4 Analog Input Interfaces ===
2312
2313
2314 The analog input interface is shown below. The LT-22222-LA will measure the IN2 voltage to calculate the current passing through the load. The formula is:
2315
2316
2317 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
2318
2319 [[image:1653357592296-182.png]]
2320
2321 Example: Connecting a 4~~20mA sensor
2322
2323 We will use the wind speed sensor as an example for reference only.
2324
2325
2326 (% style="color:blue" %)**Specifications of the wind speed sensor:**
2327
2328 (% style="color:red" %)**Red:  12~~24V**
2329
2330 (% style="color:#ffc000" %)**Yellow:  4~~20mA**
2331
2332 **Black:  GND**
2333
2334 **Connection diagram:**
2335
2336 [[image:1653357640609-758.png]]
2337
2338 [[image:1653357648330-671.png]]
2339
2340
2341 Example: Connecting to a regulated power supply to measure voltage
2342
2343 [[image:image-20230608101532-1.png]]
2344
2345 [[image:image-20230608101608-2.jpeg]]
2346
2347 [[image:image-20230608101722-3.png]]
2348
2349
2350 (% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
2351
2352 (% style="color:red" %)**Red:  12~~24v**
2353
2354 **Black:  GND**
2355
2356
2357 === 3.6.5 Relay Output ===
2358
2359
2360 (((
2361 The LT-22222-LA has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
2362
2363 (% style="color:red" %)**Note:**(%%) The ROx pins will be in the Open (NO) state when the LT-22222-LA is powered off.
2364 )))
2365
2366 [[image:image-20220524100215-9.png]]
2367
2368 [[image:image-20220524100215-10.png]]
2369
2370
2371
2372 == 3.7 LED Indicators ==
2373
2374
2375 The table below lists the behaviour of LED indicators for each port function.
2376
2377 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
2378 |(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
2379 |**PWR**|Always on when there is power
2380 |**TX**|(((
2381 (((
2382 Device booting: TX blinks 5 times.
2383 )))
2384
2385 (((
2386 Successful network joins: TX remains ON for 5 seconds.
2387 )))
2388
2389 (((
2390 Transmit a LoRa packet: TX blinks once
2391 )))
2392 )))
2393 |**RX**|RX blinks once when a packet is received.
2394 |**DO1**|For LT-22222-LA: ON when DO1 is low, OFF when DO1 is high
2395 |**DO2**|For LT-22222-LA: ON when DO2 is low, OFF when DO2 is high
2396 |**DI1**|(((
2397 For LT-22222-LA: ON when DI1 is high, OFF when DI1 is low
2398 )))
2399 |**DI2**|(((
2400 For LT-22222-LA: ON when DI2 is high, OFF when DI2 is low
2401 )))
2402 |**RO1**|For LT-22222-LA: ON when RO1 is closed, OFF when RO1 is open
2403 |**RO2**|For LT-22222-LA: ON when RO2 is closed, OFF when RO2 is open
2404
2405 = 4. Using AT Commands =
2406
2407
2408 The LT-22222-LA supports programming using AT Commands.
2409
2410
2411 == 4.1 Connecting the LT-22222-LA to a PC ==
2412
2413
2414 (((
2415 You can use a USB-to-TTL adapter/converter along with a 3.5mm Program Cable to connect the LT-22222-LA to a PC, as shown below.
2416
2417 (% title="Click and drag to resize" %)​​[[image:1751525987713-642.png]]​
2418
2419
2420 )))
2421
2422 (((
2423 On the PC, you need to set the (% style="color:#4f81bd" %)**serial tool **(%%)(such as [[PuTTY>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]] or [[SecureCRT>>https://www.vandyke.com/cgi-bin/releases.php?product=securecrt]]) to a baud rate of (% style="color:green" %)**9600**(%%) to access the serial console of LT-22222-LA. Access to AT commands is disabled by default, and a password (default: (% style="color:green" %)**123456**)(%%) must be entered to enable AT command access, as shown below:
2424 )))
2425
2426 [[image:1653358355238-883.png]]
2427
2428
2429 (((
2430 == 4.2 LT-22222-LA related AT commands ==
2431
2432
2433 )))
2434
2435 (((
2436 The following is the list of all the AT commands related to the LT-22222-LA, except for those used for switching between working modes.
