Version 50.1 by Kilight Cao on 2025/07/03 14:44

Show last authors
1 [[image:image-20220523163353-1.jpeg||data-xwiki-image-style-alignment="center" height="604" width="500"]]
2
3
4
5
6
7
8
9 **Table of Contents:**
10
11 {{toc/}}
12
13
14
15
16
17 = 1. Introduction =
18
19 == 1.1 What is the LT-22222-LA I/O Controller? ==
20
21
22 (((
23 (((
24 The Dragino (% style="color:blue" %)**LT-22222-LA I/O Controller**(%%) is an advanced LoRaWAN end device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
25
26 The LT-22222-LA I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
27 )))
28 )))
29
30 (((
31 With the LT-22222-LA I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
32 )))
33
34 (((
35 You can connect the LT-22222-LA I/O Controller to a LoRaWAN network service provider in several ways:
36
37 * If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Stack Community Network), you can select a network and register the LT-22222-LA I/O controller with it.
38 * If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-LA I/O controller with this network.
39 * Setup your own private LoRaWAN network.
40 )))
41
42 (((
43
44
45 The network diagram below illustrates how the LT-22222-LA communicates with a typical LoRaWAN network.
46 )))
47
48
49 [[image:lorawan-nw.jpg]]
50
51 == 1.2 Specifications ==
52
53
54 (% style="color:#037691" %)**Hardware System:**
55
56 * Power Consumption:
57 ** Idle: 4mA@12V
58 ** 20dB Transmit: 34mA@12V
59 * Operating Temperature: -40 ~~ 85 Degrees, No Dew
60
61 (% style="color:#037691" %)**Interface for Model: LT22222-LA:**
62
63 * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50V, or 220V with optional external resistor)
64 * 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
65 * 2 x Relay Output (5A@250VAC / 30VDC)
66 * 2 x 0~~20mA Analog Input (res:0.01mA)
67 * 2 x 0~~30V Analog Input (res:0.01V)
68 * Power Input 7~~ 24V DC. 
69
70 (% style="color:#037691" %)**LoRa Spec:**
71
72 * Frequency Range:
73 ** Band 1 (HF): 862 ~~ 1020 MHz
74 ** Band 2 (LF): 410 ~~ 528 MHz
75 * 168 dB maximum link budget.
76 * +20 dBm - 100 mW constant RF output vs.
77 * +14 dBm high-efficiency PA.
78 * Programmable bit rate up to 300 kbps.
79 * High sensitivity: down to -148 dBm.
80 * Bullet-proof front end: IIP3 = -12.5 dBm.
81 * Excellent blocking immunity.
82 * Low RX current of 10.3 mA, 200 nA register retention.
83 * Fully integrated synthesizer with a resolution of 61 Hz.
84 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
85 * Built-in bit synchronizer for clock recovery.
86 * Preamble detection.
87 * 127 dB Dynamic Range RSSI.
88 * Automatic RF Sense and CAD with ultra-fast AFC.
89 * Packet engine up to 256 bytes with CRC.
90
91 == 1.3 Features ==
92
93
94 * LoRaWAN Class A & Class C modes
95 * Optional Customized LoRa Protocol
96 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
97 * AT Commands to change parameters
98 * Remotely configure parameters via LoRaWAN Downlink
99 * Firmware upgradable via program port
100 * Counting
101
102 == 1.4 Applications ==
103
104
105 * Smart buildings & home automation
106 * Logistics and supply chain management
107 * Smart metering
108 * Smart agriculture
109 * Smart cities
110 * Smart factory
111
112 == 1.5 Hardware Variants ==
113
114
115 (% border="1" cellspacing="3" style="width:531.222px" %)
116 |(% style="background-color:#4f81bd; color:white; width:108px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:158px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:261px" %)**Description**
117 |(% style="width:108px" %)**LT-22222-LA**|(% style="width:158px" %)(((
118 [[image:lt33222-l.jpg]]
119 )))|(% style="width:261px" %)(((
120 * 3 x Digital Input (Bi-direction)
121 * 3 x Digital Output
122 * 2 x Relay Output (5A@250VAC / 30VDC)
123 * 2 x 0~~20mA Analog Input (res:0.01mA)
124 * 2 x 0~~30V Analog Input (res:0.01v)
125 * 1 x Counting Port
126 )))
127
128 = 2. Assembling the device =
129
130 == 2.1 Connecting the antenna ==
131
132
133 Connect the LoRa antenna to the antenna connector, **ANT**,** **located on the top right side of the device, next to the upper screw terminal block. Secure the antenna by tightening it clockwise.
134
135 {{warning}}
136 **Warning! Do not power on the device without connecting the antenna.**
137 {{/warning}}
138
139
140 == 2.2 Terminals ==
141
142
143 The  LT-22222-LA has two screw terminal blocks. The upper screw terminal block has 6 screw terminals and the lower screw terminal block has 10 screw terminals.
144
145 **Upper screw terminal block (from left to right):**
146
147 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:381px" %)
148 |=(% style="width: 139px;background-color:#4f81bd;color:white" %)Screw Terminal|=(% style="width: 242px;background-color:#4f81bd;color:white" %)Function
149 |(% style="width:139px" %)GND|(% style="width:242px" %)Ground
150 |(% style="width:139px" %)VIN|(% style="width:242px" %)Input Voltage
151 |(% style="width:139px" %)AVI2|(% style="width:242px" %)Analog Voltage Input Terminal 2
152 |(% style="width:139px" %)AVI1|(% style="width:242px" %)Analog Voltage Input Terminal 1
153 |(% style="width:139px" %)ACI2|(% style="width:242px" %)Analog Current Input Terminal 2
154 |(% style="width:139px" %)ACI1|(% style="width:242px" %)Analog Current Input Terminal 1
155
156 **Lower screw terminal block (from left to right):**
157
158 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:253px" %)
159 |=(% style="width: 125px;background-color:#4f81bd;color:white" %)Screw Terminal|=(% style="width: 128px;background-color:#4f81bd;color:white" %)Function
160 |(% style="width:125px" %)RO1-2|(% style="width:128px" %)Relay Output 1
161 |(% style="width:125px" %)RO1-1|(% style="width:128px" %)Relay Output 1
162 |(% style="width:125px" %)RO2-2|(% style="width:128px" %)Relay Output 2
163 |(% style="width:125px" %)RO2-1|(% style="width:128px" %)Relay Output 2
164 |(% style="width:125px" %)DI2+|(% style="width:128px" %)Digital Input 2
165 |(% style="width:125px" %)DI2-|(% style="width:128px" %)Digital Input 2
166 |(% style="width:125px" %)DI1+|(% style="width:128px" %)Digital Input 1
167 |(% style="width:125px" %)DI1-|(% style="width:128px" %)Digital Input 1
168 |(% style="width:125px" %)DO2|(% style="width:128px" %)Digital Output 2
169 |(% style="width:125px" %)DO1|(% style="width:128px" %)Digital Output 1
170
171 == 2.3 Connecting LT-22222-LA to a Power Source ==
172
173
174 The LT-22222-L I/O Controller can be powered by a **7–24V DC** power source. Connect your power supply’s **positive wire** to the **VIN** and the **negative wire** to the **GND** screw terminals. The power indicator **(PWR) LED** will turn on when the device is properly powered.
175
176 {{warning}}
177 **We recommend that you power on the LT-22222-LA after adding its registration information to the LoRaWAN network server. Otherwise, the device will continuously send join-request messages to attempt to join a LoRaWAN network but will fail.**
178 {{/warning}}
179
180 [[image:1653297104069-180.png]]
181
182
183
184 = 3. Registering LT-22222-LA with a LoRaWAN Network Server =
185
186
187 The LT-22222-LA supports both OTAA (Over-the-Air Activation) and ABP (Activation By Personalization) methods to activate with a LoRaWAN Network Server. However, OTAA is the most secure method for activating a device with a LoRaWAN Network Server. OTAA regenerates session keys upon initial registration and regenerates new session keys after any subsequent reboots. By default, the LT-22222-LA is configured to operate in LoRaWAN Class C mode.
188
189
190 == 3.1 Prerequisites ==
191
192
193 The LT-22222-LA comes with device registration information such as DevEUI, AppEUI, and AppKey which allows you to register it with a LoRaWAN network. This registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
194
195 {{info}}
196 If you are unable to set the provided root key and other identifiers in the network server, you must generate new keys and identifiers with the network server and configure the device with them using AT commands.
197 {{/info}}
198
199 The following subsections explain how to register the LT-22222-LA with different LoRaWAN network server providers.
200
201 [[image:image-20230425173427-2.png]]
202
203 == 3.2 The Things Stack ==
204
205
206 This section guides you through how to register your LT-22222-LA with The Things Stack Sandbox.
207
208 {{info}}
209 The Things Stack Sandbox was formally called The Things Stack Community Edition.
210 {{/info}}
211
212
213 The network diagram below illustrates the connection between the LT-22222-LA and The Things Stack, as well as how the data can be integrated with the ThingsEye IoT platform.
214
215 [[image:1751523649311-511.png||height="407" width="1378"]]
216
217 {{info}}
218 You can use a LoRaWAN gateway, such as the [[Dragino LPS8N>>https://www.dragino.com/products/lora-lorawan-gateway/item/200-lps8n.html]], to expand or create LoRaWAN coverage in your area.
219 {{/info}}
220
221
222 === 3.2.1 Setting up ===
223
224
225 * Sign up for a free account with [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] if you do not have one yet.
226 * Log in to your The Things Stack Sandbox account.
227 * Create an **application** with The Things Stack if you do not have one yet (E.g., dragino-docs).
228 * Go to your application's page and click on the **End devices** in the left menu.
229 * On the End devices page, click on **+ Register end device**. Two registration options are available:
230
231 ==== 3.2.1.1 Using the LoRaWAN Device Repository ====
232
233
234 * On the **Register end device** page:
235 ** Select the option **Select the end device in the LoRaWAN Device Repository **under **Input method**.
236 ** Select the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)** from the respective dropdown lists.
237 *** **End device brand**: Dragino Technology Co., Limited
238 *** **Model**: LT22222-L I/O Controller
239 *** **Hardware ver**: Unknown
240 *** **Firmware ver**: 1.6.0
241 *** **Profile (Region)**: Select the region that matches your device.
242 ** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
243
244 [[image:lt-22222-l-dev-repo-reg-p1.png]]
245
246
247 * Register end device page continued...
248 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message 'This end device can be registered on the network'.
249 ** In the **DevEUI** field, enter the **DevEUI**.
250 ** In the **AppKey** field, enter the **AppKey.**
251 ** In the **End device ID** field, enter a unique name for your LT-22222-LA within this application.
252 ** Under **After registration**, select the **View registered end device** option.
253 ** Click **Register end device** button.
254
255 [[image:lt-22222-l-dev-repo-reg-p2.png]]
256
257
258 * You will be navigated to the **Device overview** page.
259
260 [[image:lt-22222-device-overview.png]]
261
262
263 ==== 3.2.1.2 Adding device manually ====
264
265
266 * On the **Register end device** page:
267 ** Select the option **Enter end device specifies manually** under **Input method**.
268 ** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
269 ** Select the **LoRaWAN version** as **LoRaWAN Specification 1.0.3**
270 ** Select the **Regional Parameters version** as** RP001 Regional Parameters 1.0.3 revision A**
271 ** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the hidden section.
