Version 53.3 by Kilight Cao on 2025/07/03 15:02

Show last authors
1 [[image:image-20220523163353-1.jpeg||data-xwiki-image-style-alignment="center" height="604" width="500"]]
2
3
4
5
6
7
8
9 **Table of Contents:**
10
11 {{toc/}}
12
13
14
15
16
17 = 1. Introduction =
18
19 == 1.1 What is the LT-22222-LA I/O Controller? ==
20
21
22 (((
23 (((
24 The Dragino (% style="color:blue" %)**LT-22222-LA I/O Controller**(%%) is an advanced LoRaWAN end device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
25
26 The LT-22222-LA I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
27 )))
28 )))
29
30 (((
31 With the LT-22222-LA I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
32 )))
33
34 (((
35 You can connect the LT-22222-LA I/O Controller to a LoRaWAN network service provider in several ways:
36
37 * If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Stack Community Network), you can select a network and register the LT-22222-LA I/O controller with it.
38 * If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-LA I/O controller with this network.
39 * Setup your own private LoRaWAN network.
40 )))
41
42 (((
43
44
45 The network diagram below illustrates how the LT-22222-LA communicates with a typical LoRaWAN network.
46 )))
47
48
49 [[image:lorawan-nw.jpg]]
50
51 == 1.2 Specifications ==
52
53
54 (% style="color:#037691" %)**Hardware System:**
55
56 * Power Consumption:
57 ** Idle: 4mA@12V
58 ** 20dB Transmit: 34mA@12V
59 * Operating Temperature: -40 ~~ 85 Degrees, No Dew
60
61 (% style="color:#037691" %)**Interface for Model: LT22222-LA:**
62
63 * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50V, or 220V with optional external resistor)
64 * 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
65 * 2 x Relay Output (5A@250VAC / 30VDC)
66 * 2 x 0~~20mA Analog Input (res:0.01mA)
67 * 2 x 0~~30V Analog Input (res:0.01V)
68 * Power Input 7~~ 24V DC. 
69
70 (% style="color:#037691" %)**LoRa Spec:**
71
72 * Frequency Range:
73 ** Band 1 (HF): 862 ~~ 1020 MHz
74 ** Band 2 (LF): 410 ~~ 528 MHz
75 * 168 dB maximum link budget.
76 * +20 dBm - 100 mW constant RF output vs.
77 * +14 dBm high-efficiency PA.
78 * Programmable bit rate up to 300 kbps.
79 * High sensitivity: down to -148 dBm.
80 * Bullet-proof front end: IIP3 = -12.5 dBm.
81 * Excellent blocking immunity.
82 * Low RX current of 10.3 mA, 200 nA register retention.
83 * Fully integrated synthesizer with a resolution of 61 Hz.
84 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
85 * Built-in bit synchronizer for clock recovery.
86 * Preamble detection.
87 * 127 dB Dynamic Range RSSI.
88 * Automatic RF Sense and CAD with ultra-fast AFC.
89 * Packet engine up to 256 bytes with CRC.
90
91 == 1.3 Features ==
92
93
94 * LoRaWAN Class A & Class C modes
95 * Optional Customized LoRa Protocol
96 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
97 * AT Commands to change parameters
98 * Remotely configure parameters via LoRaWAN Downlink
99 * Firmware upgradable via program port
100 * Counting
101
102 == 1.4 Applications ==
103
104
105 * Smart buildings & home automation
106 * Logistics and supply chain management
107 * Smart metering
108 * Smart agriculture
109 * Smart cities
110 * Smart factory
111
112 == 1.5 Hardware Variants ==
113
114
115 (% border="1" cellspacing="3" style="width:531.222px" %)
116 |(% style="background-color:#4f81bd; color:white; width:108px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:158px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:261px" %)**Description**
117 |(% style="width:108px" %)**LT-22222-LA**|(% style="width:158px" %)(((
118 [[image:lt33222-l.jpg]]
119 )))|(% style="width:261px" %)(((
120 * 3 x Digital Input (Bi-direction)
121 * 3 x Digital Output
122 * 2 x Relay Output (5A@250VAC / 30VDC)
123 * 2 x 0~~20mA Analog Input (res:0.01mA)
124 * 2 x 0~~30V Analog Input (res:0.01v)
125 * 1 x Counting Port
126 )))
127
128 = 2. Assembling the device =
129
130 == 2.1 Connecting the antenna ==
131
132
133 Connect the LoRa antenna to the antenna connector, **ANT**,** **located on the top right side of the device, next to the upper screw terminal block. Secure the antenna by tightening it clockwise.
134
135 {{warning}}
136 **Warning! Do not power on the device without connecting the antenna.**
137 {{/warning}}
138
139
140 == 2.2 Terminals ==
141
142
143 The  LT-22222-LA has two screw terminal blocks. The upper screw terminal block has 6 screw terminals and the lower screw terminal block has 10 screw terminals.
144
145 **Upper screw terminal block (from left to right):**
146
147 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:381px" %)
148 |=(% style="width: 139px;background-color:#4f81bd;color:white" %)Screw Terminal|=(% style="width: 242px;background-color:#4f81bd;color:white" %)Function
149 |(% style="width:139px" %)GND|(% style="width:242px" %)Ground
150 |(% style="width:139px" %)VIN|(% style="width:242px" %)Input Voltage
151 |(% style="width:139px" %)AVI2|(% style="width:242px" %)Analog Voltage Input Terminal 2
152 |(% style="width:139px" %)AVI1|(% style="width:242px" %)Analog Voltage Input Terminal 1
153 |(% style="width:139px" %)ACI2|(% style="width:242px" %)Analog Current Input Terminal 2
154 |(% style="width:139px" %)ACI1|(% style="width:242px" %)Analog Current Input Terminal 1
155
156 **Lower screw terminal block (from left to right):**
157
158 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:253px" %)
159 |=(% style="width: 125px;background-color:#4f81bd;color:white" %)Screw Terminal|=(% style="width: 128px;background-color:#4f81bd;color:white" %)Function
160 |(% style="width:125px" %)RO1-2|(% style="width:128px" %)Relay Output 1
161 |(% style="width:125px" %)RO1-1|(% style="width:128px" %)Relay Output 1
162 |(% style="width:125px" %)RO2-2|(% style="width:128px" %)Relay Output 2
163 |(% style="width:125px" %)RO2-1|(% style="width:128px" %)Relay Output 2
164 |(% style="width:125px" %)DI2+|(% style="width:128px" %)Digital Input 2
165 |(% style="width:125px" %)DI2-|(% style="width:128px" %)Digital Input 2
166 |(% style="width:125px" %)DI1+|(% style="width:128px" %)Digital Input 1
167 |(% style="width:125px" %)DI1-|(% style="width:128px" %)Digital Input 1
168 |(% style="width:125px" %)DO2|(% style="width:128px" %)Digital Output 2
169 |(% style="width:125px" %)DO1|(% style="width:128px" %)Digital Output 1
170
171 == 2.3 Connecting LT-22222-LA to a Power Source ==
172
173
174 The LT-22222-L I/O Controller can be powered by a **7–24V DC** power source. Connect your power supply’s **positive wire** to the **VIN** and the **negative wire** to the **GND** screw terminals. The power indicator **(PWR) LED** will turn on when the device is properly powered.
175
176 {{warning}}
177 **We recommend that you power on the LT-22222-LA after adding its registration information to the LoRaWAN network server. Otherwise, the device will continuously send join-request messages to attempt to join a LoRaWAN network but will fail.**
178 {{/warning}}
179
180 [[image:1653297104069-180.png]]
181
182
183
184 = 3. Registering LT-22222-LA with a LoRaWAN Network Server =
185
186
187 The LT-22222-LA supports both OTAA (Over-the-Air Activation) and ABP (Activation By Personalization) methods to activate with a LoRaWAN Network Server. However, OTAA is the most secure method for activating a device with a LoRaWAN Network Server. OTAA regenerates session keys upon initial registration and regenerates new session keys after any subsequent reboots. By default, the LT-22222-LA is configured to operate in LoRaWAN Class C mode.
188
189
190 == 3.1 Prerequisites ==
191
192
193 The LT-22222-LA comes with device registration information such as DevEUI, AppEUI, and AppKey which allows you to register it with a LoRaWAN network. This registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
194
195 {{info}}
196 If you are unable to set the provided root key and other identifiers in the network server, you must generate new keys and identifiers with the network server and configure the device with them using AT commands.
197 {{/info}}
198
199 The following subsections explain how to register the LT-22222-LA with different LoRaWAN network server providers.
200
201 [[image:image-20230425173427-2.png]]
202
203 == 3.2 The Things Stack ==
204
205
206 This section guides you through how to register your LT-22222-LA with The Things Stack Sandbox.
207
208 {{info}}
209 The Things Stack Sandbox was formally called The Things Stack Community Edition.
210 {{/info}}
211
212
213 The network diagram below illustrates the connection between the LT-22222-LA and The Things Stack, as well as how the data can be integrated with the ThingsEye IoT platform.
214
215 [[image:1751523649311-511.png||height="407" width="1378"]]
216
217 {{info}}
218 You can use a LoRaWAN gateway, such as the [[Dragino LPS8N>>https://www.dragino.com/products/lora-lorawan-gateway/item/200-lps8n.html]], to expand or create LoRaWAN coverage in your area.
219 {{/info}}
220
221
222 === 3.2.1 Setting up ===
223
224
225 * Sign up for a free account with [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] if you do not have one yet.
226 * Log in to your The Things Stack Sandbox account.
227 * Create an **application** with The Things Stack if you do not have one yet (E.g., dragino-docs).
228 * Go to your application's page and click on the **End devices** in the left menu.
229 * On the End devices page, click on **+ Register end device**. Two registration options are available:
230
231 ==== 3.2.1.1 Using the LoRaWAN Device Repository ====
232
233
234 * On the **Register end device** page:
235 ** Select the option **Select the end device in the LoRaWAN Device Repository **under **Input method**.
236 ** Select the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)** from the respective dropdown lists.
237 *** **End device brand**: Dragino Technology Co., Limited
238 *** **Model**: LT22222-L I/O Controller
239 *** **Hardware ver**: Unknown
240 *** **Firmware ver**: 1.6.0
241 *** **Profile (Region)**: Select the region that matches your device.
242 ** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
243
244 [[image:lt-22222-l-dev-repo-reg-p1.png]]
245
246
247 * Register end device page continued...
248 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message 'This end device can be registered on the network'.
249 ** In the **DevEUI** field, enter the **DevEUI**.
250 ** In the **AppKey** field, enter the **AppKey.**
251 ** In the **End device ID** field, enter a unique name for your LT-22222-LA within this application.
252 ** Under **After registration**, select the **View registered end device** option.
253 ** Click **Register end device** button.
254
255 [[image:lt-22222-l-dev-repo-reg-p2.png]]
256
257
258 * You will be navigated to the **Device overview** page.
259
260 [[image:lt-22222-device-overview.png]]
261
262
263 ==== 3.2.1.2 Adding device manually ====
264
265
266 * On the **Register end device** page:
267 ** Select the option **Enter end device specifies manually** under **Input method**.
268 ** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
269 ** Select the **LoRaWAN version** as **LoRaWAN Specification 1.0.3**
270 ** Select the **Regional Parameters version** as** RP001 Regional Parameters 1.0.3 revision A**
271 ** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the hidden section.
272 ** Select the option **Over the air activation (OTAA)** under the **Activation mode.**
273 ** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities** dropdown list.
274
275 [[image:lt-22222-l-manually-p1.png]]
276
277
278 * Register end device page continued...
279 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message '//**This end device can be registered on the network**//'
280 ** In the **DevEUI** field, enter the **DevEUI**.
281 ** In the **AppKey** field, enter the **AppKey**.
282 ** In the **End device ID** field, enter a unique name for your LT-22222-LA within this application.
283 ** Under **After registration**, select the **View registered end device** option.
284 ** Click the **Register end device** button.