2437
2438 * **##AT##+<CMD>?** : Help on <CMD>
2439 * **##AT##+<CMD>** : Run <CMD>
2440 * **##AT##+<CMD>=<value>** : Set the value
2441 * **##AT##+<CMD>=?** : Get the value
2442 * ##**ATZ**##: Trigger a reset of the MCU
2443 * ##**AT+FDR**##: Reset Parameters to factory default, reserve keys 
2444 * **##AT+DEUI##**: Get or set the Device EUI (DevEUI)
2445 * **##AT+DADDR##**: Get or set the Device Address (DevAddr)
2446 * **##AT+APPKEY##**: Get or set the Application Key (AppKey)
2447 * ##**AT+NWKSKEY**##: Get or set the Network Session Key (NwkSKey)
2448 * **##AT+APPSKEY##**: Get or set the Application Session Key (AppSKey)
2449 * **##AT+APPEUI##**: Get or set the Application EUI (AppEUI)
2450 * **##AT+ADR##**: Get or set the Adaptive Data Rate setting. (0: OFF, 1: ON)
2451 * ##**AT+TXP**##: Get or set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Specification)
2452 * **##AT+DR##**:  Get or set the Data Rate. (0-7 corresponding to DR_X)  
2453 * **##AT+DCS##**: Get or set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
2454 * ##**AT+PNM**##: Get or set the public network mode. (0: off, 1: on)
2455 * ##**AT+RX2FQ**##: Get or set the Rx2 window frequency
2456 * ##**AT+RX2DR**##: Get or set the Rx2 window data rate (0-7 corresponding to DR_X)
2457 * ##**AT+RX1DL**##: Get or set the delay between the end of the Tx and the Rx Window 1 in ms
2458 * ##**AT+RX2DL**##: Get or set the delay between the end of the Tx and the Rx Window 2 in ms
2459 * ##**AT+JN1DL**##: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
2460 * ##**AT+JN2DL**##: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
2461 * ##**AT+NJM**##: Get or set the Network Join Mode. (0: ABP, 1: OTAA)
2462 * ##**AT+NWKID**##: Get or set the Network ID
2463 * ##**AT+FCU**##: Get or set the Frame Counter Uplink (FCntUp)
2464 * ##**AT+FCD**##: Get or set the Frame Counter Downlink (FCntDown)
2465 * ##**AT+CLASS**##: Get or set the Device Class
2466 * ##**AT+JOIN**##: Join Network
2467 * ##**AT+NJS**##: Get OTAA Join Status
2468 * ##**AT+SENDB**##: Send hexadecimal data along with the application port
2469 * ##**AT+SEND**##: Send text data along with the application port
2470 * ##**AT+RECVB**##: Print the last received data in binary format (with hexadecimal values)
2471 * ##**AT+RECV**##: Print the last received data in raw format
2472 * ##**AT+VER**##: Get the current image version and Frequency Band
2473 * ##**AT+CFM**##: Get or Set the confirmation mode (0-1)
2474 * ##**AT+CFS**##: Get confirmation status of the last AT+SEND (0-1)
2475 * ##**AT+SNR**##: Get the SNR of the last received packet
2476 * ##**AT+RSSI**##: Get the RSSI of the last received packet
2477 * ##**AT+TDC**##: Get or set the application data transmission interval in ms
2478 * ##**AT+PORT**##: Get or set the application port
2479 * ##**AT+DISAT**##: Disable AT commands
2480 * ##**AT+PWORD**##: Set password, max 9 digits
2481 * ##**AT+CHS**##: Get or set the Frequency (Unit: Hz) for Single Channel Mode
2482 * ##**AT+CHE**##: Get or set eight channels mode, Only for US915, AU915, CN470
2483 * ##**AT+CFG**##: Print all settings
2484 )))
2485
2486
2487 == 4.2 Common AT Command Sequence ==
2488
2489 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
2490
2491 (((
2492
2493
2494 (((
2495 (% style="color:blue" %)**If the device has not yet joined the network:**
2496 )))
2497 )))
2498
2499 (((
2500 (% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT command access**##
2501 )))
2502
2503 (((
2504 (% style="background-color:#dcdcdc" %)##**AT+FDR ~/~/Reset parameters to factory default, Reserve keys**##
2505 )))
2506
2507 (((
2508 (% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT command access**##
2509 )))
2510
2511 (((
2512 (% style="background-color:#dcdcdc" %)##**AT+NJM=0 ~/~/Set to ABP mode**##
2513 )))
2514
2515 (((
2516 (% style="background-color:#dcdcdc" %)##**ATZ ~/~/Reset MCU**##
2517 )))
2518
2519
2520 (((
2521 (% style="color:blue" %)**If the device has already joined the network:**
2522 )))
2523
2524 (((
2525 (% style="background-color:#dcdcdc" %)##**AT+NJM=0**##
2526 )))
2527
2528 (((
2529 (% style="background-color:#dcdcdc" %)##**ATZ**##
2530 )))
2531
2532
2533 (((
2534
2535 )))
2536
2537
2538 === 4.2.3 Change to Class A ===
2539
2540
2541 (((
2542 (% style="color:blue" %)**If the sensor has JOINED:**
2543
2544 (% style="background-color:#dcdcdc" %)**AT+CLASS=A**
2545
2546 (% style="background-color:#dcdcdc" %)**ATZ**
2547 )))
2548
2549
2550 = 5. Case Study =
2551
2552 == 5.1 Counting how many objects pass through the flow line ==
2553
2554
2555 See [[How to set up to setup counting for objects passing through the flow line>>https://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LT-22222-L/How%20to%20set%20up%20to%20count%20objects%20pass%20in%20flow%20line/]].