272 ** Select the option **Over the air activation (OTAA)** under the **Activation mode.**
273 ** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities** dropdown list.
274
275 [[image:lt-22222-l-manually-p1.png]]
276
277
278 * Register end device page continued...
279 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message '//**This end device can be registered on the network**//'
280 ** In the **DevEUI** field, enter the **DevEUI**.
281 ** In the **AppKey** field, enter the **AppKey**.
282 ** In the **End device ID** field, enter a unique name for your LT-22222-LA within this application.
283 ** Under **After registration**, select the **View registered end device** option.
284 ** Click the **Register end device** button.
285
286 [[image:lt-22222-l-manually-p2.png]]
287
288
289 You will be navigated to the **Device overview** page.
290
291 [[image:lt-22222-device-overview.png]]
292
293
294
295 === 3.2.2 Joining ===
296
297
298 On the end device's page (in this case, lt-22222-la), click on **Live data** tab. The Live data panel for your device will display. Initially, it is blank.
299
300 Now power on your LT-22222-LA. The **TX LED** will **fast-blink 5 times** which means the LT-22222-LA will enter the **work mode** and start to **join** The Things Stack network server. The **TX LED** will be on for **5 seconds** after joining the network. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server.
301
302 [[image:lt-22222-l-joining.png]]
303
304
305
306 === 3.2.3 Uplinks ===
307
308
309 After successfully joining, the device will send its first **uplink data message** to The Things Stack application it belongs to (in this example, it is **dragino-docs**). When the LT-22222-LA sends an uplink message to the server, the **TX LED** turns on for **1 second**. By default, you will receive an uplink data message from the device every 10 minutes.
310
311 Click on one of the **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the **decode_payload {}** JSON object.
312
313 [[image:lt-22222-ul-payload-decoded.png]]
314
315
316 If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **Applications > [your application] > End devices** > [**your end device]** > **Payload formatters** > **Uplink**. Then select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes.
317
318 {{info}}
319 The Things Stack provides two levels of payload formatters: application level and device level. The device-level payload formatters **override **the application-level payload formatters.
320 {{/info}}
321
322 [[image:lt-22222-ul-payload-fmt.png]]
323
324
325 We have written a payload formatter that resolves some decoding issues present in The Things Stack Device Repository payload formatter. You can add it under the **Custom JavaScript formatter**. It can be found [[here>>https://github.com/dragino/dragino-end-node-decoder/blob/main/LT22222-L/v1.6_decoder_ttn%20.txt]]:
326
327 [[image:lt-22222-l-js-custom-payload-formatter.png]]
328
329
330 === 3.2.4 Downlinks ===
331
332
333 When the LT-22222-L receives a downlink message from the LoRaWAN Network Server, the **RX LED** turns on for **1 second**.
334
335
336 == 3.3 Working Modes and Uplink Payload formats ==
337
338
339 The LT-22222-LA has 5 **working modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any working mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
340
341 * (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO
342
343 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
344
345 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
346
347 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
348
349 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
350
351 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
352
353 The uplink messages are sent over LoRaWAN FPort=2. By default, an uplink message is sent every 10 minutes.
354
355
356 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
357
358
359 (((
360 This is the default mode.
361
362 The uplink payload is 11 bytes long.
363 (% wfd-invisible="true" style="display:none" %)
364
365 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
366 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
367 |Value|(((
368 AVI1 voltage
369 )))|(((
370 AVI2 voltage
371 )))|(((
372 ACI1 Current
373 )))|(((
374 ACI2 Current
375 )))|**DIDORO***|(((
376 Reserve
377 )))|MOD
378 )))
379
380 (((
381 (% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below.
382
383 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
384 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
385 |RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
386 )))
387
388 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
389 * DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW.
390 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
391
392 (% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-LA**
393
394 For example, if the payload is: [[image:image-20220523175847-2.png]]
395
396
397 **The interface values can be calculated as follows:  **
398
399 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
400
401 AVI2 channel voltage is 0x04AC/1000=1.196V
402
403 ACI1 channel current is 0x1310/1000=4.880mA
404
405 ACI2 channel current is 0x1300/1000=4.864mA
406
407 The last byte 0xAA= **10101010**(b) means,
408
409 * [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
410 * [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
411 * **[1] DI3 - not used for LT-22222-LA.**
412 * [0] DI2 channel input is LOW, and the DI2 LED is OFF.
413 * [1] DI1 channel input state:
414 ** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
415 ** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
416 ** DI1 LED is ON in both cases.
417 * **[0] DO3 - not used for LT-22222-LA.**
418 * [1] DO2 channel output is LOW, and the DO2 LED is ON.
419 * [0] DO1 channel output state:
420 ** DO1 is FLOATING when there is no load between DO1 and V+.
421 ** DO1 is HIGH and there is a load between DO1 and V+.
422 ** DO1 LED is OFF in both cases.
423
424 Reserve = 0
425
426 MOD = 1
427
428
429 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
430
431
432 (((
433 **For LT-22222-LA**: In this mode, **DI1 and DI2** are used as counting pins.
434 )))
435
436 (((
437 The uplink payload is 11 bytes long.
438
439 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
440 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
441 It starts counting again when it reaches the maximum value.**
442
443 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
444 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
445 |Value|COUNT1|COUNT2 |DIDORO*|(((
446 Reserve
447 )))|MOD
448 )))
449
450 (((
451 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, FIRST, Reserve, Reserve, DO3, DO2 and DO1, and its size is 1 byte long as shown below.
452
453 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
454 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
455 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
456
457 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
458 )))
459
460 * FIRST: Indicates that this is the first packet after joining the network.
461 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
462
463 (((
464 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-LA**
465
466
467 )))
468
469 (((
470 **To activate this mode, run the following AT commands:**
471 )))
472
473 (((
474 (% class="box infomessage" %)
475 (((
476 **AT+MOD=2**
477
478 **ATZ**
479 )))
480 )))
481
482 (((
483
484
485 (% style="color:#4f81bd" %)**AT Commands for counting:**
486 )))
487
488 (((
489 **For LT22222-LA:**
490
491 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
492
493 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
494
495 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
496
497 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
498
499 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
500
501 (% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
502 )))
503
504
505
506
507
508 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
509
510
511 (% style="color:red" %)**Note: The maximum count depends on the bytes it is.
512 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
513 It starts counting again when it reaches the maximum value.**
514
515 **LT22222-LA**: In this mode, the DI1 is used as a counting pin.
516
517 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
518 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
519 |Value|COUNT1|(((
520 ACI1 Current
521 )))|(((
522 ACI2 Current
523 )))|DIDORO*|Reserve|MOD
524
525 (((
526 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
527
528 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
529 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
530 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
531 )))
532
533 * RO is for the relay. ROx=1: closed, ROx=0 always open.
534 * FIRST: Indicates that this is the first packet after joining the network.
535 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
536
537 (((
538 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-LA.**
539 )))
540
541
542
543
544
545 (((
546 **To activate this mode, run the following AT commands:**
547 )))
548
549 (((
550 (% class="box infomessage" %)
551 (((
552 **AT+MOD=3**
553
554 **ATZ**
555 )))
556 )))
557
558 (((
559 AT Commands for counting:
560
561 The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
562 )))
563
564
565 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
566
567
568 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
569 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
570 It starts counting again when it reaches the maximum value.**
571
572
573 (((
574 **LT22222-LA**: In this mode, the DI1 is used as a counting pin.
575 )))
576
577 (((
578 The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
579
580 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
581 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
582 |Value|COUNT1|AVI1 Counting|DIDORO*|(((
583 Reserve
584 )))|MOD
585 )))
586
587 (((
588 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
589
590 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
591 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
592 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
593 )))
594
595 * RO is for the relay. ROx=1: closed, ROx=0 always open.
596 * FIRST: Indicates that this is the first packet after joining the network.
597 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
598
599 (((
600 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
601
602
603 )))
604
605 (((
606 **To activate this mode, run the following AT commands:**
607 )))
608
609 (((
610 (% class="box infomessage" %)
611 (((
612 **AT+MOD=4**
613
614 **ATZ**
615 )))
616 )))
617
618 (((
619 AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
620 )))
621
622 (((
623 **In addition to that, below are the commands for AVI1 Counting:**
624
625 (% style="color:blue" %)**AT+SETCNT=3,60 **(%%)**(Sets AVI1 Count to 60)**
626
627 (% style="color:blue" %)**AT+VOLMAX=20000 **(%%)**(If the AVI1 voltage is higher than VOLMAX (20000mV =20V), the counter increases by 1)**
628
629 (% style="color:blue" %)**AT+VOLMAX=20000,0 **(%%)**(If the AVI1 voltage is lower than VOLMAX (20000mV =20V), counter increases by 1)**
630
631 (% style="color:blue" %)**AT+VOLMAX=20000,1 **(%%)**(If the AVI1 voltage is higher than VOLMAX (20000mV =20V), counter increases by 1)**
632 )))
633
634
635
636
637
638 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
639
640
641 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
642 The maximum count for four bytes is FFFF (hex) = 65535 (dec).
643 It starts counting again when it reaches the maximum value.**
644
645
646 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
647
648 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
649 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
650 |Value|(((
651 AVI1 voltage
652 )))|(((
653 AVI2 voltage
654 )))|(((
655 ACI1 Current
656 )))|COUNT1|DIDORO*|(((
657 Reserve
658 )))|MOD
659
660 (((
661 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
662
663 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
664 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
665 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
666 )))
667
668 * RO is for the relay. ROx=1: closed, ROx=0 always open.
669 * FIRST: Indicates that this is the first packet after joining the network.
670 * (((
671 DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
672 )))
673
674 (((
675 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-LA.**
676 )))
677
678 (((
679 **To activate this mode, run the following AT commands:**
680 )))
681
682 (((
683 (% class="box infomessage" %)
684 (((
685 **AT+MOD=5**
686
687 **ATZ**
688 )))
689 )))
690
691 (((
692 Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
693 )))
694
695
696
697
698
699 === 3.3.6 AT+ADDMOD~=6 (Trigger Mode, Optional) ===
700
701
702 (% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate __alongside__ with other modes.**
703
704 For example, if you configure the following commands:
705
706 * **AT+MOD=1 ** **~-~->**  Sets the default working mode
707 * **AT+ADDMOD6=1**   **~-~->**  Enables trigger mode
708
709 The LT-22222-LA will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. It will send uplink packets in two cases:
710
711 1. Periodic uplink: Based on TDC time. The payload is the same as in normal mode (MOD=1 as set above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
712 1. (((
713 Trigger uplink: sent when a trigger condition is met. In this case, LT will send two packets
714
715 * The first uplink uses the payload specified in trigger mode (MOD=6).