285
286 [[image:lt-22222-l-manually-p2.png]]
287
288
289 You will be navigated to the **Device overview** page.
290
291 [[image:lt-22222-device-overview.png]]
292
293
294
295 === 3.2.2 Joining ===
296
297
298 On the end device's page (in this case, lt-22222-la), click on **Live data** tab. The Live data panel for your device will display. Initially, it is blank.
299
300 Now power on your LT-22222-LA. The **TX LED** will **fast-blink 5 times** which means the LT-22222-LA will enter the **work mode** and start to **join** The Things Stack network server. The **TX LED** will be on for **5 seconds** after joining the network. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server.
301
302 [[image:lt-22222-l-joining.png]]
303
304
305
306 === 3.2.3 Uplinks ===
307
308
309 After successfully joining, the device will send its first **uplink data message** to The Things Stack application it belongs to (in this example, it is **dragino-docs**). When the LT-22222-LA sends an uplink message to the server, the **TX LED** turns on for **1 second**. By default, you will receive an uplink data message from the device every 10 minutes.
310
311 Click on one of the **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the **decode_payload {}** JSON object.
312
313 [[image:lt-22222-ul-payload-decoded.png]]
314
315
316 If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **Applications > [your application] > End devices** > [**your end device]** > **Payload formatters** > **Uplink**. Then select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes.
317
318 {{info}}
319 The Things Stack provides two levels of payload formatters: application level and device level. The device-level payload formatters **override **the application-level payload formatters.
320 {{/info}}
321
322 [[image:lt-22222-ul-payload-fmt.png]]
323
324
325 We have written a payload formatter that resolves some decoding issues present in The Things Stack Device Repository payload formatter. You can add it under the **Custom JavaScript formatter**. It can be found [[here>>https://github.com/dragino/dragino-end-node-decoder/blob/main/LT22222-L/v1.6_decoder_ttn%20.txt]]:
326
327 [[image:lt-22222-l-js-custom-payload-formatter.png]]
328
329
330 === 3.2.4 Downlinks ===
331
332
333 When the LT-22222-L receives a downlink message from the LoRaWAN Network Server, the **RX LED** turns on for **1 second**.
334
335
336 == 3.3 Working Modes and Uplink Payload formats ==
337
338
339 The LT-22222-LA has 5 **working modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any working mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
340
341 * (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO
342
343 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
344
345 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
346
347 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
348
349 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
350
351 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
352
353 The uplink messages are sent over LoRaWAN FPort=2. By default, an uplink message is sent every 10 minutes.
354
355
356 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
357
358
359 (((
360 This is the default mode.
361
362 The uplink payload is 11 bytes long.
363 (% wfd-invisible="true" style="display:none" %)
364
365 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
366 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
367 |Value|(((
368 AVI1 voltage
369 )))|(((
370 AVI2 voltage
371 )))|(((
372 ACI1 Current
373 )))|(((
374 ACI2 Current
375 )))|**DIDORO***|(((
376 Reserve
377 )))|MOD
378 )))
379
380 (((
381 (% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below.
382
383 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
384 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
385 |RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
386 )))
387
388 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
389 * DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW.
390 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
391
392 (% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-LA**
393
394 For example, if the payload is: [[image:image-20220523175847-2.png]]
395
396
397 **The interface values can be calculated as follows:  **
398
399 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
400
401 AVI2 channel voltage is 0x04AC/1000=1.196V
402
403 ACI1 channel current is 0x1310/1000=4.880mA
404
405 ACI2 channel current is 0x1300/1000=4.864mA
406
407 The last byte 0xAA= **10101010**(b) means,
408
409 * [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
410 * [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
411 * **[1] DI3 - not used for LT-22222-LA.**
412 * [0] DI2 channel input is LOW, and the DI2 LED is OFF.
413 * [1] DI1 channel input state:
414 ** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
415 ** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
416 ** DI1 LED is ON in both cases.
417 * **[0] DO3 - not used for LT-22222-LA.**
418 * [1] DO2 channel output is LOW, and the DO2 LED is ON.
419 * [0] DO1 channel output state:
420 ** DO1 is FLOATING when there is no load between DO1 and V+.
421 ** DO1 is HIGH and there is a load between DO1 and V+.
422 ** DO1 LED is OFF in both cases.
423
424 Reserve = 0
425
426 MOD = 1
427
428
429 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
430
431
432 (((
433 **For LT-22222-LA**: In this mode, **DI1 and DI2** are used as counting pins.
434 )))
435
436 (((
437 The uplink payload is 11 bytes long.
438
439 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
440 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
441 It starts counting again when it reaches the maximum value.**
442
443 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
444 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
445 |Value|COUNT1|COUNT2 |DIDORO*|(((
446 Reserve
447 )))|MOD
448 )))
449
450 (((
451 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, FIRST, Reserve, Reserve, DO3, DO2 and DO1, and its size is 1 byte long as shown below.
452
453 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
454 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
455 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
456
457 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
458 )))
459
460 * FIRST: Indicates that this is the first packet after joining the network.
461 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
462
463 (((
464 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-LA**
465
466
467 )))
468
469 (((
470 **To activate this mode, run the following AT commands:**
471 )))
472
473 (((
474 (% class="box infomessage" %)
475 (((
476 **AT+MOD=2**
477
478 **ATZ**
479 )))
480 )))
481
482 (((
483
484
485 (% style="color:#4f81bd" %)**AT Commands for counting:**
486 )))
487
488 (((
489 **For LT22222-LA:**
490
491 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
492
493 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
494
495 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
496
497 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
498
499 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
500
501 (% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
502 )))
503
504
505
506
507
508
509 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
510
511
512 (% style="color:red" %)**Note: The maximum count depends on the bytes it is.
513 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
514 It starts counting again when it reaches the maximum value.**
515
516 **LT22222-LA**: In this mode, the DI1 is used as a counting pin.
517
518 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
519 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
520 |Value|COUNT1|(((
521 ACI1 Current
522 )))|(((
523 ACI2 Current
524 )))|DIDORO*|Reserve|MOD
525
526 (((
527 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
528
529 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
530 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
531 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
532 )))
533
534 * RO is for the relay. ROx=1: closed, ROx=0 always open.
535 * FIRST: Indicates that this is the first packet after joining the network.
536 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
537
538 (((
539 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-LA.**
540 )))
541
542
543
544
545
546
547 (((
548 **To activate this mode, run the following AT commands:**
549 )))
550
551 (((
552 (% class="box infomessage" %)
553 (((
554 **AT+MOD=3**
555
556 **ATZ**
557 )))
558 )))
559
560 (((
561 AT Commands for counting:
562
563 The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
564 )))
565
566
567 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
568
569
570 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
571 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
572 It starts counting again when it reaches the maximum value.**
573
574
575 (((
576 **LT22222-LA**: In this mode, the DI1 is used as a counting pin.
577 )))
578
579 (((
580 The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
581
582 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
583 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
584 |Value|COUNT1|AVI1 Counting|DIDORO*|(((
585 Reserve
586 )))|MOD
587 )))
588
589 (((
590 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
591
592 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
593 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
594 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
595 )))
596
597 * RO is for the relay. ROx=1: closed, ROx=0 always open.
598 * FIRST: Indicates that this is the first packet after joining the network.
599 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
600
601 (((
602 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
603
604
605 )))
606
607 (((
608 **To activate this mode, run the following AT commands:**
609 )))
610
611 (((
612 (% class="box infomessage" %)
613 (((
614 **AT+MOD=4**
615
616 **ATZ**
617 )))
618 )))
619
620 (((
621 AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
622 )))
623
624 (((
625 **In addition to that, below are the commands for AVI1 Counting:**
626
627 (% style="color:blue" %)**AT+SETCNT=3,60 **(%%)**(Sets AVI1 Count to 60)**
628
629 (% style="color:blue" %)**AT+VOLMAX=20000 **(%%)**(If the AVI1 voltage is higher than VOLMAX (20000mV =20V), the counter increases by 1)**
630
631 (% style="color:blue" %)**AT+VOLMAX=20000,0 **(%%)**(If the AVI1 voltage is lower than VOLMAX (20000mV =20V), counter increases by 1)**
632
633 (% style="color:blue" %)**AT+VOLMAX=20000,1 **(%%)**(If the AVI1 voltage is higher than VOLMAX (20000mV =20V), counter increases by 1)**
634 )))
635
636
637
638
639
640
641 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
642
643
644 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
645 The maximum count for four bytes is FFFF (hex) = 65535 (dec).
646 It starts counting again when it reaches the maximum value.**
647
648
649 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
650
651 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
652 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
653 |Value|(((
654 AVI1 voltage
655 )))|(((
656 AVI2 voltage
657 )))|(((
658 ACI1 Current
659 )))|COUNT1|DIDORO*|(((
660 Reserve
661 )))|MOD
662
663 (((
664 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
665
666 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
667 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
668 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
669 )))
670
671 * RO is for the relay. ROx=1: closed, ROx=0 always open.
672 * FIRST: Indicates that this is the first packet after joining the network.
673 * (((
674 DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
675 )))
676
677 (((
678 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-LA.**
679 )))
680
681 (((
682 **To activate this mode, run the following AT commands:**
683 )))
684
685 (((
686 (% class="box infomessage" %)
687 (((
688 **AT+MOD=5**
689
690 **ATZ**
691 )))
692 )))
693
694 (((
695 Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
696 )))
697
698
699
700
701
702
703 === 3.3.6 AT+ADDMOD~=6 (Trigger Mode, Optional) ===
704
705
706 (% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate __alongside__ with other modes.**
707
708 For example, if you configure the following commands:
709
710 * **AT+MOD=1 ** **~-~->**  Sets the default working mode
711 * **AT+ADDMOD6=1**   **~-~->**  Enables trigger mode
712
713 The LT-22222-LA will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. It will send uplink packets in two cases:
714
715 1. Periodic uplink: Based on TDC time. The payload is the same as in normal mode (MOD=1 as set above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
716 1. (((
717 Trigger uplink: sent when a trigger condition is met. In this case, LT will send two packets
718
719 * The first uplink uses the payload specified in trigger mode (MOD=6).
720 * The second packet uses the normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**confirmed uplinks.**
721 )))
722
723 (% style="color:#037691" %)**AT Commands to set Trigger Conditions**:
724
725 (% style="color:#4f81bd" %)**Trigger based on voltage**:
726
727 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
728
729
730 **Example:**
731
732 AT+AVLIM=3000,6000,0,2000 (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
733
734 AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0 for parameters that are not in use)
735
736
737 (% style="color:#4f81bd" %)**Trigger based on current**:
738
739 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
740
741
742 **Example:**
743
744 AT+ACLIM=10000,15000,0,0 (triggers an uplink if AC1 current is lower than 10mA or higher than 15mA)
745
746
747 (% style="color:#4f81bd" %)**Trigger based on DI status**:
748
749 DI status triggers Flag.
750
751 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
752
753
754 **Example:**
755
756 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
757
758
759 (% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
760
761 **Type Code**: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
762
763 **Format**: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
764
765 AA: Type Code for this downlink Command:
766
767 xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
768
769 yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
770
771 yy2 yy2: AC1 or AV1 HIGH limit.
772
773 yy3 yy3: AC2 or AV2 LOW limit.
774
775 Yy4 yy4: AC2 or AV2 HIGH limit.
776
777
778 **Example 1**: AA 00 13 88 00 00 00 00 00 00
779
780 Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
781
782
783 **Example 2**: AA 02 01 00
784
785 Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
786
787
788 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
789
790 MOD6 Payload: a total of 11 bytes
791
792 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
793 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
794 |Value|(((
795 TRI_A FLAG
796 )))|(((
797 TRI_A Status
798 )))|(((
799 TRI_DI FLAG+STA
800 )))|Reserve|Enable/Disable MOD6|(((
801 MOD(6)
802 )))
803
804 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Total 1 byte as below.
805
806 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
807 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
808 |(((
809 AV1_LOW
810 )))|(((
811 AV1_HIGH
812 )))|(((
813 AV2_LOW
814 )))|(((
815 AV2_HIGH
816 )))|(((
817 AC1_LOW
818 )))|(((
819 AC1_HIGH
820 )))|(((
821 AC2_LOW
822 )))|(((
823 AC2_HIGH
824 )))
825
826 * Each bit shows if the corresponding trigger has been configured.