2556
2557
2558 = 6. FAQ =
2559
2560
2561 This section contains some frequently asked questions, which can help you resolve common issues and find solutions quickly.
2562
2563
2564 == 6.1 OTA Firmware update ==
2565
2566
2567 (% class="wikigeneratedid" %)
2568 User can change firmware LT-22222-LA to:
2569
2570 * Change Frequency band/ region.
2571 * Update with new features.
2572 * Fix bugs.
2573
2574 Firmware and changelog can be downloaded from : **[[Firmware download link>>https://www.dropbox.com/sh/fis3g6nmhv0eokg/AAC6BcCZaX4BdqZkduUvZ3jIa?dl=0]]**
2575
2576
2577 Methods to Update Firmware:
2578
2579 * (Recommanded way) OTA firmware update via wireless : **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
2580 * Update through UART TTL interface : **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
2581
2582
2583
2584
2585 (((
2586 (((
2587 == 6.2 How to change the LoRaWAN frequency band/region? ==
2588
2589
2590 )))
2591 )))
2592
2593 (((
2594 You can follow the introductions on [[how to upgrade the image>>https://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LT-22222-LA/#H6.1OTAFirmwareupdate]]. When downloading, select the required image file.
2595 )))
2596
2597 (((
2598
2599
2600 == 6.3 How to set up LT-22222-LA to work with a Single Channel Gateway, such as LG01/LG02? ==
2601
2602
2603 )))
2604
2605 (((
2606 (((
2607 In this case, you need to set the LT-22222-LA to work in ABP mode and transmit on only one frequency.
2608 )))
2609 )))
2610
2611 (((
2612 (((
2613 We assume you have an LG01/LG02 working on the frequency 868400000. Below are the steps.
2614
2615
2616 )))
2617 )))
2618
2619 (((
2620 (% style="color:#0000ff" %)**Step 1**(%%): Log in to The Things Stack Sandbox account and create an ABP device in the application. To do this, use the manual registration option as explained in section 3.2.2.2, //Adding a Device Manually//. Select //Activation by Personalization (ABP)// under Activation Mode. Enter the DevEUI exactly as shown on the registration information sticker, then generate the Device Address, Application Session Key (AppSKey), and Network Session Key (NwkSKey).
2621
2622
2623 )))
2624
2625 (((
2626
2627 )))
2628
2629 {{warning}}
2630 Ensure that the Device Address (DevAddr) and the two keys match between the LT-22222-L and The Things Stack. You can modify them either in The Things Stack or on the LT-22222-L to make them align. In The Things Stack, you can configure the NwkSKey and AppSKey on the settings page, but note that the Device Address is generated by The Things Stack.
2631 {{/warning}}
2632
2633
2634 (((
2635 (% style="color:blue" %)**Step 2**(%%)**:  **(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)Run AT commands to configure the LT-22222-LA to operate in single-frequency and ABP mode. The AT commands are as follows:
2636
2637
2638 )))
2639
2640 (((
2641 (% style="background-color:#dcdcdc" %)**123456** (%%) : Enter the password to enable AT access.
2642
2643 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Reset parameters to factory default, keeping keys reserved.
2644
2645 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) : Set to ABP mode.
2646
2647 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) : Disable the Adaptive Data Rate (ADR).
2648
2649 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) : Set Data Rate (Use AT+DR=3 for the 915 MHz band).
2650
2651 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) : Set transmit interval to 60 seconds.
2652
2653 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4 MHz.
2654
2655 (% style="background-color:#dcdcdc" %)**AT+DADDR=xxxx**(%%) : Set the Device Address (DevAddr)
2656
2657 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:700; text-decoration:none; white-space:pre-wrap" %)**AT+APPKEY=xxxx**(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %): Get or set the Application Key (AppKey)
2658
2659 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)**AT+NWKSKEY=xxxx**: Get or set the Network Session Key (NwkSKey)
2660
2661 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)**AT+APPSKEY=xxxx**: Get or set the Application Session Key (AppSKey)
2662
2663 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) : Reset MCU.