716 * The second packet uses the normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**confirmed uplinks.**
717 )))
718
719 (% style="color:#037691" %)**AT Commands to set Trigger Conditions**:
720
721 (% style="color:#4f81bd" %)**Trigger based on voltage**:
722
723 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
724
725
726 **Example:**
727
728 AT+AVLIM=3000,6000,0,2000 (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
729
730 AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0 for parameters that are not in use)
731
732
733 (% style="color:#4f81bd" %)**Trigger based on current**:
734
735 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
736
737
738 **Example:**
739
740 AT+ACLIM=10000,15000,0,0 (triggers an uplink if AC1 current is lower than 10mA or higher than 15mA)
741
742
743 (% style="color:#4f81bd" %)**Trigger based on DI status**:
744
745 DI status triggers Flag.
746
747 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
748
749
750 **Example:**
751
752 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
753
754
755 (% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
756
757 **Type Code**: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
758
759 **Format**: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
760
761 AA: Type Code for this downlink Command:
762
763 xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
764
765 yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
766
767 yy2 yy2: AC1 or AV1 HIGH limit.
768
769 yy3 yy3: AC2 or AV2 LOW limit.
770
771 Yy4 yy4: AC2 or AV2 HIGH limit.
772
773
774 **Example 1**: AA 00 13 88 00 00 00 00 00 00
775
776 Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
777
778
779 **Example 2**: AA 02 01 00
780
781 Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
782
783
784 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
785
786 MOD6 Payload: a total of 11 bytes
787
788 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
789 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
790 |Value|(((
791 TRI_A FLAG
792 )))|(((
793 TRI_A Status
794 )))|(((
795 TRI_DI FLAG+STA
796 )))|Reserve|Enable/Disable MOD6|(((
797 MOD(6)
798 )))
799
800 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Total 1 byte as below.
801
802 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
803 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
804 |(((
805 AV1_LOW
806 )))|(((
807 AV1_HIGH
808 )))|(((
809 AV2_LOW
810 )))|(((
811 AV2_HIGH
812 )))|(((
813 AC1_LOW
814 )))|(((
815 AC1_HIGH
816 )))|(((
817 AC2_LOW
818 )))|(((
819 AC2_HIGH
820 )))
821
822 * Each bit shows if the corresponding trigger has been configured.
823
824 **Example:**
825
826 10100000: This means the system is configured to use the triggers AV1_LOW and AV2_LOW.
827
828
829 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is triggered. Total 1 byte as below.
830
831 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
832 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
833 |(((
834 AV1_LOW
835 )))|(((
836 AV1_HIGH
837 )))|(((
838 AV2_LOW
839 )))|(((
840 AV2_HIGH
841 )))|(((
842 AC1_LOW
843 )))|(((
844 AC1_HIGH
845 )))|(((
846 AC2_LOW
847 )))|(((
848 AC2_HIGH
849 )))
850
851 * Each bit shows which status has been triggered on this uplink.
852
853 **Example:**
854
855 10000000: The uplink is triggered by AV1_LOW, indicating that the voltage is too low.
856
857
858 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is triggered. Total 1 byte as below.
859
860 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
861 |(% style="width:50px" %)**bit 7**|(% style="width:50px" %)**bit 6**|(% style="width:50px" %)**bit 5**|(% style="width:50px" %)**bit 4**|(% style="width:90px" %)**bit 3**|(% style="width:80px" %)**bit 2**|(% style="width:90px" %)**bit 1**|(% style="width:95px" %)**bit 0**
862 |(% style="width:49px" %)N/A|(% style="width:53px" %)N/A|(% style="width:53px" %)N/A|(% style="width:55px" %)N/A|(% style="width:99px" %)DI2_STATUS|(% style="width:83px" %)DI2_FLAG|(% style="width:98px" %)DI1_STATUS|(% style="width:85px" %)DI1_FLAG
863
864 * Each bit shows which status has been triggered on this uplink.
865
866 **Example:**
867
868 00000111: This means both DI1 and DI2 triggers are enabled, and this packet is triggered by DI1.
869
870 00000101: This means both DI1 and DI2 triggers are enabled.
871
872
873 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enabled. 0x00: MOD6 is disabled.
874
875 Downlink command to poll/request MOD6 status:
876
877 **AB 06**
878
879 When the device receives this command, it will send the MOD6 payload.
880
881
882 === 3.3.7 Payload Decoder ===
883
884 (((
885
886
887 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder/tree/main/LT22222-L]]
888 )))
889
890
891 == 3.4 ​Configure LT-22222-LA via AT Commands or Downlinks ==
892
893
894 (((
895 You can configure LT-22222-LA I/O Controller via AT Commands or LoRaWAN Downlinks.
896 )))
897
898 (((
899 (((
900 There are two types of commands:
901 )))
902 )))
903
904 * (% style="color:blue" %)**Common commands**(%%):
905
906 * (% style="color:blue" %)**Sensor-related commands**(%%):
907
908 === 3.4.1 Common commands ===
909
910
911 (((
912 These are available for each sensor and include actions such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]s.
913
914
915 )))
916
917 === 3.4.2 Sensor-related commands ===
918
919
920 These commands are specially designed for the LT-22222-LA. Commands can be sent to the device using options such as an AT command or a LoRaWAN downlink payload.
921
922
923 ==== 3.4.2.1 Set Transmit/Uplink Interval ====
924
925
926 Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes.
927
928 (% style="color:#037691" %)**AT command**
929
930 (% border="2" style="width:500px" %)
931 |**Command**|AT+TDC=<time>
932 |**Parameters**|**time **: uplink interval in milliseconds
933 |**Get**|AT+TDC=?
934 |**Response**|(((
935 current uplink interval
936
937 OK
938 )))
939 |**Set**|AT+TDC=<time>
940 |**Response**|OK
941 |**Example**|(((
942 AT+TDC=30000
943
944 Sets the uplink interval to **30 seconds** (30000 milliseconds)
945 )))
946
947 (% style="color:#037691" %)**Downlink payload**
948
949 (% border="2" style="width:500px" %)
950 |**Payload**|(((
951 <prefix><time>
952 )))
953 |**Parameters**|(((
954 **prefix** : 0x01
955
956 **time** : uplink interval in **seconds**, represented by **3  bytes** in **hexadecimal**.
957 )))
958 |**Example**|(((
959 01 **00 00 1E**
960
961 Sets the uplink interval to **30 seconds**
962
963 Conversion: 30 (dec) = 00 00 1E (hex)
964
965 See [[RapidTables>>https://www.rapidtables.com/convert/number/decimal-to-hex.html?x=30]]
966
967 [[image:Screenshot%202024-11-23%20at%2018.27.11.png||alt="Screenshot 2024-11-23 at 18.27.11.png"]]
968 )))
969
970 ==== 3.4.2.2 Set the Working Mode (AT+MOD) ====
971
972
973 Sets the working mode.
974
975 (% style="color:#037691" %)**AT command**
976
977 (% border="2" style="width:500px" %)
978 |(% style="width:97px" %)**Command**|(% style="width:413px" %)AT+MOD=<working_mode>
979 |(% style="width:97px" %)**Parameters**|(% style="width:413px" %)(((
980 **working_mode** :
981
982 1 = (Default mode/factory set):  2ACI + 2AVI + DI + DO + RO
983
984 2 = Double DI Counting + DO + RO
985
986 3 = Single DI Counting + 2 x ACI + DO + RO
987
988 4 = Single DI Counting + 1 x Voltage Counting + DO + RO
989
990 5 = Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
991
992 6 = Trigger Mode, Optional, used together with MOD1 ~~ MOD5
993 )))
994 |(% style="width:97px" %)**Get**|(% style="width:413px" %)AT+MOD=?
995 |(% style="width:97px" %)**Response**|(% style="width:413px" %)(((
996 Current working mode
997
998 OK
999 )))
1000 |(% style="width:97px" %)**Set**|(% style="width:413px" %)AT+MOD=<working_mode>
1001 |(% style="width:97px" %)**Response**|(% style="width:413px" %)(((
1002 Attention:Take effect after ATZ
1003
1004 OK
1005 )))
1006 |(% style="width:97px" %)**Example**|(% style="width:413px" %)(((
1007 AT+MOD=2
1008
1009 Sets the device to working mode 2 (Double DI Counting + DO + RO)
1010 )))
1011
1012 (% class="wikigeneratedid" %)
1013 (% style="color:#037691" %)**Downlink payload**
1014
1015 (% border="2" style="width:500px" %)
1016 |(% style="width:98px" %)**Payload**|(% style="width:400px" %)<prefix><working_mode>
1017 |(% style="width:98px" %)**Parameters**|(% style="width:400px" %)(((
1018 **prefix** : 0x0A
1019
1020 **working_mode** : Working mode, represented by 1 byte in hexadecimal.
1021 )))
1022 |(% style="width:98px" %)**Example**|(% style="width:400px" %)(((
1023 0A **02**
1024
1025 Sets the device to working mode 2 (Double DI Counting + DO + RO)
1026 )))
1027
1028 ==== 3.4.2.3 Request an uplink from the device ====
1029
1030
1031 Requests an uplink from LT-22222-LA. The content of the uplink payload varies based on the device's current working mode.
1032
1033 (% style="color:#037691" %)**AT command**
1034
1035 There is no AT Command available for this feature.
1036
1037 (% style="color:#037691" %)**Downlink payload**
1038
1039 (% border="2" style="width:500px" %)
1040 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix>FF
1041 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)**prefix** : 0x08
1042 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1043 08 **FF**
1044
1045 Requests an uplink from LT-22222-L.
1046 )))
1047
1048 ==== 3.4.2.4 Enable/Disable Trigger Mode ====
1049
1050
1051 Enable or disable the trigger mode for the current working mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D628TriggerMode2COptional29"]]).
1052
1053 (% style="color:#037691" %)**AT Command**
1054
1055 (% border="2" style="width:500px" %)
1056 |(% style="width:95px" %)**Command**|(% style="width:403px" %)AT+ADDMOD6=<enable/disable trigger_mode>
1057 |(% style="width:95px" %)**Response**|(% style="width:403px" %)
1058 |(% style="width:95px" %)**Parameters**|(% style="width:403px" %)(((
1059 **enable/disable trigger_mode** :
1060
1061 1 = enable trigger mode
1062
1063 0 = disable trigger mode
1064 )))
1065 |(% style="width:95px" %)**Example**|(% style="width:403px" %)(((
1066 AT+ADDMOD6=1
1067
1068 Enable trigger mode for the current working mode
1069 )))
1070
1071 (% style="color:#037691" %)**Downlink payload**
1072
1073 (% border="2" style="width:500px" %)
1074 |(% style="width:97px" %)**Payload**|(% style="width:401px" %)<prefix><enable/disable trigger_mode>
1075 |(% style="width:97px" %)**Parameters**|(% style="width:401px" %)(((
1076 **prefix** : 0x0A 06 (two bytes in hexadecimal)
1077
1078 **enable/disable trigger_mode** : enable (1) or disable (0), represented by 1 byte in hexadecimal.