827
828 **Example:**
829
830 10100000: This means the system is configured to use the triggers AV1_LOW and AV2_LOW.
831
832
833 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is triggered. Total 1 byte as below.
834
835 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
836 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
837 |(((
838 AV1_LOW
839 )))|(((
840 AV1_HIGH
841 )))|(((
842 AV2_LOW
843 )))|(((
844 AV2_HIGH
845 )))|(((
846 AC1_LOW
847 )))|(((
848 AC1_HIGH
849 )))|(((
850 AC2_LOW
851 )))|(((
852 AC2_HIGH
853 )))
854
855 * Each bit shows which status has been triggered on this uplink.
856
857 **Example:**
858
859 10000000: The uplink is triggered by AV1_LOW, indicating that the voltage is too low.
860
861
862 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is triggered. Total 1 byte as below.
863
864 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
865 |(% style="width:50px" %)**bit 7**|(% style="width:50px" %)**bit 6**|(% style="width:50px" %)**bit 5**|(% style="width:50px" %)**bit 4**|(% style="width:90px" %)**bit 3**|(% style="width:80px" %)**bit 2**|(% style="width:90px" %)**bit 1**|(% style="width:95px" %)**bit 0**
866 |(% style="width:49px" %)N/A|(% style="width:53px" %)N/A|(% style="width:53px" %)N/A|(% style="width:55px" %)N/A|(% style="width:99px" %)DI2_STATUS|(% style="width:83px" %)DI2_FLAG|(% style="width:98px" %)DI1_STATUS|(% style="width:85px" %)DI1_FLAG
867
868 * Each bit shows which status has been triggered on this uplink.
869
870 **Example:**
871
872 00000111: This means both DI1 and DI2 triggers are enabled, and this packet is triggered by DI1.
873
874 00000101: This means both DI1 and DI2 triggers are enabled.
875
876
877 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enabled. 0x00: MOD6 is disabled.
878
879 Downlink command to poll/request MOD6 status:
880
881 **AB 06**
882
883 When the device receives this command, it will send the MOD6 payload.
884
885
886 === 3.3.7 Payload Decoder ===
887
888 (((
889
890
891 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder/tree/main/LT22222-L]]
892 )))
893
894
895 == 3.4 ​Configure LT-22222-LA via AT Commands or Downlinks ==
896
897
898 (((
899 You can configure LT-22222-LA I/O Controller via AT Commands or LoRaWAN Downlinks.
900 )))
901
902 (((
903 (((
904 There are two types of commands:
905 )))
906 )))
907
908 * (% style="color:blue" %)**Common commands**(%%):
909
910 * (% style="color:blue" %)**Sensor-related commands**(%%):
911
912 === 3.4.1 Common commands ===
913
914
915 (((
916 These are available for each sensor and include actions such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]s.
917
918
919 )))
920
921 === 3.4.2 Sensor-related commands ===
922
923
924 These commands are specially designed for the LT-22222-LA. Commands can be sent to the device using options such as an AT command or a LoRaWAN downlink payload.
925
926
927 ==== 3.4.2.1 Set Transmit/Uplink Interval ====
928
929
930 Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes.
931
932 (% style="color:#037691" %)**AT command**
933
934 (% border="2" style="width:500px" %)
935 |**Command**|AT+TDC=<time>
936 |**Parameters**|**time **: uplink interval in milliseconds
937 |**Get**|AT+TDC=?
938 |**Response**|(((
939 current uplink interval
940
941 OK
942 )))
943 |**Set**|AT+TDC=<time>
944 |**Response**|OK
945 |**Example**|(((
946 AT+TDC=30000
947
948 Sets the uplink interval to **30 seconds** (30000 milliseconds)
949 )))
950
951 (% style="color:#037691" %)**Downlink payload**
952
953 (% border="2" style="width:500px" %)
954 |**Payload**|(((
955 <prefix><time>
956 )))
957 |**Parameters**|(((
958 **prefix** : 0x01
959
960 **time** : uplink interval in **seconds**, represented by **3  bytes** in **hexadecimal**.
961 )))
962 |**Example**|(((
963 01 **00 00 1E**
964
965 Sets the uplink interval to **30 seconds**
966
967 Conversion: 30 (dec) = 00 00 1E (hex)
968
969 See [[RapidTables>>https://www.rapidtables.com/convert/number/decimal-to-hex.html?x=30]]
970
971 [[image:Screenshot%202024-11-23%20at%2018.27.11.png||alt="Screenshot 2024-11-23 at 18.27.11.png"]]
972 )))
973
974 ==== 3.4.2.2 Set the Working Mode (AT+MOD) ====
975
976
977 Sets the working mode.
978
979 (% style="color:#037691" %)**AT command**
980
981 (% border="2" style="width:500px" %)
982 |(% style="width:97px" %)**Command**|(% style="width:413px" %)AT+MOD=<working_mode>
983 |(% style="width:97px" %)**Parameters**|(% style="width:413px" %)(((
984 **working_mode** :
985
986 1 = (Default mode/factory set):  2ACI + 2AVI + DI + DO + RO
987
988 2 = Double DI Counting + DO + RO
989
990 3 = Single DI Counting + 2 x ACI + DO + RO
991
992 4 = Single DI Counting + 1 x Voltage Counting + DO + RO
993
994 5 = Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
995
996 6 = Trigger Mode, Optional, used together with MOD1 ~~ MOD5
997 )))
998 |(% style="width:97px" %)**Get**|(% style="width:413px" %)AT+MOD=?
999 |(% style="width:97px" %)**Response**|(% style="width:413px" %)(((
1000 Current working mode
1001
1002 OK
1003 )))
1004 |(% style="width:97px" %)**Set**|(% style="width:413px" %)AT+MOD=<working_mode>
1005 |(% style="width:97px" %)**Response**|(% style="width:413px" %)(((
1006 Attention:Take effect after ATZ
1007
1008 OK
1009 )))
1010 |(% style="width:97px" %)**Example**|(% style="width:413px" %)(((
1011 AT+MOD=2
1012
1013 Sets the device to working mode 2 (Double DI Counting + DO + RO)
1014 )))
1015
1016 (% class="wikigeneratedid" %)
1017 (% style="color:#037691" %)**Downlink payload**
1018
1019 (% border="2" style="width:500px" %)
1020 |(% style="width:98px" %)**Payload**|(% style="width:400px" %)<prefix><working_mode>
1021 |(% style="width:98px" %)**Parameters**|(% style="width:400px" %)(((
1022 **prefix** : 0x0A
1023
1024 **working_mode** : Working mode, represented by 1 byte in hexadecimal.
1025 )))
1026 |(% style="width:98px" %)**Example**|(% style="width:400px" %)(((
1027 0A **02**
1028
1029 Sets the device to working mode 2 (Double DI Counting + DO + RO)
1030 )))
1031
1032 ==== 3.4.2.3 Request an uplink from the device ====
1033
1034
1035 Requests an uplink from LT-22222-LA. The content of the uplink payload varies based on the device's current working mode.
1036
1037 (% style="color:#037691" %)**AT command**
1038
1039 There is no AT Command available for this feature.
1040
1041 (% style="color:#037691" %)**Downlink payload**
1042
1043 (% border="2" style="width:500px" %)
1044 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix>FF
1045 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)**prefix** : 0x08
1046 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1047 08 **FF**
1048
1049 Requests an uplink from LT-22222-L.
1050 )))
1051
1052 ==== 3.4.2.4 Enable/Disable Trigger Mode ====
1053
1054
1055 Enable or disable the trigger mode for the current working mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D628TriggerMode2COptional29"]]).
1056
1057 (% style="color:#037691" %)**AT Command**
1058
1059 (% border="2" style="width:500px" %)
1060 |(% style="width:95px" %)**Command**|(% style="width:403px" %)AT+ADDMOD6=<enable/disable trigger_mode>
1061 |(% style="width:95px" %)**Response**|(% style="width:403px" %)
1062 |(% style="width:95px" %)**Parameters**|(% style="width:403px" %)(((
1063 **enable/disable trigger_mode** :
1064
1065 1 = enable trigger mode
1066
1067 0 = disable trigger mode
1068 )))
1069 |(% style="width:95px" %)**Example**|(% style="width:403px" %)(((
1070 AT+ADDMOD6=1
1071
1072 Enable trigger mode for the current working mode
1073 )))
1074
1075 (% style="color:#037691" %)**Downlink payload**
1076
1077 (% border="2" style="width:500px" %)
1078 |(% style="width:97px" %)**Payload**|(% style="width:401px" %)<prefix><enable/disable trigger_mode>
1079 |(% style="width:97px" %)**Parameters**|(% style="width:401px" %)(((
1080 **prefix** : 0x0A 06 (two bytes in hexadecimal)
1081
1082 **enable/disable trigger_mode** : enable (1) or disable (0), represented by 1 byte in hexadecimal.
1083 )))
1084 |(% style="width:97px" %)**Example**|(% style="width:401px" %)(((
1085 0A 06 **01**
1086
1087 Enable trigger mode for the current working mode
1088 )))
1089
1090 ==== 3.4.2.5 Request trigger settings ====
1091
1092
1093 Requests the trigger settings.
1094
1095 (% style="color:#037691" %)**AT Command:**
1096
1097 There is no AT Command available for this feature.
1098
1099 (% style="color:#037691" %)**Downlink Payload**
1100
1101 (% border="2" style="width:500px" %)
1102 |(% style="width:95px" %)**Payload**|(% style="width:403px" %)<prefix>
1103 |(% style="width:95px" %)**Parameters**|(% style="width:403px" %)**prefix **: AB 06 (two bytes in hexadecimal)
1104 |(% style="width:95px" %)**Example**|(% style="width:403px" %)(((
1105 AB 06
1106
1107 Uplink the trigger settings.
1108 )))
1109
1110 ==== 3.4.2.6 Enable/Disable DI1/DI2/DI3 as a trigger ====
1111
1112
1113 Enable or disable DI1/DI2/DI3 as a trigger.
1114
1115 (% style="color:#037691" %)**AT Command**
1116
1117 (% border="2" style="width:500px" %)
1118 |(% style="width:98px" %)**Command**|(% style="width:400px" %)AT+DTRI=<DI1_trigger>,<DI2_trigger>
1119 |(% style="width:98px" %)**Response**|(% style="width:400px" %)
1120 |(% style="width:98px" %)**Parameters**|(% style="width:400px" %)(((
1121 **DI1_trigger:**
1122
1123 1 = enable DI1 trigger
1124
1125 0 = disable DI1 trigger
1126
1127 **DI2 _trigger**
1128
1129 1 = enable DI2 trigger
1130
1131 0 = disable DI2 trigger
1132 )))
1133 |(% style="width:98px" %)**Example**|(% style="width:400px" %)(((
1134 AT+DTRI=1,0
1135
1136 Enable DI1 trigger, disable DI2 trigger
1137 )))
1138
1139 (% class="wikigeneratedid" %)
1140 (% style="color:#037691" %)**Downlink Payload**
1141
1142 (% border="2" style="width:500px" %)
1143 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix><DI1_trigger><DI2_trigger>
1144 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1145 **prefix :** AA 02 (two bytes in hexadecimal)
1146
1147 **DI1_trigger:**
1148
1149 1 = enable DI1 trigger, represented by 1 byte in hexadecimal.
1150
1151 0 = disable DI1 trigger, represented by 1 byte in hexadecimal.
1152
1153 **DI2 _trigger**
1154
1155 1 = enable DI2 trigger, represented by 1 byte in hexadecimal.
1156
1157 0 = disable DI2 trigger, represented by 1 byte in hexadecimal.