2664 )))
2665
2666
2667 (((
2668 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)The following figure shows the screenshot of the command set above, issued using a serial tool:
2669 )))
2670
2671 [[image:1653360498588-932.png]]
2672
2673
2674 == 6.4 How to change the uplink interval? ==
2675
2676
2677 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2678
2679
2680 == 6.5 Can I see the counting event in the serial output? ==
2681
2682
2683 (((
2684 You can run the AT command **AT+DEBUG** to view the counting event in the serial output. If the firmware is too old and doesn’t support AT+DEBUG, update to the latest firmware first.
2685
2686
2687
2688 )))
2689
2690 (((
2691 == 6.6 Why does the relay output default to an open relay after the LT-22222-LA is powered off? ==
2692
2693
2694 * If the device is not properly shut down and is directly powered off.
2695 * It will default to a power-off state.
2696 * In modes 2 to 5, the DO/RO status and pulse count are saved to flash memory.
2697 * After a restart, the status before the power failure will be read from Flash.
2698
2699 == 6.7 Can I set up LT-22222-LA as an NC (Normally Closed) relay? ==
2700
2701
2702 The LT-22222-LA's built-in relay is Normally Open (NO). You can use an external relay to achieve a Normally Closed (NC) configuration. The circuit diagram is shown below:
2703
2704 [[image:image-20221006170630-1.png]]
2705
2706
2707
2708
2709 == 6.8 Why does the LT-22222-LA always report 15.585V when measuring the AVI? ==
2710
2711
2712 It is likely that the GND is not connected during the measurement, or that the wire connected to the GND is loose.
2713
2714
2715 = 7. Troubleshooting =
2716
2717
2718 This section provides some known troubleshooting tips.
2719
2720
2721 )))
2722
2723 (((
2724 (((
2725 == 7.1 Downlink isn't working. How can I solve this? ==
2726
2727
2728 )))
2729 )))
2730
2731 (((
2732 Please refer to this link for debugging instructions: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2733 )))
2734
2735 (((
2736
2737
2738 == 7.2 Having trouble uploading an image? ==
2739
2740
2741 )))
2742
2743 (((
2744 Please refer to this link for troubleshooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2745 )))
2746
2747 (((
2748
2749
2750 == 7.3 Why can't I join TTN in the US915 /AU915 bands? ==
2751
2752
2753 )))
2754
2755 (((
2756 It might be related to the channel mapping. [[Please refer to this link for details.>>https://github.com/dragino/LT-22222-L/releases]]
2757 )))
2758
2759
2760 == 7.4 Why can the LT-22222-LA perform uplink normally, but cannot receive downlink? ==
2761
2762
2763 The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue.
2764 Use this command to synchronize their counts: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resettingthedownlinkpacketcount"]]
2765
2766
2767 = 8. Ordering information =
2768
2769
2770 (% style="color:#4f81bd" %)**LT-22222-LA-XXX:**
2771
2772 (% style="color:#4f81bd" %)**XXX:**
2773
2774 * (% style="color:red" %)**EU433**(%%): LT with frequency bands EU433
2775 * (% style="color:red" %)**EU868**(%%): LT with frequency bands EU868
2776 * (% style="color:red" %)**KR920**(%%): LT with frequency bands KR920
2777 * (% style="color:red" %)**CN470**(%%): LT with frequency bands CN470
2778 * (% style="color:red" %)**AS923**(%%): LT with frequency bands AS923
2779 * (% style="color:red" %)**AU915**(%%): LT with frequency bands AU915
2780 * (% style="color:red" %)**US915**(%%): LT with frequency bands US915
2781 * (% style="color:red" %)**IN865**(%%): LT with frequency bands IN865
2782 * (% style="color:red" %)**CN779**(%%): LT with frequency bands CN779
2783
2784 = 9. Package information =
2785
2786
2787 (% style="color:#037691" %)**Package Includes**:
2788
2789 * 1 x LT-22222-LA I/O Controller
2790 * 1 x LoRa antenna matched to the frequency of the LT-22222-LA
2791 * 1 x bracket for DIN rail mounting
2792 * 1 x 3.5 mm programming cable
2793
2794 (% style="color:#037691" %)**Dimension and weight**:
2795
2796 * Package Size / pcs : 145×80×50 mm
2797 * Weight / pcs : 180 g
2798
2799 = 10. Support =
2800
2801
2802 * (((
2803 Support is available Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different time zones, we cannot offer live support. However, your questions will be answered as soon as possible within the aforementioned schedule.
2804 )))
2805 * (((
2806 Please provide as much information as possible regarding your inquiry (e.g., product models, a detailed description of the problem, steps to replicate it, etc.) and send an email to [[support@dragino.cc>>mailto:support@dragino.cc]]
2807
2808
2809 )))
2810
2811 = 11. Reference​​​​​ =
2812
2813
2814 * LT-22222-LA: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2815 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2816 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]