1079 )))
1080 |(% style="width:97px" %)**Example**|(% style="width:401px" %)(((
1081 0A 06 **01**
1082
1083 Enable trigger mode for the current working mode
1084 )))
1085
1086 ==== 3.4.2.5 Request trigger settings ====
1087
1088
1089 Requests the trigger settings.
1090
1091 (% style="color:#037691" %)**AT Command:**
1092
1093 There is no AT Command available for this feature.
1094
1095 (% style="color:#037691" %)**Downlink Payload**
1096
1097 (% border="2" style="width:500px" %)
1098 |(% style="width:95px" %)**Payload**|(% style="width:403px" %)<prefix>
1099 |(% style="width:95px" %)**Parameters**|(% style="width:403px" %)**prefix **: AB 06 (two bytes in hexadecimal)
1100 |(% style="width:95px" %)**Example**|(% style="width:403px" %)(((
1101 AB 06
1102
1103 Uplink the trigger settings.
1104 )))
1105
1106 ==== 3.4.2.6 Enable/Disable DI1/DI2/DI3 as a trigger ====
1107
1108
1109 Enable or disable DI1/DI2/DI3 as a trigger.
1110
1111 (% style="color:#037691" %)**AT Command**
1112
1113 (% border="2" style="width:500px" %)
1114 |(% style="width:98px" %)**Command**|(% style="width:400px" %)AT+DTRI=<DI1_trigger>,<DI2_trigger>
1115 |(% style="width:98px" %)**Response**|(% style="width:400px" %)
1116 |(% style="width:98px" %)**Parameters**|(% style="width:400px" %)(((
1117 **DI1_trigger:**
1118
1119 1 = enable DI1 trigger
1120
1121 0 = disable DI1 trigger
1122
1123 **DI2 _trigger**
1124
1125 1 = enable DI2 trigger
1126
1127 0 = disable DI2 trigger
1128 )))
1129 |(% style="width:98px" %)**Example**|(% style="width:400px" %)(((
1130 AT+DTRI=1,0
1131
1132 Enable DI1 trigger, disable DI2 trigger
1133 )))
1134
1135 (% class="wikigeneratedid" %)
1136 (% style="color:#037691" %)**Downlink Payload**
1137
1138 (% border="2" style="width:500px" %)
1139 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix><DI1_trigger><DI2_trigger>
1140 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1141 **prefix :** AA 02 (two bytes in hexadecimal)
1142
1143 **DI1_trigger:**
1144
1145 1 = enable DI1 trigger, represented by 1 byte in hexadecimal.
1146
1147 0 = disable DI1 trigger, represented by 1 byte in hexadecimal.
1148
1149 **DI2 _trigger**
1150
1151 1 = enable DI2 trigger, represented by 1 byte in hexadecimal.
1152
1153 0 = disable DI2 trigger, represented by 1 byte in hexadecimal.
1154 )))
1155 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1156 AA 02 **01 00**
1157
1158 Enable DI1 trigger, disable DI2 trigger
1159 )))
1160
1161 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as a trigger ====
1162
1163
1164 Sets DI1 or DI3 (for LT-33222-L) as a trigger.
1165
1166 (% style="color:#037691" %)**AT Command**
1167
1168 (% border="2" style="width:500px" %)
1169 |(% style="width:101px" %)**Command**|(% style="width:397px" %)AT+TRIG1=<interrupt_mode>,<minimum_signal_duration>
1170 |(% style="width:101px" %)**Response**|(% style="width:397px" %)
1171 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1172 **interrupt_mode** :  0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
1173
1174 **minimum_signal_duration** : the **minimum signal duration** required for the DI1 port to recognize a valid trigger.
1175 )))
1176 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1177 AT+TRIG1=1,100
1178
1179 Set the DI1 port to trigger on a rising edge; the valid signal duration is 100 ms.
1180 )))
1181
1182 (% class="wikigeneratedid" %)
1183 (% style="color:#037691" %)**Downlink Payload**
1184
1185 (% border="2" style="width:500px" %)
1186 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix><interrupt_mode><minimum_signal_duration>
1187 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1188 **prefix** : 09 01 (hexadecimal)
1189
1190 **interrupt_mode** : 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1), represented by 1 byte in hexadecimal.
1191
1192 **minimum_signal_duration** : in milliseconds, represented two bytes in hexadecimal.
1193 )))
1194 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1195 09 01 **01 00 64**
1196
1197 Set the DI1 port to trigger on a rising edge; the valid signal duration is 100 ms.
1198 )))
1199
1200 ==== 3.4.2.8 Trigger2 – Set DI2 as a trigger ====
1201
1202
1203 Sets DI2 as a trigger.
1204
1205 (% style="color:#037691" %)**AT Command**
1206
1207 (% border="2" style="width:500px" %)
1208 |(% style="width:94px" %)**Command**|(% style="width:404px" %)AT+TRIG2=<interrupt_mode>,<minimum_signal_duration>
1209 |(% style="width:94px" %)**Response**|(% style="width:404px" %)
1210 |(% style="width:94px" %)**Parameters**|(% style="width:404px" %)(((
1211 **interrupt_mode **:  0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
1212
1213 **minimum_signal_duration** : the **minimum signal duration** required for the DI1 port to recognize a valid trigger.
1214 )))
1215 |(% style="width:94px" %)**Example**|(% style="width:404px" %)(((
1216 AT+TRIG2=0,100
1217
1218 Set the DI1 port to trigger on a falling edge; the valid signal duration is 100 ms.
1219 )))
1220
1221 (% style="color:#037691" %)**Downlink Payload**
1222
1223 (% border="2" style="width:500px" %)
1224 |(% style="width:96px" %)**Payload**|(% style="width:402px" %)<prefix><interrupt_mode><minimum_signal_duration>
1225 |(% style="width:96px" %)**Parameters**|(% style="width:402px" %)(((
1226 **prefix** : 09 02 (hexadecimal)
1227
1228 **interrupt_mode **: 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1), represented by 1 byte in hexadecimal.
1229
1230 **minimum_signal_duration** : in milliseconds, represented two bytes in hexadecimal
1231 )))
1232 |(% style="width:96px" %)**Example**|(% style="width:402px" %)09 02 **00 00 64**
1233
1234 ==== 3.4.2.9 Trigger – Set AC (current) as a trigger ====
1235
1236
1237 Sets the current trigger based on the AC port. See also [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D628TriggerMode2COptional29"]]
1238
1239 (% style="color:#037691" %)**AT Command**
1240
1241 (% border="2" style="width:500px" %)
1242 |(% style="width:104px" %)**Command**|(% style="width:394px" %)(((
1243 AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
1244 )))
1245 |(% style="width:104px" %)**Response**|(% style="width:394px" %)
1246 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1247 **AC1_LIMIT_LOW** : lower limit of the current to be checked
1248
1249 **AC1_LIMIT_HIGH **: higher limit of the current to be checked
1250
1251 **AC2_LIMIT_HIGH **: lower limit of the current to be checked
1252
1253 **AC2_LIMIT_LOW** : higher limit of the current to be checked
1254 )))
1255 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1256 AT+ACLIM=10000,15000,0,0
1257
1258 Triggers an uplink if AC1 current is lower than 10mA or higher than 15mA
1259 )))
1260 |(% style="width:104px" %)Note|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D628TriggerMode2COptional29"]]
1261
1262 (% style="color:#037691" %)**Downlink Payload**
1263
1264 (% border="2" style="width:500px" %)
1265 |(% style="width:104px" %)**Payload**|(% style="width:394px" %)<prefix><AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
1266 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1267 **prefix **: AA 01 (hexadecimal)
1268
1269 **AC1_LIMIT_LOW** : lower limit of the current to be checked, two bytes in hexadecimal
1270
1271 **AC1_LIMIT_HIGH **: higher limit of the current to be checked, two bytes in hexadecimal
1272
1273 **AC2_LIMIT_HIGH **: lower limit of the current to be checked, two bytes in hexadecimal
1274
1275 **AC2_LIMIT_LOW** : higher limit of the current to be checked, two bytes in hexadecimal
1276 )))
1277 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1278 AA 01 **27** **10 3A** **98** 00 00 00 00
1279
1280 Triggers an uplink if AC1 current is lower than 10mA or higher than 15mA. Set all values to zero for AC2 limits because we are only checking AC1 limits.
1281 )))
1282 |(% style="width:104px" %)Note|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D628TriggerMode2COptional29"]]
1283
1284 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
1285
1286
1287 Sets the current trigger based on the AV port. See also [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D628TriggerMode2COptional29"]]
1288
1289 (% style="color:#037691" %)**AT Command**
1290
1291 (% border="2" style="width:500px" %)
1292 |(% style="width:104px" %)**Command**|(% style="width:387px" %)AT+AVLIM= AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
1293 |(% style="width:104px" %)**Response**|(% style="width:387px" %)
1294 |(% style="width:104px" %)**Parameters**|(% style="width:387px" %)(((
1295 **AC1_LIMIT_LOW** : lower limit of the current to be checked
1296
1297 **AC1_LIMIT_HIGH **: higher limit of the current to be checked
1298
1299 **AC2_LIMIT_HIGH **: lower limit of the current to be checked
1300
1301 **AC2_LIMIT_LOW** : higher limit of the current to be checked
1302 )))
1303 |(% style="width:104px" %)**Example**|(% style="width:387px" %)(((
1304 AT+AVLIM=3000,6000,0,2000
1305
1306 Triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V
1307 )))
1308 |(% style="width:104px" %)**Note**|(% style="width:387px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D628TriggerMode2COptional29"]]
1309
1310 (% style="color:#037691" %)**Downlink Payload**
1311
1312 (% border="2" style="width:500px" %)
1313 |(% style="width:104px" %)**Payload**|(% style="width:394px" %)<prefix><AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
1314 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1315 **prefix **: AA 00 (hexadecimal)
1316
1317 **AV1_LIMIT_LOW** : lower limit of the voltage to be checked, two bytes in hexadecimal
1318
1319 **AV1_LIMIT_HIGH **: higher limit of the voltage to be checked, two bytes in hexadecimal
1320
1321 **AV2_LIMIT_HIGH **: lower limit of the voltage to be checked, two bytes in hexadecimal
1322
1323 **AV2_LIMIT_LOW** : higher limit of the voltage to be checked, two bytes in hexadecimal
1324 )))
1325 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1326 AA 00 **0B B8 17 70 00 00 07 D0**
1327
1328 Triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V.
1329 )))
1330 |(% style="width:104px" %)**Note**|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D628TriggerMode2COptional29"]]
1331
1332 ==== 3.4.2.11 Trigger – Set the minimum interval ====
1333
1334
1335 Sets the AV and AC trigger minimum interval. The device won't respond to a second trigger within this set time after the first trigger.