1158 )))
1159 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1160 AA 02 **01 00**
1161
1162 Enable DI1 trigger, disable DI2 trigger
1163 )))
1164
1165 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as a trigger ====
1166
1167
1168 Sets DI1 or DI3 (for LT-33222-L) as a trigger.
1169
1170 (% style="color:#037691" %)**AT Command**
1171
1172 (% border="2" style="width:500px" %)
1173 |(% style="width:101px" %)**Command**|(% style="width:397px" %)AT+TRIG1=<interrupt_mode>,<minimum_signal_duration>
1174 |(% style="width:101px" %)**Response**|(% style="width:397px" %)
1175 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1176 **interrupt_mode** :  0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
1177
1178 **minimum_signal_duration** : the **minimum signal duration** required for the DI1 port to recognize a valid trigger.
1179 )))
1180 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1181 AT+TRIG1=1,100
1182
1183 Set the DI1 port to trigger on a rising edge; the valid signal duration is 100 ms.
1184 )))
1185
1186 (% class="wikigeneratedid" %)
1187 (% style="color:#037691" %)**Downlink Payload**
1188
1189 (% border="2" style="width:500px" %)
1190 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix><interrupt_mode><minimum_signal_duration>
1191 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1192 **prefix** : 09 01 (hexadecimal)
1193
1194 **interrupt_mode** : 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1), represented by 1 byte in hexadecimal.
1195
1196 **minimum_signal_duration** : in milliseconds, represented two bytes in hexadecimal.
1197 )))
1198 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1199 09 01 **01 00 64**
1200
1201 Set the DI1 port to trigger on a rising edge; the valid signal duration is 100 ms.
1202 )))
1203
1204 ==== 3.4.2.8 Trigger2 – Set DI2 as a trigger ====
1205
1206
1207 Sets DI2 as a trigger.
1208
1209 (% style="color:#037691" %)**AT Command**
1210
1211 (% border="2" style="width:500px" %)
1212 |(% style="width:94px" %)**Command**|(% style="width:404px" %)AT+TRIG2=<interrupt_mode>,<minimum_signal_duration>
1213 |(% style="width:94px" %)**Response**|(% style="width:404px" %)
1214 |(% style="width:94px" %)**Parameters**|(% style="width:404px" %)(((
1215 **interrupt_mode **:  0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
1216
1217 **minimum_signal_duration** : the **minimum signal duration** required for the DI1 port to recognize a valid trigger.
1218 )))
1219 |(% style="width:94px" %)**Example**|(% style="width:404px" %)(((
1220 AT+TRIG2=0,100
1221
1222 Set the DI1 port to trigger on a falling edge; the valid signal duration is 100 ms.
1223 )))
1224
1225 (% style="color:#037691" %)**Downlink Payload**
1226
1227 (% border="2" style="width:500px" %)
1228 |(% style="width:96px" %)**Payload**|(% style="width:402px" %)<prefix><interrupt_mode><minimum_signal_duration>
1229 |(% style="width:96px" %)**Parameters**|(% style="width:402px" %)(((
1230 **prefix** : 09 02 (hexadecimal)
1231
1232 **interrupt_mode **: 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1), represented by 1 byte in hexadecimal.
1233
1234 **minimum_signal_duration** : in milliseconds, represented two bytes in hexadecimal
1235 )))
1236 |(% style="width:96px" %)**Example**|(% style="width:402px" %)09 02 **00 00 64**
1237
1238 ==== 3.4.2.9 Trigger – Set AC (current) as a trigger ====
1239
1240
1241 Sets the current trigger based on the AC port. See also [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D628TriggerMode2COptional29"]]
1242
1243 (% style="color:#037691" %)**AT Command**
1244
1245 (% border="2" style="width:500px" %)
1246 |(% style="width:104px" %)**Command**|(% style="width:394px" %)(((
1247 AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
1248 )))
1249 |(% style="width:104px" %)**Response**|(% style="width:394px" %)
1250 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1251 **AC1_LIMIT_LOW** : lower limit of the current to be checked
1252
1253 **AC1_LIMIT_HIGH **: higher limit of the current to be checked
1254
1255 **AC2_LIMIT_HIGH **: lower limit of the current to be checked
1256
1257 **AC2_LIMIT_LOW** : higher limit of the current to be checked
1258 )))
1259 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1260 AT+ACLIM=10000,15000,0,0
1261
1262 Triggers an uplink if AC1 current is lower than 10mA or higher than 15mA
1263 )))
1264 |(% style="width:104px" %)Note|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D628TriggerMode2COptional29"]]
1265
1266 (% style="color:#037691" %)**Downlink Payload**
1267
1268 (% border="2" style="width:500px" %)
1269 |(% style="width:104px" %)**Payload**|(% style="width:394px" %)<prefix><AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
1270 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1271 **prefix **: AA 01 (hexadecimal)
1272
1273 **AC1_LIMIT_LOW** : lower limit of the current to be checked, two bytes in hexadecimal
1274
1275 **AC1_LIMIT_HIGH **: higher limit of the current to be checked, two bytes in hexadecimal
1276
1277 **AC2_LIMIT_HIGH **: lower limit of the current to be checked, two bytes in hexadecimal
1278
1279 **AC2_LIMIT_LOW** : higher limit of the current to be checked, two bytes in hexadecimal
1280 )))
1281 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1282 AA 01 **27** **10 3A** **98** 00 00 00 00
1283
1284 Triggers an uplink if AC1 current is lower than 10mA or higher than 15mA. Set all values to zero for AC2 limits because we are only checking AC1 limits.
1285 )))
1286 |(% style="width:104px" %)Note|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D628TriggerMode2COptional29"]]
1287
1288 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
1289
1290
1291 Sets the current trigger based on the AV port. See also [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D628TriggerMode2COptional29"]]
1292
1293 (% style="color:#037691" %)**AT Command**
1294
1295 (% border="2" style="width:500px" %)
1296 |(% style="width:104px" %)**Command**|(% style="width:387px" %)AT+AVLIM= AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
1297 |(% style="width:104px" %)**Response**|(% style="width:387px" %)
1298 |(% style="width:104px" %)**Parameters**|(% style="width:387px" %)(((
1299 **AC1_LIMIT_LOW** : lower limit of the current to be checked
1300
1301 **AC1_LIMIT_HIGH **: higher limit of the current to be checked
1302
1303 **AC2_LIMIT_HIGH **: lower limit of the current to be checked
1304
1305 **AC2_LIMIT_LOW** : higher limit of the current to be checked
1306 )))
1307 |(% style="width:104px" %)**Example**|(% style="width:387px" %)(((
1308 AT+AVLIM=3000,6000,0,2000
1309
1310 Triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V
1311 )))
1312 |(% style="width:104px" %)**Note**|(% style="width:387px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D628TriggerMode2COptional29"]]
1313
1314 (% style="color:#037691" %)**Downlink Payload**
1315
1316 (% border="2" style="width:500px" %)
1317 |(% style="width:104px" %)**Payload**|(% style="width:394px" %)<prefix><AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
1318 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1319 **prefix **: AA 00 (hexadecimal)
1320
1321 **AV1_LIMIT_LOW** : lower limit of the voltage to be checked, two bytes in hexadecimal
1322
1323 **AV1_LIMIT_HIGH **: higher limit of the voltage to be checked, two bytes in hexadecimal
1324
1325 **AV2_LIMIT_HIGH **: lower limit of the voltage to be checked, two bytes in hexadecimal
1326
1327 **AV2_LIMIT_LOW** : higher limit of the voltage to be checked, two bytes in hexadecimal
1328 )))
1329 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1330 AA 00 **0B B8 17 70 00 00 07 D0**
1331
1332 Triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V.
1333 )))
1334 |(% style="width:104px" %)**Note**|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D628TriggerMode2COptional29"]]
1335
1336 ==== 3.4.2.11 Trigger – Set the minimum interval ====
1337
1338
1339 Sets the AV and AC trigger minimum interval. The device won't respond to a second trigger within this set time after the first trigger.
1340
1341 (% style="color:#037691" %)**AT Command**
1342
1343 (% border="2" style="width:500px" %)
1344 |(% style="width:113px" %)**Command**|(% style="width:385px" %)AT+ATDC=<time>
1345 |(% style="width:113px" %)**Response**|(% style="width:385px" %)
1346 |(% style="width:113px" %)**Parameters**|(% style="width:385px" %)(((
1347 **time** : in minutes
1348 )))
1349 |(% style="width:113px" %)**Example**|(% style="width:385px" %)(((
1350 AT+ATDC=5
1351
1352 The device won't respond to the second trigger within 5 minutes after the first trigger.
1353 )))
1354 |(% style="width:113px" %)**Note**|(% style="width:385px" %)(% style="color:red" %)**The time must be greater than 5 minutes.**
1355
1356 (% style="color:#037691" %)**Downlink Payload**
1357
1358 (% border="2" style="width:500px" %)
1359 |(% style="width:112px" %)**Payload**|(% style="width:386px" %)<prefix><time>
1360 |(% style="width:112px" %)**Parameters**|(% style="width:386px" %)(((
1361 **prefix** : AC (hexadecimal)
1362
1363 **time **: in minutes (two bytes in hexadecimal)
1364 )))
1365 |(% style="width:112px" %)**Example**|(% style="width:386px" %)(((
1366 AC **00 05**
1367
1368 The device won't respond to the second trigger within 5 minutes after the first trigger.
1369 )))
1370 |(% style="width:112px" %)**Note**|(% style="width:386px" %)(% style="color:red" %)**The time must be greater than 5 minutes.**
1371
1372 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1373
1374
1375 Controls the digital outputs DO1, DO2, and DO3
1376
1377 (% style="color:#037691" %)**AT Command**
1378
1379 There is no AT Command to control the Digital Output.
1380
1381
1382 (% style="color:#037691" %)**Downlink Payload**
1383
1384 (% border="2" style="width:500px" %)
1385 |(% style="width:115px" %)**Payload**|(% style="width:383px" %)<prefix><DO1><DO2><DO3>
1386 |(% style="width:115px" %)**Parameters**|(% style="width:383px" %)(((
1387 **prefix** : 02 (hexadecimal)
1388
1389 **DOI** : 01: Low,  00: High, 11: No action (1 byte in hex)
1390
1391 **DO2** : 01: Low,  00: High, 11: No action (1 byte in hex)
1392
1393 **DO3 **: 01: Low,  00: High, 11: No action (1 byte in hex)
1394 )))
1395 |(% style="width:115px" %)**Examples**|(% style="width:383px" %)(((
1396 02 **01 00 01**
1397
1398 If there is a load between V+ and DOx, it means DO1 is set to low, DO2 is set to high, and DO3 is set to low.
1399
1400 **More examples:**
1401
1402 (((
1403 01: Low,  00: High,  11: No action
1404
1405 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:383px" %)
1406 |(% style="background-color:#4f81bd; color:white; width:126px" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white; width:85px" %)**DO1**|(% style="background-color:#4f81bd; color:white; width:86px" %)**DO2**|(% style="background-color:#4f81bd; color:white; width:86px" %)**DO3**
1407 |(% style="width:126px" %)02  01  00  11|(% style="width:85px" %)Low|(% style="width:86px" %)High|(% style="width:86px" %)No Action
1408 |(% style="width:126px" %)02  00  11  01|(% style="width:85px" %)High|(% style="width:86px" %)No Action|(% style="width:86px" %)Low
1409 |(% style="width:126px" %)02  11  01  00|(% style="width:85px" %)No Action|(% style="width:86px" %)Low|(% style="width:86px" %)High
1410 )))
1411
1412 (((
1413 (((
1414 (% style="color:red" %)**Note: For the LT-22222-L, there is no DO3; the last byte can have any value.**
1415 )))
1416
1417 (((
1418 (% style="color:red" %)**The device will upload a packet if downlink code executes successfully.**
1419 )))
1420 )))
1421 )))
1422
1423 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1424
1425
1426 (% style="color:#037691" %)**AT command**
1427
1428 There is no AT command to control the digital output.
1429
1430
1431 (% style="color:#037691" %)**Downlink payload**
1432
1433 (% border="2" style="width:500px" %)
1434 |(% style="width:116px" %)**Prefix**|(% style="width:382px" %)0xA9
1435 |(% style="width:116px" %)**Parameters**|(% style="width:382px" %)(((
1436 **inverter_mode**: 1 byte in hex.