1336
1337 (% style="color:#037691" %)**AT Command**
1338
1339 (% border="2" style="width:500px" %)
1340 |(% style="width:113px" %)**Command**|(% style="width:385px" %)AT+ATDC=<time>
1341 |(% style="width:113px" %)**Response**|(% style="width:385px" %)
1342 |(% style="width:113px" %)**Parameters**|(% style="width:385px" %)(((
1343 **time** : in minutes
1344 )))
1345 |(% style="width:113px" %)**Example**|(% style="width:385px" %)(((
1346 AT+ATDC=5
1347
1348 The device won't respond to the second trigger within 5 minutes after the first trigger.
1349 )))
1350 |(% style="width:113px" %)**Note**|(% style="width:385px" %)(% style="color:red" %)**The time must be greater than 5 minutes.**
1351
1352 (% style="color:#037691" %)**Downlink Payload**
1353
1354 (% border="2" style="width:500px" %)
1355 |(% style="width:112px" %)**Payload**|(% style="width:386px" %)<prefix><time>
1356 |(% style="width:112px" %)**Parameters**|(% style="width:386px" %)(((
1357 **prefix** : AC (hexadecimal)
1358
1359 **time **: in minutes (two bytes in hexadecimal)
1360 )))
1361 |(% style="width:112px" %)**Example**|(% style="width:386px" %)(((
1362 AC **00 05**
1363
1364 The device won't respond to the second trigger within 5 minutes after the first trigger.
1365 )))
1366 |(% style="width:112px" %)**Note**|(% style="width:386px" %)(% style="color:red" %)**The time must be greater than 5 minutes.**
1367
1368 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1369
1370
1371 Controls the digital outputs DO1, DO2, and DO3
1372
1373 (% style="color:#037691" %)**AT Command**
1374
1375 There is no AT Command to control the Digital Output.
1376
1377
1378 (% style="color:#037691" %)**Downlink Payload**
1379
1380 (% border="2" style="width:500px" %)
1381 |(% style="width:115px" %)**Payload**|(% style="width:383px" %)<prefix><DO1><DO2><DO3>
1382 |(% style="width:115px" %)**Parameters**|(% style="width:383px" %)(((
1383 **prefix** : 02 (hexadecimal)
1384
1385 **DOI** : 01: Low,  00: High, 11: No action (1 byte in hex)
1386
1387 **DO2** : 01: Low,  00: High, 11: No action (1 byte in hex)
1388
1389 **DO3 **: 01: Low,  00: High, 11: No action (1 byte in hex)
1390 )))
1391 |(% style="width:115px" %)**Examples**|(% style="width:383px" %)(((
1392 02 **01 00 01**
1393
1394 If there is a load between V+ and DOx, it means DO1 is set to low, DO2 is set to high, and DO3 is set to low.
1395
1396 **More examples:**
1397
1398 (((
1399 01: Low,  00: High,  11: No action
1400
1401 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:383px" %)
1402 |(% style="background-color:#4f81bd; color:white; width:126px" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white; width:85px" %)**DO1**|(% style="background-color:#4f81bd; color:white; width:86px" %)**DO2**|(% style="background-color:#4f81bd; color:white; width:86px" %)**DO3**
1403 |(% style="width:126px" %)02  01  00  11|(% style="width:85px" %)Low|(% style="width:86px" %)High|(% style="width:86px" %)No Action
1404 |(% style="width:126px" %)02  00  11  01|(% style="width:85px" %)High|(% style="width:86px" %)No Action|(% style="width:86px" %)Low
1405 |(% style="width:126px" %)02  11  01  00|(% style="width:85px" %)No Action|(% style="width:86px" %)Low|(% style="width:86px" %)High
1406 )))
1407
1408 (((
1409 (((
1410 (% style="color:red" %)**Note: For the LT-22222-L, there is no DO3; the last byte can have any value.**
1411 )))
1412
1413 (((
1414 (% style="color:red" %)**The device will upload a packet if downlink code executes successfully.**
1415 )))
1416 )))
1417 )))
1418
1419 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1420
1421
1422 (% style="color:#037691" %)**AT command**
1423
1424 There is no AT command to control the digital output.
1425
1426
1427 (% style="color:#037691" %)**Downlink payload**
1428
1429 (% border="2" style="width:500px" %)
1430 |(% style="width:116px" %)**Prefix**|(% style="width:382px" %)0xA9
1431 |(% style="width:116px" %)**Parameters**|(% style="width:382px" %)(((
1432 **inverter_mode**: 1 byte in hex.
1433
1434 **01:** DO pins revert to their original state after the timeout.
1435 **00:** DO pins switch to an inverted state after the timeout.
1436
1437
1438 **DO1_control_method_and_port_status **- 1 byte in hex
1439
1440 0x01 : DO1 set to low
1441
1442 0x00 : DO1 set to high
1443
1444 0x11 : DO1 NO action
1445
1446
1447 **DO2_control_method_and_port_status** - 1 byte in hex
1448
1449 0x01 : DO2 set to low
1450
1451 0x00 : DO2 set to high
1452
1453 0x11 : DO2 NO action
1454
1455
1456 **DO3_control_method_and_port_status **- 1 byte in hex
1457
1458 0x01 : DO3 set to low
1459
1460 0x00 : DO3 set to high
1461
1462 0x11 : DO3 NO action
1463
1464
1465 **latching_time** : 4 bytes in hex
1466
1467 (% style="color:red" %)**Note: **
1468
1469 Since firmware v1.6.0, the latch time supports 4 bytes or 2 bytes
1470
1471 Before firmware v1.6.0, the latch time only supported 2 bytes.
1472
1473 (% style="color:red" %)**The device will uplink a packet if the downlink code executes successfully.**
1474 )))
1475 |(% style="width:116px" %)**Payload format**|(% style="width:382px" %)<prefix><inverter_mode><DO1_control_method_and_port_status><DO2_control_method_and_port_status><DO2_control_method_and_port_status><latching_time>
1476 |(% style="width:116px" %)**Example**|(% style="width:382px" %)(((
1477 **A9 01 01 01 01 07 D0**
1478
1479 DO1 pin, DO2 pin, and DO3 pin will be set to low, last for 2 seconds, and then revert to their original state.
1480
1481
1482 **A9 01 00 01 11 07 D0**
1483
1484 DO1 pin is set to high, DO2 pin is set to low, and DO3 pin takes no action. This lasts for 2 seconds and then reverts to the original state.
1485
1486
1487 **A9 00 00 00 00 07 D0**
1488
1489 DO1 pin, DO2 pin, and DO3 pin will be set to high, last for 2 seconds, and then all change to low.
1490
1491
1492 **A9 00 11 01 00 07 D0**
1493
1494 DO1 pin takes no action, DO2 pin is set to low, and DO3 pin is set to high. This lasts for 2 seconds, after which the DO1 pin takes no action, the DO2 pin is set to high, and the DO3 pin is set to low.
1495 )))
1496
1497 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1498
1499
1500 (% style="color:#037691" %)**AT Command:**
1501
1502 There is no AT Command to control the Relay Output.
1503
1504
1505 (% style="color:#037691" %)**Downlink Payload**
1506
1507 (% border="2" style="width:500px" %)
1508 |(% style="width:113px" %)**Prefix**|(% style="width:384px" %)0x03
1509 |(% style="width:113px" %)**Parameters**|(% style="width:384px" %)(((
1510 **RO1_status** : 1 byte in hex
1511
1512 00: Open
1513
1514 01: Close
1515
1516 11: No action
1517
1518
1519 **RO2_status** : 1 byte in hex
1520
1521 00: Open
1522
1523 01: Close
1524
1525 11: No action
1526 )))
1527 |(% style="width:113px" %)**Payload format**|(% style="width:384px" %)<prefix><RO1_status><RO2_status>
1528 |(% style="width:113px" %)**Example**|(% style="width:384px" %)(((
1529 (% border="2" %)
1530 |=Payload|=RO1|=RO2
1531 |03  00  11|Open|No action
1532 |03  01  11|Close|No action
1533 |03 11  00|No action|Open
1534 |03 11  01|No action|Close
1535 |03 00 00|Open|Open
1536 |03 01 01|Close|Close
1537 |03 01 00|Close|Open
1538 |03 00 01|Open|Close
1539
1540 (% style="color:red" %)**The device will transmit an uplink packet if the downlink payload is executed successfully.**
1541 )))
1542
1543 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1544
1545
1546 Controls the relay output time.
1547
1548
1549 (% style="color:#037691" %)**AT Command:**
1550
1551 There is no AT Command to control the Relay Output
1552
1553
1554 (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1555
1556 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Sets RO1/RO2 relays with time control
1557
1558
1559 This controls the relay output time and includes 4 bytes:
1560
1561 (% style="color:#4f81bd" %)**First byte **(%%)**:** Type code (0x05)
1562
1563 (% style="color:#4f81bd" %)**Second byte (aa)**(%%): Inverter Mode
1564
1565 01: Relays will change back to their original state after a timeout.
1566
1567 00: Relays will change to the inverter state after a timeout.
1568
1569
1570 (% style="color:#4f81bd" %)**Third byte (bb)**(%%): Control Method and Ports status:
1571
1572 [[image:image-20221008095908-1.png]]
1573
1574
1575 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh bytes (cc)**(%%): Latching time. Unit: ms
1576
1577
1578 (% style="color:red" %)**Note:**
1579
1580 Since firmware v1.6.0, the latch time supports both 4 bytes and 2 bytes.
1581
1582 Before firmware v1.6.0, the latch time only supported 2 bytes.
1583
1584
1585 (% style="color:red" %)**The device will uplink a packet if the downlink code executes successfully.**
1586
1587
1588 **Example payload:**
1589
1590 **~1. 05 01 11 07 D0**
1591
1592 Relay1 and Relay2 will be set to NC, lasting 2 seconds, then revert to their original state
1593
1594 **2. 05 01 10 07 D0**
1595
1596 Relay1 will change to NC, Relay2 will change to NO, lasting 2 seconds, and then both will revert to their original state.
1597
1598 **3. 05 00 01 07 D0**
1599
1600 Relay1 will change to NO, Relay2 will change to NC, lasting 2 seconds, then Relay1 will change to NC, and Relay2 will change to NO.
1601
1602 **4. 05 00 00 07 D0**
1603
1604 Relay1 and Relay2 will change to NO, lasting 2 seconds, then both will change to NC.
1605
1606
1607
1608 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1609
1610
1611 When the voltage exceeds the threshold, counting begins. For details, see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1612
1613 (% style="color:#037691" %)**AT Command**
1614
1615 (% border="2" style="width:500px" %)
1616 |(% style="width:137px" %)**Command**|(% style="width:361px" %)AT+VOLMAX=<voltage>,<logic>
1617 |(% style="width:137px" %)**Response**|(% style="width:361px" %)
1618 |(% style="width:137px" %)**Parameters**|(% style="width:361px" %)(((
1619 **voltage** : voltage threshold in mV
1620
1621 **logic**:
1622
1623 **0** : lower than
1624
1625 **1**: higher than
1626
1627 if you leave the logic parameter blank, it is considered 0
1628 )))
1629 |(% style="width:137px" %)**Examples**|(% style="width:361px" %)(((
1630 AT+VOLMAX=20000
1631
1632 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1633
1634 AT+VOLMAX=20000,0
1635
1636 If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1
1637
1638 AT+VOLMAX=20000,1
1639
1640 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1641 )))
1642
1643 (% style="color:#037691" %)**Downlink Payload**
1644
1645 (% border="2" style="width:500px" %)
1646 |(% style="width:140px" %)**Payload**|(% style="width:358px" %)<prefix><voltage><logic>
1647 |(% style="width:140px" %)**Parameters**|(% style="width:358px" %)(((
1648 **prefix** : A5 (hex)
1649
1650 **voltage** : voltage threshold in mV (2 bytes in hex)
1651
1652 **logic**: (1 byte in hexadecimal)
1653
1654 **0** : lower than
1655
1656 **1**: higher than
1657
1658 if you leave the logic parameter blank, it is considered 1 (higher than)
1659 )))
1660 |(% style="width:140px" %)**Example**|(% style="width:358px" %)(((
1661 A5 **4E 20**
1662
1663 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1664
1665 A5 **4E 20 00**
1666
1667 If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1
1668
1669 A5 **4E 20 01**
1670
1671 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1672 )))
1673
1674 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1675
1676
1677 This command allows users to pre-configure specific count numbers for various counting parameters such as Count1, Count2, or AVI1 Count. Use the AT command to set the desired count number for each configuration.