1437
1438 **01:** DO pins revert to their original state after the timeout.
1439 **00:** DO pins switch to an inverted state after the timeout.
1440
1441
1442 **DO1_control_method_and_port_status **- 1 byte in hex
1443
1444 0x01 : DO1 set to low
1445
1446 0x00 : DO1 set to high
1447
1448 0x11 : DO1 NO action
1449
1450
1451 **DO2_control_method_and_port_status** - 1 byte in hex
1452
1453 0x01 : DO2 set to low
1454
1455 0x00 : DO2 set to high
1456
1457 0x11 : DO2 NO action
1458
1459
1460 **DO3_control_method_and_port_status **- 1 byte in hex
1461
1462 0x01 : DO3 set to low
1463
1464 0x00 : DO3 set to high
1465
1466 0x11 : DO3 NO action
1467
1468
1469 **latching_time** : 4 bytes in hex
1470
1471 (% style="color:red" %)**Note: **
1472
1473 Since firmware v1.6.0, the latch time supports 4 bytes or 2 bytes
1474
1475 Before firmware v1.6.0, the latch time only supported 2 bytes.
1476
1477 (% style="color:red" %)**The device will uplink a packet if the downlink code executes successfully.**
1478 )))
1479 |(% style="width:116px" %)**Payload format**|(% style="width:382px" %)<prefix><inverter_mode><DO1_control_method_and_port_status><DO2_control_method_and_port_status><DO2_control_method_and_port_status><latching_time>
1480 |(% style="width:116px" %)**Example**|(% style="width:382px" %)(((
1481 **A9 01 01 01 01 07 D0**
1482
1483 DO1 pin, DO2 pin, and DO3 pin will be set to low, last for 2 seconds, and then revert to their original state.
1484
1485
1486 **A9 01 00 01 11 07 D0**
1487
1488 DO1 pin is set to high, DO2 pin is set to low, and DO3 pin takes no action. This lasts for 2 seconds and then reverts to the original state.
1489
1490
1491 **A9 00 00 00 00 07 D0**
1492
1493 DO1 pin, DO2 pin, and DO3 pin will be set to high, last for 2 seconds, and then all change to low.
1494
1495
1496 **A9 00 11 01 00 07 D0**
1497
1498 DO1 pin takes no action, DO2 pin is set to low, and DO3 pin is set to high. This lasts for 2 seconds, after which the DO1 pin takes no action, the DO2 pin is set to high, and the DO3 pin is set to low.
1499 )))
1500
1501 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1502
1503
1504 (% style="color:#037691" %)**AT Command:**
1505
1506 There is no AT Command to control the Relay Output.
1507
1508
1509 (% style="color:#037691" %)**Downlink Payload**
1510
1511 (% border="2" style="width:500px" %)
1512 |(% style="width:113px" %)**Prefix**|(% style="width:384px" %)0x03
1513 |(% style="width:113px" %)**Parameters**|(% style="width:384px" %)(((
1514 **RO1_status** : 1 byte in hex
1515
1516 00: Open
1517
1518 01: Close
1519
1520 11: No action
1521
1522
1523 **RO2_status** : 1 byte in hex
1524
1525 00: Open
1526
1527 01: Close
1528
1529 11: No action
1530 )))
1531 |(% style="width:113px" %)**Payload format**|(% style="width:384px" %)<prefix><RO1_status><RO2_status>
1532 |(% style="width:113px" %)**Example**|(% style="width:384px" %)(((
1533 (% border="2" %)
1534 |=Payload|=RO1|=RO2
1535 |03  00  11|Open|No action
1536 |03  01  11|Close|No action
1537 |03 11  00|No action|Open
1538 |03 11  01|No action|Close
1539 |03 00 00|Open|Open
1540 |03 01 01|Close|Close
1541 |03 01 00|Close|Open
1542 |03 00 01|Open|Close
1543
1544 (% style="color:red" %)**The device will transmit an uplink packet if the downlink payload is executed successfully.**
1545 )))
1546
1547 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1548
1549
1550 Controls the relay output time.
1551
1552
1553 (% style="color:#037691" %)**AT Command:**
1554
1555 There is no AT Command to control the Relay Output
1556
1557
1558 (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1559
1560 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Sets RO1/RO2 relays with time control
1561
1562
1563 This controls the relay output time and includes 4 bytes:
1564
1565 (% style="color:#4f81bd" %)**First byte **(%%)**:** Type code (0x05)
1566
1567 (% style="color:#4f81bd" %)**Second byte (aa)**(%%): Inverter Mode
1568
1569 01: Relays will change back to their original state after a timeout.
1570
1571 00: Relays will change to the inverter state after a timeout.
1572
1573
1574 (% style="color:#4f81bd" %)**Third byte (bb)**(%%): Control Method and Ports status:
1575
1576 [[image:image-20221008095908-1.png]]
1577
1578
1579 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh bytes (cc)**(%%): Latching time. Unit: ms
1580
1581
1582 (% style="color:red" %)**Note:**
1583
1584 Since firmware v1.6.0, the latch time supports both 4 bytes and 2 bytes.
1585
1586 Before firmware v1.6.0, the latch time only supported 2 bytes.
1587
1588
1589 (% style="color:red" %)**The device will uplink a packet if the downlink code executes successfully.**
1590
1591
1592 **Example payload:**
1593
1594 **~1. 05 01 11 07 D0**
1595
1596 Relay1 and Relay2 will be set to NC, lasting 2 seconds, then revert to their original state
1597
1598 **2. 05 01 10 07 D0**
1599
1600 Relay1 will change to NC, Relay2 will change to NO, lasting 2 seconds, and then both will revert to their original state.
1601
1602 **3. 05 00 01 07 D0**
1603
1604 Relay1 will change to NO, Relay2 will change to NC, lasting 2 seconds, then Relay1 will change to NC, and Relay2 will change to NO.
1605
1606 **4. 05 00 00 07 D0**
1607
1608 Relay1 and Relay2 will change to NO, lasting 2 seconds, then both will change to NC.
1609
1610
1611
1612 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1613
1614
1615 When the voltage exceeds the threshold, counting begins. For details, see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1616
1617 (% style="color:#037691" %)**AT Command**
1618
1619 (% border="2" style="width:500px" %)
1620 |(% style="width:137px" %)**Command**|(% style="width:361px" %)AT+VOLMAX=<voltage>,<logic>
1621 |(% style="width:137px" %)**Response**|(% style="width:361px" %)
1622 |(% style="width:137px" %)**Parameters**|(% style="width:361px" %)(((
1623 **voltage** : voltage threshold in mV
1624
1625 **logic**:
1626
1627 **0** : lower than
1628
1629 **1**: higher than
1630
1631 if you leave the logic parameter blank, it is considered 0
1632 )))
1633 |(% style="width:137px" %)**Examples**|(% style="width:361px" %)(((
1634 AT+VOLMAX=20000
1635
1636 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1637
1638 AT+VOLMAX=20000,0
1639
1640 If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1
1641
1642 AT+VOLMAX=20000,1
1643
1644 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1645 )))
1646
1647 (% style="color:#037691" %)**Downlink Payload**
1648
1649 (% border="2" style="width:500px" %)
1650 |(% style="width:140px" %)**Payload**|(% style="width:358px" %)<prefix><voltage><logic>
1651 |(% style="width:140px" %)**Parameters**|(% style="width:358px" %)(((
1652 **prefix** : A5 (hex)
1653
1654 **voltage** : voltage threshold in mV (2 bytes in hex)
1655
1656 **logic**: (1 byte in hexadecimal)
1657
1658 **0** : lower than
1659
1660 **1**: higher than
1661
1662 if you leave the logic parameter blank, it is considered 1 (higher than)
1663 )))
1664 |(% style="width:140px" %)**Example**|(% style="width:358px" %)(((
1665 A5 **4E 20**
1666
1667 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1668
1669 A5 **4E 20 00**
1670
1671 If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1
1672
1673 A5 **4E 20 01**
1674
1675 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1676 )))
1677
1678 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1679
1680
1681 This command allows users to pre-configure specific count numbers for various counting parameters such as Count1, Count2, or AVI1 Count. Use the AT command to set the desired count number for each configuration.
1682
1683 (% style="color:#037691" %)**AT Command**
1684
1685 (% border="2" style="width:500px" %)
1686 |(% style="width:134px" %)**Command**|(% style="width:364px" %)AT+SETCNT=<counting_parameter>,<number>
1687 |(% style="width:134px" %)**Response**|(% style="width:364px" %)
1688 |(% style="width:134px" %)**Parameters**|(% style="width:364px" %)(((
1689 **counting_parameter** :
1690
1691 1: COUNT1
1692
1693 2: COUNT2
1694
1695 3: AVI1 Count
1696
1697 **number** : Start number
1698 )))
1699 |(% style="width:134px" %)**Example**|(% style="width:364px" %)(((
1700 AT+SETCNT=1,10
1701
1702 Sets the COUNT1 to 10.
1703 )))
1704
1705 (% style="color:#037691" %)**Downlink Payload**
1706
1707 (% border="2" style="width:500px" %)
1708 |(% style="width:135px" %)**Payload**|(% style="width:363px" %)<prefix><counting_parameter><number>
1709 |(% style="width:135px" %)**Parameters**|(% style="width:363px" %)(((
1710 prefix : A8 (hex)
1711
1712 **counting_parameter** : (1 byte in hexadecimal)
1713
1714 1: COUNT1
1715
1716 2: COUNT2
1717
1718 3: AVI1 Count
1719
1720 **number** : Start number, 4 bytes in hexadecimal
1721 )))
1722 |(% style="width:135px" %)**Example**|(% style="width:363px" %)(((
1723 A8 **01 00 00 00 0A**
1724
1725 Sets the COUNT1 to 10.
1726 )))
1727
1728 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1729
1730
1731 This command clears the counting in counting mode.
1732
1733 (% style="color:#037691" %)**AT Command**
1734
1735 (% border="2" style="width:500px" %)
1736 |(% style="width:142px" %)**Command**|(% style="width:356px" %)AT+CLRCOUNT
1737 |(% style="width:142px" %)**Response**|(% style="width:356px" %)-
1738
1739 (% style="color:#037691" %)**Downlink Payload**
1740
1741 (% border="2" style="width:500px" %)
1742 |(% style="width:141px" %)**Payload**|(% style="width:357px" %)<prefix><clear?>
1743 |(% style="width:141px" %)**Parameters**|(% style="width:357px" %)(((
1744 prefix : A6 (hex)
1745
1746 clear? : 01 (hex)
1747 )))
1748 |(% style="width:141px" %)**Example**|(% style="width:357px" %)A6 **01**
1749
1750 ==== 3.4.2.19 Set the save intervals of the counting results, RO (Relay Output), and DO (Digital Output) states ====
1751
1752 This command configures the device to periodically save the counting results, RO (Relay Output), and DO (Digital Output) states to internal flash memory at a user-defined interval. By setting a save interval, the device ensures that critical data (counting values and output states) is preserved in case of power loss.
1753 The save interval can be adjusted to the user's needs, with a minimum value of (% style="color:blue" %)**30**(%%) seconds.
1754 The saved RO/DO states can be restored after a device reset by combining this function with the (% style="color:blue" %)**AT+RODORESET**(%%) command.