1678
1679 (% style="color:#037691" %)**AT Command**
1680
1681 (% border="2" style="width:500px" %)
1682 |(% style="width:134px" %)**Command**|(% style="width:364px" %)AT+SETCNT=<counting_parameter>,<number>
1683 |(% style="width:134px" %)**Response**|(% style="width:364px" %)
1684 |(% style="width:134px" %)**Parameters**|(% style="width:364px" %)(((
1685 **counting_parameter** :
1686
1687 1: COUNT1
1688
1689 2: COUNT2
1690
1691 3: AVI1 Count
1692
1693 **number** : Start number
1694 )))
1695 |(% style="width:134px" %)**Example**|(% style="width:364px" %)(((
1696 AT+SETCNT=1,10
1697
1698 Sets the COUNT1 to 10.
1699 )))
1700
1701 (% style="color:#037691" %)**Downlink Payload**
1702
1703 (% border="2" style="width:500px" %)
1704 |(% style="width:135px" %)**Payload**|(% style="width:363px" %)<prefix><counting_parameter><number>
1705 |(% style="width:135px" %)**Parameters**|(% style="width:363px" %)(((
1706 prefix : A8 (hex)
1707
1708 **counting_parameter** : (1 byte in hexadecimal)
1709
1710 1: COUNT1
1711
1712 2: COUNT2
1713
1714 3: AVI1 Count
1715
1716 **number** : Start number, 4 bytes in hexadecimal
1717 )))
1718 |(% style="width:135px" %)**Example**|(% style="width:363px" %)(((
1719 A8 **01 00 00 00 0A**
1720
1721 Sets the COUNT1 to 10.
1722 )))
1723
1724 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1725
1726
1727 This command clears the counting in counting mode.
1728
1729 (% style="color:#037691" %)**AT Command**
1730
1731 (% border="2" style="width:500px" %)
1732 |(% style="width:142px" %)**Command**|(% style="width:356px" %)AT+CLRCOUNT
1733 |(% style="width:142px" %)**Response**|(% style="width:356px" %)-
1734
1735 (% style="color:#037691" %)**Downlink Payload**
1736
1737 (% border="2" style="width:500px" %)
1738 |(% style="width:141px" %)**Payload**|(% style="width:357px" %)<prefix><clear?>
1739 |(% style="width:141px" %)**Parameters**|(% style="width:357px" %)(((
1740 prefix : A6 (hex)
1741
1742 clear? : 01 (hex)
1743 )))
1744 |(% style="width:141px" %)**Example**|(% style="width:357px" %)A6 **01**
1745
1746 ==== 3.4.2.19 Set the save intervals of the counting results, RO (Relay Output), and DO (Digital Output) states ====
1747
1748 This command configures the device to periodically save the counting results, RO (Relay Output), and DO (Digital Output) states to internal flash memory at a user-defined interval. By setting a save interval, the device ensures that critical data (counting values and output states) is preserved in case of power loss.
1749 The save interval can be adjusted to the user's needs, with a minimum value of (% style="color:blue" %)**30**(%%) seconds.
1750 The saved RO/DO states can be restored after a device reset by combining this function with the (% style="color:blue" %)**AT+RODORESET**(%%) command.
1751
1752 (% style="color:#037691" %)**AT Command**
1753
1754 (% border="2" style="width:500px" %)
1755 |(% style="width:124px" %)**Command**|(% style="width:374px" %)AT+COUTIME=<time>
1756 |(% style="width:124px" %)**Response**|(% style="width:374px" %)
1757 |(% style="width:124px" %)**Parameters**|(% style="width:374px" %)time : seconds (0 to 16777215)
1758 |(% style="width:124px" %)**Example**|(% style="width:374px" %)(((
1759 AT+COUTIME=60
1760
1761 Sets the device to save its counting results, RO and DO states to the memory every 60 seconds.
1762 )))
1763
1764 (% style="color:#037691" %)**Downlink Payload**
1765
1766 (% border="2" style="width:500px" %)
1767 |(% style="width:123px" %)**Payload**|(% style="width:375px" %)<prefix><time>
1768 |(% style="width:123px" %)**Parameters**|(% style="width:375px" %)(((
1769 prefix : A7
1770
1771 time : seconds, 3 bytes in hexadecimal
1772 )))
1773 |(% style="width:123px" %)**Example**|(% style="width:375px" %)(((
1774 A7 **00 00 3C**
1775
1776 SSets the device to save its counting results, RO and DO states to the memory every 60 seconds.
1777 )))
1778
1779 ==== 3.4.2.20 Reset saved RO and DO states ====
1780
1781
1782 This command allows you to reset the saved relay output (RO) and digital output (DO) states when the device joins the network. By configuring this setting, you can control whether the device should retain or reset the relay states after a reset and rejoin to the network.
1783
1784 (% style="color:#037691" %)**AT Command**
1785
1786 (% border="2" style="width:500px" %)
1787 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+RODORESET=<state>
1788 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1789 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1790 **state** :
1791
1792 **0** : RODO will close when the device joins the network. (default)
1793
1794 **1**: After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1795 )))
1796 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1797 (% style="color:blue" %)**AT+RODORESET=1 **
1798
1799 RODO will close when the device joins the network. (default)
1800
1801 (% style="color:blue" %)**AT+RODORESET=0 **
1802
1803 After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1804 )))
1805
1806 (% style="color:#037691" %)**Downlink Payload**
1807
1808 (% border="2" style="width:500px" %)
1809 |(% style="width:127px" %)**Payload**|(% style="width:371px" %)<prefix><state>
1810 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1811 **prefix** : AD
1812
1813 **state** :
1814
1815 **0** : RODO will close when the device joins the network. (default), represents as 1 byte in hexadecimal.
1816
1817 **1**: After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network. - represents as 1 byte in hexadecimal
1818 )))
1819 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1820 AD **01**
1821
1822 RODO will close when the device joins the network. (default)
1823
1824 AD **00**
1825
1826 After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1827 )))
1828
1829 ==== 3.4.2.21 Encrypted payload ====
1830
1831
1832 This command allows you to configure whether the device should upload data in an encrypted format or in plaintext. By default, the device encrypts the payload before uploading. You can toggle this setting to either upload encrypted data or transmit it without encryption.
1833
1834 (% style="color:#037691" %)**AT Command:**
1835
1836 (% border="2" style="width:500px" %)
1837 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+DECRYPT=<state>
1838 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1839 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1840 **state** :
1841
1842 **1** : The payload is uploaded without encryption
1843
1844 **0** : The payload is encrypted when uploaded (default)
1845 )))
1846 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1847 AT+DECRYPT=1
1848
1849 The payload is uploaded without encryption
1850
1851 AT+DECRYPT=0
1852
1853 The payload is encrypted when uploaded (default)
1854 )))
1855
1856 There is no downlink payload for this configuration.
1857
1858
1859 ==== 3.4.2.22 Get sensor value ====
1860
1861
1862 This command allows you to retrieve and optionally uplink sensor readings through the serial port.
1863
1864 (% style="color:#037691" %)**AT Command**
1865
1866 (% border="2" style="width:500px" %)
1867 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+GETSENSORVALUE=<state>
1868 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1869 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1870 **state** :
1871
1872 **0 **: Retrieves the current sensor reading via the serial port.
1873
1874 **1 **: Retrieves and uploads the current sensor reading via the serial port.
1875 )))
1876 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1877 AT+GETSENSORVALUE=0
1878
1879 Retrieves the current sensor reading via the serial port.
1880
1881 AT+GETSENSORVALUE=1
1882
1883 Retrieves and uplinks the current sensor reading via the serial port.
1884 )))
1885
1886 There is no downlink payload for this configuration.
1887
1888
1889 ==== 3.4.2.23 Resetting the downlink packet count ====
1890
1891
1892 This command manages how the node handles mismatched downlink packet counts. It offers two modes: one disables the reception of further downlink packets if discrepancies occur, while the other resets the downlink packet count to align with the server, ensuring continued communication.
1893
1894 (% style="color:#037691" %)**AT Command**
1895
1896 (% border="2" style="width:500px" %)
1897 |(% style="width:130px" %)**Command**|(% style="width:368px" %)AT+DISFCNTCHECK=<state>
1898 |(% style="width:130px" %)**Response**|(% style="width:368px" %)(((
1899
1900 )))
1901 |(% style="width:130px" %)**Parameters**|(% style="width:368px" %)(((
1902 **state **:
1903
1904 **0** : When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node stops receiving further downlink packets (default).
1905
1906
1907 **1** : When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node resets its downlink packet count to match the server's, ensuring consistency.
1908 )))
1909 |(% style="width:130px" %)**Example**|(% style="width:368px" %)(((
1910 AT+DISFCNTCHECK=0
1911
1912 When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node stops receiving further downlink packets (default).
1913
1914 AT+DISFCNTCHECK=1
1915
1916 When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node resets its downlink packet count to match the server's, ensuring consistency.
1917 )))
1918
1919 There is no downlink payload for this configuration.
1920
1921
1922 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1923
1924
1925 This command controls the behavior of the node when the combined size of the MAC commands (MACANS) from the server and the payload exceed the allowed byte limit for the current data rate (DR). The command provides two modes: one enables splitting the data into batches to ensure compliance with the byte limit, while the other prioritizes the payload and ignores the MACANS in cases of overflow.
1926
1927 (% style="color:#037691" %)**AT Command**
1928
1929 (% border="2" style="width:500px" %)
1930 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+DISMACANS=<state>
1931 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1932 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1933 **state** :
1934
1935 **0** : When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1936
1937 **1** : When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1938 )))
1939 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1940 AT+DISMACANS=0
1941
1942 When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1943
1944 AT+DISMACANS=1
1945
1946 When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1947 )))
1948
1949 (% style="color:#037691" %)**Downlink Payload**
1950
1951 (% border="2" style="width:500px" %)
1952 |(% style="width:126px" %)**Payload**|(% style="width:372px" %)<prefix><state>
1953 |(% style="width:126px" %)**Parameters**|(% style="width:372px" %)(((
1954 **prefix** : 21
1955
1956 **state** : (2 bytes in hexadecimal)
1957
1958 **0** : When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1959
1960 **1 **: When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1961 )))
1962 |(% style="width:126px" %)**Example**|(% style="width:372px" %)(((
1963 21 **00 01**
1964
1965 Set DISMACANS=1
1966 )))
1967
1968 ==== 3.4.2.25 Copy downlink to uplink ====
1969
1970
1971 This command enables the device to immediately uplink the payload of a received downlink packet back to the server. The command allows for quick data replication from downlink to uplink, with a fixed port number of 100.
1972
1973 (% style="color:#037691" %)**AT Command**(%%)**:**
1974
1975 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving a downlink payload from the server, the device will immediately uplink the payload back to the server using port number 100.
1976
1977 Example:**aa xx xx xx xx**         ~/~/ **aa** indicates whether the configuration has changed: **00** means YES, and **01** means NO. **xx xx xx xx** are the bytes uplinked back.
1978
1979
1980 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1981
1982 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1983
1984 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1985
1986 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1987
1988
1989 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1990
1991 There is no downlink option available for this feature.
1992
1993
1994 ==== 3.4.2.26 Query firmware version, frequency band, subband, and TDC time ====
1995
1996
1997 This command is used to query key information about the device, including its firmware version, frequency band, subband, and TDC time. By sending the specified payload as a downlink, the server can retrieve this essential data from the device.
1998
1999 * (((
2000 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
2001
2002 (% style="color:blue" %)**26 01  ** (%%) ~/~/  The downlink payload 26 01 is used to query the device's firmware version, frequency band, subband, and TDC time.
2003
2004
2005 )))
2006
2007 **Example:**
2008
2009 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
2010
2011
2012 == 3.5 Integrating with ThingsEye.io ==
2013
2014
2015 The Things Stack application supports integration with ThingsEye.io. Once integrated, ThingsEye.io acts as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
2016
2017
2018 === 3.5.1 Configuring The Things Stack ===
2019
2020
2021 We use The Things Stack Sandbox in this example:
2022
2023 * In **The Things Stack Sandbox**, go to the **Application **for the LT-22222-LA you added.
2024 * Select **MQTT** under **Integrations** in the left menu.
2025 * In the **Connection information **section, under **Connection credentials**, The Things Stack displays an auto-generated **username**. You can use it or provide a new one.
2026 * Click the **Generate new API key** button to generate a password. You can view it by clicking on the **visibility toggle/eye** icon. The API key works as the password.
2027
2028 {{info}}
2029 The username and  password (API key) you created here are required in the next section.
2030 {{/info}}
2031
2032 [[image:tts-mqtt-integration.png]]
2033
2034
2035 === 3.5.2 Configuring ThingsEye.io ===
2036
2037
2038 The ThingsEye.io IoT platform is not open for self-registration at the moment. If you are interested in testing the platform, please send your project information to admin@thingseye.io, and we will create an account for you.
2039
2040 * Login to your [[ThingsEye.io >>https://thingseye.io]]account.
2041 * Under the **Integrations center**, click **Integrations**.
2042 * Click the **Add integration** button (the button with the **+** symbol).
2043
2044 [[image:thingseye-io-step-1.png]]
2045
2046
2047 On the **Add integration** window, configure the following:
2048
2049 **Basic settings:**
2050
2051 * Select **The Things Stack Community** from the **Integration type** list.
2052 * Enter a suitable name for your integration in the **Name **text** **box or keep the default name.
2053 * Ensure the following options are turned on.
2054 ** Enable integration
2055 ** Debug mode
2056 ** Allow creating devices or assets
2057 * Click the **Next** button. you will be navigated to the **Uplink data converter** tab.
2058
2059 [[image:thingseye-io-step-2.png]]
2060
2061
2062 **Uplink data converter:**
2063
2064 * Click the **Create new** button if it is not selected by default.
2065 * Enter a suitable name for the uplink data converter in the **Name **text** **box or keep the default name.
2066 * Click the **JavaScript** button.
2067 * Paste the uplink decoder function into the text area (first, delete the default code). The demo uplink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]].
2068 * Click the **Next** button. You will be navigated to the **Downlink data converter **tab.
2069
2070 [[image:thingseye-io-step-3.png]]
2071
2072
2073 **Downlink data converter (this is an optional step):**
2074
2075 * Click the **Create new** button if it is not selected by default.
2076 * Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name.
2077 * Click the **JavaScript** button.
2078 * Paste the downlink decoder function into the text area (first, delete the default code). The demo downlink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Downlink_Converter.js]].
2079 * Click the **Next** button. You will be navigated to the **Connection** tab.
2080
2081 [[image:thingseye-io-step-4.png]]
2082
2083
2084 **Connection:**
2085
2086 * Choose **Region** from the **Host type**.
2087 * Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...).
2088 * Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The **username **and **password **can be found on the MQTT integration page of your The Things Stack account (see **3.5.1 Configuring The Things Stack**).
2089 * Click the **Check connection** button to test the connection. If the connection is successful, you will see the message saying **Connected**.
2090
2091 [[image:message-1.png]]
2092
2093
2094 * Click the **Add** button.
2095
2096 [[image:thingseye-io-step-5.png]]
2097
2098
2099 Your integration has been added to the** Integrations** list and will be displayed on the **Integrations** page. Check whether the status is shown as **Active**. If not, review your configuration settings and correct any errors.
2100
2101 [[image:thingseye.io_integrationsCenter_integrations.png]]
2102
2103
2104 ==== 3.5.2.1 Viewing integration details ====
2105
2106
2107 Click on your integration from the list. The **Integration details** window will appear with the **Details **tab selected. The **Details **tab shows all the settings you have provided for this integration.
2108
2109 [[image:integration-details.png]]
2110
2111
2112 If you want to edit the settings you have provided, click on the **Toggle edit mode** button. Once you have done click on the **Apply changes **button.
2113
2114 {{info}}
2115 See also [[ThingsEye documentation>>https://wiki.thingseye.io/xwiki/bin/view/Main/]].
2116 {{/info}}
2117
2118
2119 ==== 3.5.2.2 Viewing events ====
2120
2121
2122 The **Events **tab displays all the uplink messages from the LT-22222-L.
2123
2124 * Select **Debug **from the **Event type** dropdown.
2125 * Select the** time frame** from the **time window**.
2126
2127 [[image:thingseye-events.png]]
2128
2129
2130 * To view the **JSON payload** of a message, click on the **three dots (...)** in the **Message** column of the desired message.
2131
2132 [[image:thingseye-json.png]]
2133
2134
2135 ==== 3.5.2.3 Deleting an integration ====
2136
2137
2138 If you want to delete an integration, click the **Delete integratio**n button on the Integrations page.
2139
2140
2141 ==== 3.5.2.4 Viewing sensor data on a dashboard ====
2142
2143
2144 You can create a dashboard with ThingsEye to visualize the sensor data coming from the LT-22222-LA. The following image shows a dashboard created for the LT-22222-LA. See **Creating a dashboard** in ThingsEye documentation for more information.
2145
2146 [[image:lt-22222-l-dashboard.png]]
2147
2148
2149 == 3.6 Interface Details ==
2150
2151 === 3.6.1 Digital Input Ports: DI1/DI2/DI3 (For LT-33222-L, Low Active) ===
2152
2153
2154 Supports** NPN-type **sensors.
2155
2156 [[image:1653356991268-289.png]]
2157
2158
2159 === 3.6.2 Digital Input Ports: DI1/DI2 ===
2160
2161
2162 (((
2163 The DI ports of the LT-22222-LA can support **NPN**, **PNP**, or **dry contact** output sensors.
2164 )))
2165
2166 (((
2167 (((
2168 The part of the internal circuit of the LT-22222-LA shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
2169
2170 [[image:1653357170703-587.png]]
2171 )))
2172 )))
2173
2174
2175 (((
2176 (((
2177 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
2178 )))
2179 )))
2180
2181 (((
2182
2183 )))
2184
2185 (((
2186 (% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
2187 )))
2188
2189 (((
2190 This type of sensor outputs a low (GND) signal when active.
2191 )))
2192
2193 * (((
2194 Connect the sensor's output to DI1-
2195 )))
2196 * (((
2197 Connect the sensor's VCC to DI1+.
2198 )))
2199
2200 (((
2201 When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be:
2202 )))
2203
2204 (((
2205 **= DI1**+** / 1K.**
2206 )))
2207
2208 (((
2209 For example, if** DI1+ **= **12V**, the resulting current is = 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
2210 )))
2211
2212 (((
2213
2214 )))
2215
2216 (((
2217 (% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
2218 )))
2219
2220 (((
2221 This type of sensor outputs a high signal (e.g., 24V) when active.
2222 )))
2223
2224 * (((
2225 Connect the sensor's output to DI1+
2226 )))
2227 * (((
2228 Connect the sensor's GND DI1-.
2229 )))
2230
2231 (((
2232 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
2233 )))
2234
2235 (((
2236 **= DI1+ / 1K.**
2237 )))
2238
2239 (((
2240 If **DI1+ = 24V**, the resulting current is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
2241 )))
2242
2243 (((
2244
2245 )))
2246
2247 (((
2248 (% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
2249 )))
2250
2251 (((
2252 Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
2253 )))
2254
2255 * (((
2256 Connect the sensor's output to DI1+ with a 50K resistor in series.
2257 )))
2258 * (((
2259 Connect the sensor's GND DI1-.
2260 )))
2261
2262 (((
2263 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
2264 )))
2265
2266 (((
2267 **= DI1+ / 51K.**
2268 )))
2269
2270 (((
2271 If the sensor output is 220V, then (% wfd-invisible="true" id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
2272 )))
2273
2274
2275
2276
2277
2278 (% style="color:blue" %)**Example 4**(%%): Connecting to a Dry Contact sensor
2279
2280 From the DI port circuit above, activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference on its own.
2281
2282 To detect a Dry Contact, you can supply a power source to one of the pins of the Dry Contact. A reference circuit diagram is shown below.
2283
2284 [[image:image-20230616235145-1.png]]
2285
2286 (% style="color:blue" %)**Example 5**(%%): Connecting to an Open Collector
2287
2288
2289 [[image:image-20240219115718-1.png]]
2290
2291 === 3.6.3 Digital Output Ports: DO1/DO2 ===
2292
2293
2294 (% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
2295
2296 (% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
2297
2298 [[image:1653357531600-905.png]]
2299
2300
2301 === 3.6.4 Analog Input Interfaces ===
2302
2303
2304 The analog input interface is shown below. The LT-22222-LA will measure the IN2 voltage to calculate the current passing through the load. The formula is:
2305
2306
2307 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
2308
2309 [[image:1653357592296-182.png]]
2310
2311 Example: Connecting a 4~~20mA sensor
2312
2313 We will use the wind speed sensor as an example for reference only.
2314
2315
2316 (% style="color:blue" %)**Specifications of the wind speed sensor:**
2317
2318 (% style="color:red" %)**Red:  12~~24V**
2319
2320 (% style="color:#ffc000" %)**Yellow:  4~~20mA**
2321
2322 **Black:  GND**
2323
2324 **Connection diagram:**
2325
2326 [[image:1653357640609-758.png]]
2327
2328 [[image:1653357648330-671.png]]
2329
2330
2331 Example: Connecting to a regulated power supply to measure voltage
2332
2333 [[image:image-20230608101532-1.png]]
2334
2335 [[image:image-20230608101608-2.jpeg]]
2336
2337 [[image:image-20230608101722-3.png]]
2338
2339
2340 (% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
2341
2342 (% style="color:red" %)**Red:  12~~24v**
2343
2344 **Black:  GND**
2345
2346
2347 === 3.6.5 Relay Output ===
2348
2349
2350 (((
2351 The LT-22222-LA has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
2352
2353 (% style="color:red" %)**Note:**(%%) The ROx pins will be in the Open (NO) state when the LT-22222-LA is powered off.
2354 )))
2355
2356 [[image:image-20220524100215-9.png]]
2357
2358 [[image:image-20220524100215-10.png]]
2359
2360
2361
2362 == 3.7 LED Indicators ==
2363
2364
2365 The table below lists the behaviour of LED indicators for each port function.
2366
2367 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
2368 |(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
2369 |**PWR**|Always on when there is power
2370 |**TX**|(((
2371 (((
2372 Device booting: TX blinks 5 times.
2373 )))
2374
2375 (((
2376 Successful network joins: TX remains ON for 5 seconds.
2377 )))
2378
2379 (((
2380 Transmit a LoRa packet: TX blinks once
2381 )))
2382 )))
2383 |**RX**|RX blinks once when a packet is received.