1755
1756 (% style="color:#037691" %)**AT Command**
1757
1758 (% border="2" style="width:500px" %)
1759 |(% style="width:124px" %)**Command**|(% style="width:374px" %)AT+COUTIME=<time>
1760 |(% style="width:124px" %)**Response**|(% style="width:374px" %)
1761 |(% style="width:124px" %)**Parameters**|(% style="width:374px" %)time : seconds (0 to 16777215)
1762 |(% style="width:124px" %)**Example**|(% style="width:374px" %)(((
1763 AT+COUTIME=60
1764
1765 Sets the device to save its counting results, RO and DO states to the memory every 60 seconds.
1766 )))
1767
1768 (% style="color:#037691" %)**Downlink Payload**
1769
1770 (% border="2" style="width:500px" %)
1771 |(% style="width:123px" %)**Payload**|(% style="width:375px" %)<prefix><time>
1772 |(% style="width:123px" %)**Parameters**|(% style="width:375px" %)(((
1773 prefix : A7
1774
1775 time : seconds, 3 bytes in hexadecimal
1776 )))
1777 |(% style="width:123px" %)**Example**|(% style="width:375px" %)(((
1778 A7 **00 00 3C**
1779
1780 SSets the device to save its counting results, RO and DO states to the memory every 60 seconds.
1781 )))
1782
1783 ==== 3.4.2.20 Reset saved RO and DO states ====
1784
1785
1786 This command allows you to reset the saved relay output (RO) and digital output (DO) states when the device joins the network. By configuring this setting, you can control whether the device should retain or reset the relay states after a reset and rejoin to the network.
1787
1788 (% style="color:#037691" %)**AT Command**
1789
1790 (% border="2" style="width:500px" %)
1791 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+RODORESET=<state>
1792 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1793 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1794 **state** :
1795
1796 **0** : RODO will close when the device joins the network. (default)
1797
1798 **1**: After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1799 )))
1800 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1801 (% style="color:blue" %)**AT+RODORESET=1 **
1802
1803 RODO will close when the device joins the network. (default)
1804
1805 (% style="color:blue" %)**AT+RODORESET=0 **
1806
1807 After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1808 )))
1809
1810 (% style="color:#037691" %)**Downlink Payload**
1811
1812 (% border="2" style="width:500px" %)
1813 |(% style="width:127px" %)**Payload**|(% style="width:371px" %)<prefix><state>
1814 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1815 **prefix** : AD
1816
1817 **state** :
1818
1819 **0** : RODO will close when the device joins the network. (default), represents as 1 byte in hexadecimal.
1820
1821 **1**: After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network. - represents as 1 byte in hexadecimal
1822 )))
1823 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1824 AD **01**
1825
1826 RODO will close when the device joins the network. (default)
1827
1828 AD **00**
1829
1830 After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1831 )))
1832
1833 ==== 3.4.2.21 Encrypted payload ====
1834
1835
1836 This command allows you to configure whether the device should upload data in an encrypted format or in plaintext. By default, the device encrypts the payload before uploading. You can toggle this setting to either upload encrypted data or transmit it without encryption.
1837
1838 (% style="color:#037691" %)**AT Command:**
1839
1840 (% border="2" style="width:500px" %)
1841 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+DECRYPT=<state>
1842 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1843 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1844 **state** :
1845
1846 **1** : The payload is uploaded without encryption
1847
1848 **0** : The payload is encrypted when uploaded (default)
1849 )))
1850 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1851 AT+DECRYPT=1
1852
1853 The payload is uploaded without encryption
1854
1855 AT+DECRYPT=0
1856
1857 The payload is encrypted when uploaded (default)
1858 )))
1859
1860 There is no downlink payload for this configuration.
1861
1862
1863 ==== 3.4.2.22 Get sensor value ====
1864
1865
1866 This command allows you to retrieve and optionally uplink sensor readings through the serial port.
1867
1868 (% style="color:#037691" %)**AT Command**
1869
1870 (% border="2" style="width:500px" %)
1871 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+GETSENSORVALUE=<state>
1872 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1873 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1874 **state** :
1875
1876 **0 **: Retrieves the current sensor reading via the serial port.
1877
1878 **1 **: Retrieves and uploads the current sensor reading via the serial port.
1879 )))
1880 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1881 AT+GETSENSORVALUE=0
1882
1883 Retrieves the current sensor reading via the serial port.
1884
1885 AT+GETSENSORVALUE=1
1886
1887 Retrieves and uplinks the current sensor reading via the serial port.
1888 )))
1889
1890 There is no downlink payload for this configuration.
1891
1892
1893 ==== 3.4.2.23 Resetting the downlink packet count ====
1894
1895
1896 This command manages how the node handles mismatched downlink packet counts. It offers two modes: one disables the reception of further downlink packets if discrepancies occur, while the other resets the downlink packet count to align with the server, ensuring continued communication.
1897
1898 (% style="color:#037691" %)**AT Command**
1899
1900 (% border="2" style="width:500px" %)
1901 |(% style="width:130px" %)**Command**|(% style="width:368px" %)AT+DISFCNTCHECK=<state>
1902 |(% style="width:130px" %)**Response**|(% style="width:368px" %)(((
1903
1904 )))
1905 |(% style="width:130px" %)**Parameters**|(% style="width:368px" %)(((
1906 **state **:
1907
1908 **0** : When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node stops receiving further downlink packets (default).
1909
1910
1911 **1** : When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node resets its downlink packet count to match the server's, ensuring consistency.
1912 )))
1913 |(% style="width:130px" %)**Example**|(% style="width:368px" %)(((
1914 AT+DISFCNTCHECK=0
1915
1916 When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node stops receiving further downlink packets (default).
1917
1918 AT+DISFCNTCHECK=1
1919
1920 When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node resets its downlink packet count to match the server's, ensuring consistency.
1921 )))
1922
1923 There is no downlink payload for this configuration.
1924
1925
1926 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1927
1928
1929 This command controls the behavior of the node when the combined size of the MAC commands (MACANS) from the server and the payload exceed the allowed byte limit for the current data rate (DR). The command provides two modes: one enables splitting the data into batches to ensure compliance with the byte limit, while the other prioritizes the payload and ignores the MACANS in cases of overflow.
1930
1931 (% style="color:#037691" %)**AT Command**
1932
1933 (% border="2" style="width:500px" %)
1934 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+DISMACANS=<state>
1935 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1936 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1937 **state** :
1938
1939 **0** : When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1940
1941 **1** : When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1942 )))
1943 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1944 AT+DISMACANS=0
1945
1946 When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1947
1948 AT+DISMACANS=1
1949
1950 When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1951 )))
1952
1953 (% style="color:#037691" %)**Downlink Payload**
1954
1955 (% border="2" style="width:500px" %)
1956 |(% style="width:126px" %)**Payload**|(% style="width:372px" %)<prefix><state>
1957 |(% style="width:126px" %)**Parameters**|(% style="width:372px" %)(((
1958 **prefix** : 21
1959
1960 **state** : (2 bytes in hexadecimal)
1961
1962 **0** : When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1963
1964 **1 **: When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1965 )))
1966 |(% style="width:126px" %)**Example**|(% style="width:372px" %)(((
1967 21 **00 01**
1968
1969 Set DISMACANS=1
1970 )))
1971
1972 ==== 3.4.2.25 Copy downlink to uplink ====
1973
1974
1975 This command enables the device to immediately uplink the payload of a received downlink packet back to the server. The command allows for quick data replication from downlink to uplink, with a fixed port number of 100.
1976
1977 (% style="color:#037691" %)**AT Command**(%%)**:**
1978
1979 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving a downlink payload from the server, the device will immediately uplink the payload back to the server using port number 100.
1980
1981 Example:**aa xx xx xx xx**         ~/~/ **aa** indicates whether the configuration has changed: **00** means YES, and **01** means NO. **xx xx xx xx** are the bytes uplinked back.
1982
1983
1984 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1985
1986 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1987
1988 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1989
1990 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1991
1992
1993 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1994
1995 There is no downlink option available for this feature.
1996
1997
1998 ==== 3.4.2.26 Query firmware version, frequency band, subband, and TDC time ====
1999
2000
2001 This command is used to query key information about the device, including its firmware version, frequency band, subband, and TDC time. By sending the specified payload as a downlink, the server can retrieve this essential data from the device.
2002
2003 * (((
2004 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
2005
2006 (% style="color:blue" %)**26 01  ** (%%) ~/~/  The downlink payload 26 01 is used to query the device's firmware version, frequency band, subband, and TDC time.
2007
2008
2009 )))
2010
2011 **Example:**
2012
2013 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
2014
2015
2016 == 3.5 Integrating with ThingsEye.io ==
2017
2018
2019 The Things Stack application supports integration with ThingsEye.io. Once integrated, ThingsEye.io acts as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
2020
2021
2022 === 3.5.1 Configuring The Things Stack ===
2023
2024
2025 We use The Things Stack Sandbox in this example:
2026
2027 * In **The Things Stack Sandbox**, go to the **Application **for the LT-22222-LA you added.
2028 * Select **MQTT** under **Integrations** in the left menu.
2029 * In the **Connection information **section, under **Connection credentials**, The Things Stack displays an auto-generated **username**. You can use it or provide a new one.
2030 * Click the **Generate new API key** button to generate a password. You can view it by clicking on the **visibility toggle/eye** icon. The API key works as the password.
2031
2032 {{info}}
2033 The username and  password (API key) you created here are required in the next section.
2034 {{/info}}
2035
2036 [[image:tts-mqtt-integration.png]]
2037
2038
2039 === 3.5.2 Configuring ThingsEye.io ===
2040
2041
2042 The ThingsEye.io IoT platform is not open for self-registration at the moment. If you are interested in testing the platform, please send your project information to admin@thingseye.io, and we will create an account for you.
2043
2044 * Login to your [[ThingsEye.io >>https://thingseye.io]]account.
2045 * Under the **Integrations center**, click **Integrations**.
2046 * Click the **Add integration** button (the button with the **+** symbol).
2047
2048 [[image:thingseye-io-step-1.png]]
2049
2050
2051 On the **Add integration** window, configure the following:
2052
2053 **Basic settings:**
2054
2055 * Select **The Things Stack Community** from the **Integration type** list.
2056 * Enter a suitable name for your integration in the **Name **text** **box or keep the default name.
2057 * Ensure the following options are turned on.
2058 ** Enable integration
2059 ** Debug mode
2060 ** Allow creating devices or assets
2061 * Click the **Next** button. you will be navigated to the **Uplink data converter** tab.
2062
2063 [[image:thingseye-io-step-2.png]]
2064
2065
2066 **Uplink data converter:**
2067
2068 * Click the **Create new** button if it is not selected by default.
2069 * Enter a suitable name for the uplink data converter in the **Name **text** **box or keep the default name.
2070 * Click the **JavaScript** button.
2071 * Paste the uplink decoder function into the text area (first, delete the default code). The demo uplink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]].
2072 * Click the **Next** button. You will be navigated to the **Downlink data converter **tab.
2073
2074 [[image:thingseye-io-step-3.png]]
2075
2076
2077 **Downlink data converter (this is an optional step):**
2078
2079 * Click the **Create new** button if it is not selected by default.
2080 * Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name.
2081 * Click the **JavaScript** button.
2082 * Paste the downlink decoder function into the text area (first, delete the default code). The demo downlink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Downlink_Converter.js]].
2083 * Click the **Next** button. You will be navigated to the **Connection** tab.
2084
2085 [[image:thingseye-io-step-4.png]]
2086
2087
2088 **Connection:**
2089
2090 * Choose **Region** from the **Host type**.
2091 * Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...).
2092 * Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The **username **and **password **can be found on the MQTT integration page of your The Things Stack account (see **3.5.1 Configuring The Things Stack**).
2093 * Click the **Check connection** button to test the connection. If the connection is successful, you will see the message saying **Connected**.
2094
2095 [[image:message-1.png]]
2096
2097
2098 * Click the **Add** button.
2099
2100 [[image:thingseye-io-step-5.png]]
2101
2102
2103 Your integration has been added to the** Integrations** list and will be displayed on the **Integrations** page. Check whether the status is shown as **Active**. If not, review your configuration settings and correct any errors.
2104
2105 [[image:thingseye.io_integrationsCenter_integrations.png]]
2106
2107
2108 ==== 3.5.2.1 Viewing integration details ====
2109
2110
2111 Click on your integration from the list. The **Integration details** window will appear with the **Details **tab selected. The **Details **tab shows all the settings you have provided for this integration.
2112
2113 [[image:integration-details.png]]
2114
2115
2116 If you want to edit the settings you have provided, click on the **Toggle edit mode** button. Once you have done click on the **Apply changes **button.
2117
2118 {{info}}
2119 See also [[ThingsEye documentation>>https://wiki.thingseye.io/xwiki/bin/view/Main/]].
2120 {{/info}}
2121
2122
2123 ==== 3.5.2.2 Viewing events ====
2124
2125
2126 The **Events **tab displays all the uplink messages from the LT-22222-L.
2127
2128 * Select **Debug **from the **Event type** dropdown.
2129 * Select the** time frame** from the **time window**.
2130
2131 [[image:thingseye-events.png]]
2132
2133
2134 * To view the **JSON payload** of a message, click on the **three dots (...)** in the **Message** column of the desired message.
2135
2136 [[image:thingseye-json.png]]
2137
2138
2139 ==== 3.5.2.3 Deleting an integration ====
2140
2141
2142 If you want to delete an integration, click the **Delete integratio**n button on the Integrations page.
2143
2144
2145 ==== 3.5.2.4 Viewing sensor data on a dashboard ====
2146
2147
2148 You can create a dashboard with ThingsEye to visualize the sensor data coming from the LT-22222-LA. The following image shows a dashboard created for the LT-22222-LA. See **Creating a dashboard** in ThingsEye documentation for more information.
2149
2150 [[image:lt-22222-l-dashboard.png]]
2151
2152
2153 == 3.6 Interface Details ==
2154
2155 === 3.6.1 Digital Input Ports: DI1/DI2/DI3 (For LT-33222-L, Low Active) ===
2156
2157
2158 Supports** NPN-type **sensors.
2159
2160 [[image:1653356991268-289.png]]
2161
2162
2163 === 3.6.2 Digital Input Ports: DI1/DI2 ===
2164
2165
2166 (((
2167 The DI ports of the LT-22222-LA can support **NPN**, **PNP**, or **dry contact** output sensors.
2168 )))
2169
2170 (((
2171 (((
2172 The part of the internal circuit of the LT-22222-LA shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
2173
2174 [[image:1653357170703-587.png]]
2175 )))
2176 )))
2177
2178
2179 (((
2180 (((
2181 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
2182 )))
2183 )))
2184
2185 (((
2186
2187 )))
2188
2189 (((
2190 (% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
2191 )))
2192
2193 (((
2194 This type of sensor outputs a low (GND) signal when active.
2195 )))
2196
2197 * (((
2198 Connect the sensor's output to DI1-
2199 )))
2200 * (((
2201 Connect the sensor's VCC to DI1+.
2202 )))
2203
2204 (((
2205 When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be:
2206 )))
2207
2208 (((
2209 **= DI1**+** / 1K.**
2210 )))
2211
2212 (((
2213 For example, if** DI1+ **= **12V**, the resulting current is = 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
2214 )))
2215
2216 (((
2217
2218 )))
2219
2220 (((
2221 (% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
2222 )))
2223
2224 (((
2225 This type of sensor outputs a high signal (e.g., 24V) when active.
2226 )))
2227
2228 * (((
2229 Connect the sensor's output to DI1+
2230 )))
2231 * (((
2232 Connect the sensor's GND DI1-.
2233 )))
2234
2235 (((
2236 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
2237 )))
2238
2239 (((
2240 **= DI1+ / 1K.**
2241 )))
2242
2243 (((
2244 If **DI1+ = 24V**, the resulting current is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
2245 )))
2246
2247 (((
2248
2249 )))
2250
2251 (((
2252 (% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
2253 )))
2254
2255 (((
2256 Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
2257 )))
2258
2259 * (((
2260 Connect the sensor's output to DI1+ with a 50K resistor in series.
2261 )))
2262 * (((
2263 Connect the sensor's GND DI1-.
2264 )))
2265
2266 (((
2267 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
2268 )))
2269
2270 (((
2271 **= DI1+ / 51K.**
2272 )))
2273
2274 (((
2275 If the sensor output is 220V, then (% wfd-invisible="true" id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
2276 )))
2277
2278
2279
2280
2281
2282
2283 (% style="color:blue" %)**Example 4**(%%): Connecting to a Dry Contact sensor
2284
2285 From the DI port circuit above, activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference on its own.
2286
2287 To detect a Dry Contact, you can supply a power source to one of the pins of the Dry Contact. A reference circuit diagram is shown below.
2288
2289 [[image:image-20230616235145-1.png]]
2290
2291 (% style="color:blue" %)**Example 5**(%%): Connecting to an Open Collector
2292
2293
2294 [[image:image-20240219115718-1.png]]
2295
2296 === 3.6.3 Digital Output Ports: DO1/DO2 ===
2297
2298
2299 (% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
2300
2301 (% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
2302
2303 [[image:1653357531600-905.png]]
2304
2305
2306 === 3.6.4 Analog Input Interfaces ===
2307
2308
2309 The analog input interface is shown below. The LT-22222-LA will measure the IN2 voltage to calculate the current passing through the load. The formula is:
2310
2311
2312 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
2313
2314 [[image:1653357592296-182.png]]
2315
2316 Example: Connecting a 4~~20mA sensor
2317
2318 We will use the wind speed sensor as an example for reference only.
2319
2320
2321 (% style="color:blue" %)**Specifications of the wind speed sensor:**
2322
2323 (% style="color:red" %)**Red:  12~~24V**
2324
2325 (% style="color:#ffc000" %)**Yellow:  4~~20mA**
2326
2327 **Black:  GND**
2328
2329 **Connection diagram:**
2330
2331 [[image:1653357640609-758.png]]
2332
2333 [[image:1653357648330-671.png]]
2334
2335
2336 Example: Connecting to a regulated power supply to measure voltage
2337
2338 [[image:image-20230608101532-1.png]]
2339
2340 [[image:image-20230608101608-2.jpeg]]
2341
2342 [[image:image-20230608101722-3.png]]
2343
2344
2345 (% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
2346
2347 (% style="color:red" %)**Red:  12~~24v**
2348
2349 **Black:  GND**
2350
2351
2352 === 3.6.5 Relay Output ===
2353
2354
2355 (((
2356 The LT-22222-LA has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
2357
2358 (% style="color:red" %)**Note:**(%%) The ROx pins will be in the Open (NO) state when the LT-22222-LA is powered off.
2359 )))
2360
2361 [[image:image-20220524100215-9.png]]
2362
2363 [[image:image-20220524100215-10.png]]
2364
2365
2366
2367 == 3.7 LED Indicators ==
2368
2369
2370 The table below lists the behaviour of LED indicators for each port function.
2371
2372 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
2373 |(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
2374 |**PWR**|Always on when there is power
2375 |**TX**|(((
2376 (((
2377 Device booting: TX blinks 5 times.
2378 )))
2379
2380 (((
2381 Successful network joins: TX remains ON for 5 seconds.
2382 )))
2383
2384 (((
2385 Transmit a LoRa packet: TX blinks once
2386 )))
2387 )))
2388 |**RX**|RX blinks once when a packet is received.
2389 |**DO1**|For LT-22222-LA: ON when DO1 is low, OFF when DO1 is high
2390 |**DO2**|For LT-22222-LA: ON when DO2 is low, OFF when DO2 is high
2391 |**DI1**|(((
2392 For LT-22222-LA: ON when DI1 is high, OFF when DI1 is low
2393 )))
2394 |**DI2**|(((
2395 For LT-22222-LA: ON when DI2 is high, OFF when DI2 is low
2396 )))
2397 |**RO1**|For LT-22222-LA: ON when RO1 is closed, OFF when RO1 is open
2398 |**RO2**|For LT-22222-LA: ON when RO2 is closed, OFF when RO2 is open
2399
2400 = 4. Using AT Commands =
2401
2402
2403 The LT-22222-LA supports programming using AT Commands.
2404
2405
2406 == 4.1 Connecting the LT-22222-LA to a PC ==
2407
2408
2409 (((
2410 You can use a USB-to-TTL adapter/converter along with a 3.5mm Program Cable to connect the LT-22222-LA to a PC, as shown below.
2411
2412 (% title="Click and drag to resize" %)​​[[image:1751525987713-642.png]]​
2413
2414
2415 )))
2416
2417 (((
2418 On the PC, you need to set the (% style="color:#4f81bd" %)**serial tool **(%%)(such as [[PuTTY>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]] or [[SecureCRT>>https://www.vandyke.com/cgi-bin/releases.php?product=securecrt]]) to a baud rate of (% style="color:green" %)**9600**(%%) to access the serial console of LT-22222-LA. Access to AT commands is disabled by default, and a password (default: (% style="color:green" %)**123456**)(%%) must be entered to enable AT command access, as shown below:
2419 )))
2420
2421 [[image:1653358355238-883.png]]
2422
2423
2424 (((
2425 == 4.2 LT-22222-LA related AT commands ==
2426
2427
2428 )))
2429
2430 (((
2431 The following is the list of all the AT commands related to the LT-22222-LA, except for those used for switching between working modes.
2432
2433 * **##AT##+<CMD>?** : Help on <CMD>
2434 * **##AT##+<CMD>** : Run <CMD>
2435 * **##AT##+<CMD>=<value>** : Set the value
2436 * **##AT##+<CMD>=?** : Get the value
2437 * ##**ATZ**##: Trigger a reset of the MCU
2438 * ##**AT+FDR**##: Reset Parameters to factory default, reserve keys 
2439 * **##AT+DEUI##**: Get or set the Device EUI (DevEUI)
2440 * **##AT+DADDR##**: Get or set the Device Address (DevAddr)
2441 * **##AT+APPKEY##**: Get or set the Application Key (AppKey)
2442 * ##**AT+NWKSKEY**##: Get or set the Network Session Key (NwkSKey)
2443 * **##AT+APPSKEY##**: Get or set the Application Session Key (AppSKey)
2444 * **##AT+APPEUI##**: Get or set the Application EUI (AppEUI)
2445 * **##AT+ADR##**: Get or set the Adaptive Data Rate setting. (0: OFF, 1: ON)
2446 * ##**AT+TXP**##: Get or set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Specification)
2447 * **##AT+DR##**:  Get or set the Data Rate. (0-7 corresponding to DR_X)  
2448 * **##AT+DCS##**: Get or set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
2449 * ##**AT+PNM**##: Get or set the public network mode. (0: off, 1: on)
2450 * ##**AT+RX2FQ**##: Get or set the Rx2 window frequency
2451 * ##**AT+RX2DR**##: Get or set the Rx2 window data rate (0-7 corresponding to DR_X)
2452 * ##**AT+RX1DL**##: Get or set the delay between the end of the Tx and the Rx Window 1 in ms
2453 * ##**AT+RX2DL**##: Get or set the delay between the end of the Tx and the Rx Window 2 in ms
2454 * ##**AT+JN1DL**##: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
2455 * ##**AT+JN2DL**##: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
2456 * ##**AT+NJM**##: Get or set the Network Join Mode. (0: ABP, 1: OTAA)
2457 * ##**AT+NWKID**##: Get or set the Network ID
2458 * ##**AT+FCU**##: Get or set the Frame Counter Uplink (FCntUp)
2459 * ##**AT+FCD**##: Get or set the Frame Counter Downlink (FCntDown)
2460 * ##**AT+CLASS**##: Get or set the Device Class
2461 * ##**AT+JOIN**##: Join Network
2462 * ##**AT+NJS**##: Get OTAA Join Status
2463 * ##**AT+SENDB**##: Send hexadecimal data along with the application port
2464 * ##**AT+SEND**##: Send text data along with the application port
2465 * ##**AT+RECVB**##: Print the last received data in binary format (with hexadecimal values)
2466 * ##**AT+RECV**##: Print the last received data in raw format
2467 * ##**AT+VER**##: Get the current image version and Frequency Band
2468 * ##**AT+CFM**##: Get or Set the confirmation mode (0-1)
2469 * ##**AT+CFS**##: Get confirmation status of the last AT+SEND (0-1)
2470 * ##**AT+SNR**##: Get the SNR of the last received packet
2471 * ##**AT+RSSI**##: Get the RSSI of the last received packet
2472 * ##**AT+TDC**##: Get or set the application data transmission interval in ms
2473 * ##**AT+PORT**##: Get or set the application port
2474 * ##**AT+DISAT**##: Disable AT commands
2475 * ##**AT+PWORD**##: Set password, max 9 digits
2476 * ##**AT+CHS**##: Get or set the Frequency (Unit: Hz) for Single Channel Mode
2477 * ##**AT+CHE**##: Get or set eight channels mode, Only for US915, AU915, CN470
2478 * ##**AT+CFG**##: Print all settings
2479 )))
2480
2481
2482 == 4.2 Common AT Command Sequence ==
2483
2484 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
2485
2486 (((
2487
2488
2489 (((
2490 (% style="color:blue" %)**If the device has not yet joined the network:**
2491 )))
2492 )))
2493
2494 (((
2495 (% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT command access**##
2496 )))
2497
2498 (((
2499 (% style="background-color:#dcdcdc" %)##**AT+FDR ~/~/Reset parameters to factory default, Reserve keys**##
2500 )))
2501
2502 (((
2503 (% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT command access**##
2504 )))
2505
2506 (((
2507 (% style="background-color:#dcdcdc" %)##**AT+NJM=0 ~/~/Set to ABP mode**##
2508 )))
2509
2510 (((
2511 (% style="background-color:#dcdcdc" %)##**ATZ ~/~/Reset MCU**##
2512 )))
2513
2514
2515 (((
2516 (% style="color:blue" %)**If the device has already joined the network:**
2517 )))
2518
2519 (((
2520 (% style="background-color:#dcdcdc" %)##**AT+NJM=0**##
2521 )))
2522
2523 (((
2524 (% style="background-color:#dcdcdc" %)##**ATZ**##
2525 )))
2526
2527
2528 (((
2529
2530 )))
2531
2532
2533 === 4.2.3 Change to Class A ===
2534
2535
2536 (((
2537 (% style="color:blue" %)**If the sensor has JOINED:**
2538
2539 (% style="background-color:#dcdcdc" %)**AT+CLASS=A**
2540
2541 (% style="background-color:#dcdcdc" %)**ATZ**
2542 )))
2543
2544
2545 = 5. Case Study =
2546
2547 == 5.1 Counting how many objects pass through the flow line ==
2548
2549
2550 See [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]].
2551
2552
2553 = 6. FAQ =
2554
2555
2556 This section contains some frequently asked questions, which can help you resolve common issues and find solutions quickly.
2557
2558
2559 == 6.1 How to update the firmware? ==
2560
2561
2562 Dragino frequently releases firmware updates for the LT-22222-L. Updating your LT-22222-L with the latest firmware version helps to:
2563
2564 * Support new features
2565 * Fix bugs
2566 * Change LoRaWAN frequency bands
2567
2568 You will need the following things before proceeding:
2569
2570 * 3.5mm programming cable (included with the LT-22222-L as an additional accessory)
2571 * USB to TTL adapter/converter
2572 * Download and install the [[STM32 Flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]]. (replaced by STM32CubeProgrammer)
2573 * Download the latest firmware image from [[LT-22222-L firmware image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]]. Check the file name of the firmware to find the correct region.
2574
2575 {{info}}
2576 As of this writing, the latest firmware version available for the LT-22222-L is v1.6.1.
2577 {{/info}}
2578
2579 Below is the hardware setup for uploading a firmware image to the LT-22222-L:
2580
2581
2582
2583
2584 Start the STM32 Flash Loader and choose the correct COM port to update.
2585
2586 (((
2587 (((
2588 (% style="color:blue" %)**For LT-22222-L**(%%):
2589
2590 Hold down the **PRO** button, then briefly press the **RST** button. The **DO1** LED will change from OFF to ON. When the **DO1** LED is ON, it indicates that the device is in firmware download mode.
2591 )))
2592
2593
2594 )))
2595
2596
2597
2598
2599
2600
2601
2602 (% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5 mm cable. The pin mapping is as follows:
2603
2604
2605
2606 (((
2607 (((
2608 == 6.2 How to change the LoRaWAN frequency band/region? ==
2609
2610
2611 )))
2612 )))
2613
2614 (((
2615 You can follow the introductions on [[how to upgrade the image>>||anchor="H6.1Howtoupdatethefirmware3F"]]. When downloading, select the required image file.
2616 )))
2617
2618 (((
2619
2620
2621 == 6.3 How to set up LT-22222-L to work with a Single Channel Gateway, such as LG01/LG02? ==
2622
2623
2624 )))
2625
2626 (((
2627 (((
2628 In this case, you need to set the LT-22222-L to work in ABP mode and transmit on only one frequency.
2629 )))
2630 )))
2631
2632 (((
2633 (((
2634 We assume you have an LG01/LG02 working on the frequency 868400000. Below are the steps.
2635
2636
2637 )))
2638 )))
2639
2640 (((
2641 (% style="color:#0000ff" %)**Step 1**(%%): Log in to The Things Stack Sandbox account and create an ABP device in the application. To do this, use the manual registration option as explained in section 3.2.2.2, //Adding a Device Manually//. Select //Activation by Personalization (ABP)// under Activation Mode. Enter the DevEUI exactly as shown on the registration information sticker, then generate the Device Address, Application Session Key (AppSKey), and Network Session Key (NwkSKey).
2642
2643
2644 )))
2645
2646 (((
2647
2648 )))
2649
2650 {{warning}}
2651 Ensure that the Device Address (DevAddr) and the two keys match between the LT-22222-L and The Things Stack. You can modify them either in The Things Stack or on the LT-22222-L to make them align. In The Things Stack, you can configure the NwkSKey and AppSKey on the settings page, but note that the Device Address is generated by The Things Stack.
2652 {{/warning}}
2653
2654
2655 (((
2656 (% style="color:blue" %)**Step 2**(%%)**:  **(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)Run AT commands to configure the LT-22222-L to operate in single-frequency and ABP mode. The AT commands are as follows:
2657
2658
2659 )))
2660
2661 (((
2662 (% style="background-color:#dcdcdc" %)**123456** (%%) : Enter the password to enable AT access.
2663
2664 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Reset parameters to factory default, keeping keys reserved.
2665
2666 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) : Set to ABP mode.
2667
2668 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) : Disable the Adaptive Data Rate (ADR).
2669
2670 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) : Set Data Rate (Use AT+DR=3 for the 915 MHz band).
2671
2672 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) : Set transmit interval to 60 seconds.
2673
2674 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4 MHz.
2675
2676 (% style="background-color:#dcdcdc" %)**AT+DADDR=xxxx**(%%) : Set the Device Address (DevAddr)
2677
2678 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:700; text-decoration:none; white-space:pre-wrap" %)**AT+APPKEY=xxxx**(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %): Get or set the Application Key (AppKey)
2679
2680 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)**AT+NWKSKEY=xxxx**: Get or set the Network Session Key (NwkSKey)
2681
2682 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)**AT+APPSKEY=xxxx**: Get or set the Application Session Key (AppSKey)
2683
2684 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) : Reset MCU.
2685 )))
2686
2687
2688 (((
2689 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)The following figure shows the screenshot of the command set above, issued using a serial tool:
2690 )))
2691
2692
2693
2694 == 6.4 How to change the uplink interval? ==
2695
2696
2697 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2698
2699
2700 == 6.5 Can I see the counting event in the serial output? ==
2701
2702
2703 (((
2704 You can run the AT command **AT+DEBUG** to view the counting event in the serial output. If the firmware is too old and doesn’t support AT+DEBUG, update to the latest firmware first.
2705
2706
2707 == 6.6 Can I use point-to-point communication with LT-22222-L? ==
2708
2709
2710 Yes, you can. Please refer to the [[Point-to-Point Communication of LT-22222-L>>https://wiki.dragino.com/xwiki/bin/view/Main/%20Point%20to%20Point%20Communication%20of%20LT-22222-L/]] page. The firmware that supports point-to-point communication can be found [[here>>https://github.com/dragino/LT-22222-L/releases]].
2711
2712
2713 )))
2714
2715 (((
2716 == 6.7 Why does the relay output default to an open relay after the LT-22222-L is powered off? ==
2717
2718
2719 * If the device is not properly shut down and is directly powered off.
2720 * It will default to a power-off state.
2721 * In modes 2 to 5, the DO/RO status and pulse count are saved to flash memory.
2722 * After a restart, the status before the power failure will be read from Flash.
2723
2724 == 6.8 Can I set up LT-22222-L as an NC (Normally Closed) relay? ==
2725
2726
2727 The LT-22222-L's built-in relay is Normally Open (NO). You can use an external relay to achieve a Normally Closed (NC) configuration. The circuit diagram is shown below:
2728
2729
2730
2731
2732 == 6.9 Can the LT-22222-L save the RO state? ==
2733
2734
2735 To enable this feature, the firmware version must be 1.6.0 or higher.
2736
2737
2738 == 6.10 Why does the LT-22222-L always report 15.585V when measuring the AVI? ==
2739
2740
2741 It is likely that the GND is not connected during the measurement, or that the wire connected to the GND is loose.
2742
2743
2744 = 7. Troubleshooting =
2745
2746
2747 This section provides some known troubleshooting tips.
2748
2749
2750 )))
2751
2752 (((
2753 (((
2754 == 7.1 Downlink isn't working. How can I solve this? ==
2755
2756
2757 )))
2758 )))
2759
2760 (((
2761 Please refer to this link for debugging instructions: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2762 )))
2763
2764 (((
2765
2766
2767 == 7.2 Having trouble uploading an image? ==
2768
2769
2770 )))
2771
2772 (((
2773 Please refer to this link for troubleshooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2774 )))
2775
2776 (((
2777
2778
2779 == 7.3 Why can't I join TTN in the US915 /AU915 bands? ==
2780
2781
2782 )))
2783
2784 (((
2785 It might be related to the channel mapping. [[Please refer to this link for details.>>https://github.com/dragino/LT-22222-L/releases]]
2786 )))
2787
2788
2789 == 7.4 Why can the LT-22222-L perform uplink normally, but cannot receive downlink? ==
2790
2791
2792 The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue.
2793 Use this command to synchronize their counts: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resettingthedownlinkpacketcount"]]
2794
2795
2796 = 8. Ordering information =
2797
2798
2799 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2800
2801 (% style="color:#4f81bd" %)**XXX:**
2802
2803 * (% style="color:red" %)**EU433**(%%): LT with frequency bands EU433
2804 * (% style="color:red" %)**EU868**(%%): LT with frequency bands EU868
2805 * (% style="color:red" %)**KR920**(%%): LT with frequency bands KR920
2806 * (% style="color:red" %)**CN470**(%%): LT with frequency bands CN470
2807 * (% style="color:red" %)**AS923**(%%): LT with frequency bands AS923
2808 * (% style="color:red" %)**AU915**(%%): LT with frequency bands AU915
2809 * (% style="color:red" %)**US915**(%%): LT with frequency bands US915
2810 * (% style="color:red" %)**IN865**(%%): LT with frequency bands IN865
2811 * (% style="color:red" %)**CN779**(%%): LT with frequency bands CN779
2812
2813 = 9. Package information =
2814
2815
2816 (% style="color:#037691" %)**Package Includes**:
2817
2818 * 1 x LT-22222-L I/O Controller
2819 * 1 x LoRa antenna matched to the frequency of the LT-22222-L
2820 * 1 x bracket for DIN rail mounting
2821 * 1 x 3.5 mm programming cable
2822
2823 (% style="color:#037691" %)**Dimension and weight**:
2824
2825 * Package Size / pcs : 145×80×50 mm
2826 * Weight / pcs : 180 g
2827
2828 = 10. Support =
2829
2830
2831 * (((
2832 Support is available Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different time zones, we cannot offer live support. However, your questions will be answered as soon as possible within the aforementioned schedule.
2833 )))
2834 * (((
2835 Please provide as much information as possible regarding your inquiry (e.g., product models, a detailed description of the problem, steps to replicate it, etc.) and send an email to [[support@dragino.cc>>mailto:support@dragino.cc]]
2836
2837
2838 )))
2839
2840 = 11. Reference​​​​​ =
2841
2842
2843 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2844 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2845 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]