2384 |**DO1**|For LT-22222-LA: ON when DO1 is low, OFF when DO1 is high
2385 |**DO2**|For LT-22222-LA: ON when DO2 is low, OFF when DO2 is high
2386 |**DI1**|(((
2387 For LT-22222-LA: ON when DI1 is high, OFF when DI1 is low
2388 )))
2389 |**DI2**|(((
2390 For LT-22222-LA: ON when DI2 is high, OFF when DI2 is low
2391 )))
2392 |**RO1**|For LT-22222-LA: ON when RO1 is closed, OFF when RO1 is open
2393 |**RO2**|For LT-22222-LA: ON when RO2 is closed, OFF when RO2 is open
2394
2395 = 4. Using AT Commands =
2396
2397
2398 The LT-22222-LA supports programming using AT Commands.
2399
2400
2401 == 4.1 Connecting the LT-22222-LA to a PC ==
2402
2403
2404 (((
2405 You can use a USB-to-TTL adapter/converter along with a 3.5mm Program Cable to connect the LT-22222-LA to a PC, as shown below.
2406
2407 (% title="Click and drag to resize" %)​​
2408
2409
2410 )))
2411
2412 (((
2413 On the PC, you need to set the (% style="color:#4f81bd" %)**serial tool **(%%)(such as [[PuTTY>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]] or [[SecureCRT>>https://www.vandyke.com/cgi-bin/releases.php?product=securecrt]]) to a baud rate of (% style="color:green" %)**9600**(%%) to access the serial console of LT-22222-L. Access to AT commands is disabled by default, and a password (default: (% style="color:green" %)**123456**)(%%) must be entered to enable AT command access, as shown below:
2414 )))
2415
2416
2417
2418 (((
2419 == 4.2 LT-22222-L related AT commands ==
2420
2421
2422 )))
2423
2424 (((
2425 The following is the list of all the AT commands related to the LT-22222-L, except for those used for switching between working modes.
2426
2427 * **##AT##+<CMD>?** : Help on <CMD>
2428 * **##AT##+<CMD>** : Run <CMD>
2429 * **##AT##+<CMD>=<value>** : Set the value
2430 * **##AT##+<CMD>=?** : Get the value
2431 * ##**ATZ**##: Trigger a reset of the MCU
2432 * ##**AT+FDR**##: Reset Parameters to factory default, reserve keys 
2433 * **##AT+DEUI##**: Get or set the Device EUI (DevEUI)
2434 * **##AT+DADDR##**: Get or set the Device Address (DevAddr)
2435 * **##AT+APPKEY##**: Get or set the Application Key (AppKey)
2436 * ##**AT+NWKSKEY**##: Get or set the Network Session Key (NwkSKey)
2437 * **##AT+APPSKEY##**: Get or set the Application Session Key (AppSKey)
2438 * **##AT+APPEUI##**: Get or set the Application EUI (AppEUI)
2439 * **##AT+ADR##**: Get or set the Adaptive Data Rate setting. (0: OFF, 1: ON)
2440 * ##**AT+TXP**##: Get or set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Specification)
2441 * **##AT+DR##**:  Get or set the Data Rate. (0-7 corresponding to DR_X)  
2442 * **##AT+DCS##**: Get or set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
2443 * ##**AT+PNM**##: Get or set the public network mode. (0: off, 1: on)
2444 * ##**AT+RX2FQ**##: Get or set the Rx2 window frequency
2445 * ##**AT+RX2DR**##: Get or set the Rx2 window data rate (0-7 corresponding to DR_X)
2446 * ##**AT+RX1DL**##: Get or set the delay between the end of the Tx and the Rx Window 1 in ms
2447 * ##**AT+RX2DL**##: Get or set the delay between the end of the Tx and the Rx Window 2 in ms
2448 * ##**AT+JN1DL**##: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
2449 * ##**AT+JN2DL**##: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
2450 * ##**AT+NJM**##: Get or set the Network Join Mode. (0: ABP, 1: OTAA)
2451 * ##**AT+NWKID**##: Get or set the Network ID
2452 * ##**AT+FCU**##: Get or set the Frame Counter Uplink (FCntUp)
2453 * ##**AT+FCD**##: Get or set the Frame Counter Downlink (FCntDown)
2454 * ##**AT+CLASS**##: Get or set the Device Class
2455 * ##**AT+JOIN**##: Join Network
2456 * ##**AT+NJS**##: Get OTAA Join Status
2457 * ##**AT+SENDB**##: Send hexadecimal data along with the application port
2458 * ##**AT+SEND**##: Send text data along with the application port
2459 * ##**AT+RECVB**##: Print the last received data in binary format (with hexadecimal values)
2460 * ##**AT+RECV**##: Print the last received data in raw format
2461 * ##**AT+VER**##: Get the current image version and Frequency Band
2462 * ##**AT+CFM**##: Get or Set the confirmation mode (0-1)
2463 * ##**AT+CFS**##: Get confirmation status of the last AT+SEND (0-1)
2464 * ##**AT+SNR**##: Get the SNR of the last received packet
2465 * ##**AT+RSSI**##: Get the RSSI of the last received packet
2466 * ##**AT+TDC**##: Get or set the application data transmission interval in ms
2467 * ##**AT+PORT**##: Get or set the application port
2468 * ##**AT+DISAT**##: Disable AT commands
2469 * ##**AT+PWORD**##: Set password, max 9 digits
2470 * ##**AT+CHS**##: Get or set the Frequency (Unit: Hz) for Single Channel Mode
2471 * ##**AT+CHE**##: Get or set eight channels mode, Only for US915, AU915, CN470
2472 * ##**AT+CFG**##: Print all settings
2473 )))
2474
2475
2476 == 4.2 Common AT Command Sequence ==
2477
2478 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
2479
2480 (((
2481
2482
2483 (((
2484 (% style="color:blue" %)**If the device has not yet joined the network:**
2485 )))
2486 )))
2487
2488 (((
2489 (% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT command access**##
2490 )))
2491
2492 (((
2493 (% style="background-color:#dcdcdc" %)##**AT+FDR ~/~/Reset parameters to factory default, Reserve keys**##
2494 )))
2495
2496 (((
2497 (% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT command access**##
2498 )))
2499
2500 (((
2501 (% style="background-color:#dcdcdc" %)##**AT+NJM=0 ~/~/Set to ABP mode**##
2502 )))
2503
2504 (((
2505 (% style="background-color:#dcdcdc" %)##**ATZ ~/~/Reset MCU**##
2506 )))
2507
2508
2509 (((
2510 (% style="color:blue" %)**If the device has already joined the network:**
2511 )))
2512
2513 (((
2514 (% style="background-color:#dcdcdc" %)##**AT+NJM=0**##
2515 )))
2516
2517 (((
2518 (% style="background-color:#dcdcdc" %)##**ATZ**##
2519 )))
2520
2521
2522 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
2523
2524 (((
2525
2526
2527 (((
2528 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter the password to enable AT commands access
2529 )))
2530 )))
2531
2532 (((
2533 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset parameters to Factory Default, Reserve keys
2534 )))
2535
2536 (((
2537 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter the password to enable AT command access
2538 )))
2539
2540 (((
2541 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to CLASS C mode
2542 )))
2543
2544 (((
2545 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
2546 )))
2547
2548 (((
2549 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
2550 )))
2551
2552 (((
2553 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
2554 )))
2555
2556 (((
2557 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
2558 )))
2559
2560 (((
2561 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4 MHz
2562 )))
2563
2564 (((
2565 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2 frequency to 868.4 MHz (according to the result from the server)
2566 )))
2567
2568 (((
2569 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2 DR to match the downlink DR from the server. See below.
2570 )))
2571
2572 (((
2573 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address. The Device Address can be found in the application on the LoRaWAN NS.
2574 )))
2575
2576 (((
2577 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
2578
2579
2580 )))
2581
2582 (((
2583 (% style="color:red" %)**Note:**
2584 )))
2585
2586 (((
2587 **~1. Ensure that the device is set to ABP mode in the LoRaWAN Network Server.**
2588
2589 **2. Verify that the LG01/02 gateway RX frequency matches the AT+CHS setting exactly.**
2590
2591 **3. Make sure the SF/bandwidth settings in the LG01/LG02 match the settings of AT+DR. Refer to [[this link>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
2592
2593 **4. The commands AT+RX2FQ and AT+RX2DR enable downlink functionality. To set the correct parameters, you can check the actual downlink parameters to be used as shown below. Here, RX2FQ should be set to 868400000 and RX2DR should be set to 5.**
2594 )))
2595
2596 (((
2597
2598 )))
2599
2600
2601 === 4.2.3 Change to Class A ===
2602
2603
2604 (((
2605 (% style="color:blue" %)**If the sensor has JOINED:**
2606
2607 (% style="background-color:#dcdcdc" %)**AT+CLASS=A**
2608
2609 (% style="background-color:#dcdcdc" %)**ATZ**
2610 )))
2611
2612
2613 = 5. Case Study =
2614
2615 == 5.1 Counting how many objects pass through the flow line ==
2616
2617
2618 See [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]].
2619
2620
2621 = 6. FAQ =
2622
2623
2624 This section contains some frequently asked questions, which can help you resolve common issues and find solutions quickly.
2625
2626
2627 == 6.1 How to update the firmware? ==
2628
2629
2630 Dragino frequently releases firmware updates for the LT-22222-L. Updating your LT-22222-L with the latest firmware version helps to:
2631
2632 * Support new features
2633 * Fix bugs
2634 * Change LoRaWAN frequency bands
2635
2636 You will need the following things before proceeding:
2637
2638 * 3.5mm programming cable (included with the LT-22222-L as an additional accessory)
2639 * USB to TTL adapter/converter
2640 * Download and install the [[STM32 Flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]]. (replaced by STM32CubeProgrammer)
2641 * Download the latest firmware image from [[LT-22222-L firmware image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]]. Check the file name of the firmware to find the correct region.
2642
2643 {{info}}
2644 As of this writing, the latest firmware version available for the LT-22222-L is v1.6.1.
2645 {{/info}}
2646
2647 Below is the hardware setup for uploading a firmware image to the LT-22222-L:
2648
2649
2650
2651
2652 Start the STM32 Flash Loader and choose the correct COM port to update.
2653
2654 (((
2655 (((
2656 (% style="color:blue" %)**For LT-22222-L**(%%):
2657
2658 Hold down the **PRO** button, then briefly press the **RST** button. The **DO1** LED will change from OFF to ON. When the **DO1** LED is ON, it indicates that the device is in firmware download mode.
2659 )))
2660
2661
2662 )))
2663
2664
2665
2666
2667
2668
2669
2670 (% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5 mm cable. The pin mapping is as follows:
2671
2672
2673
2674 (((
2675 (((
2676 == 6.2 How to change the LoRaWAN frequency band/region? ==
2677
2678
2679 )))
2680 )))
2681
2682 (((
2683 You can follow the introductions on [[how to upgrade the image>>||anchor="H6.1Howtoupdatethefirmware3F"]]. When downloading, select the required image file.
2684 )))
2685
2686 (((
2687
2688
2689 == 6.3 How to set up LT-22222-L to work with a Single Channel Gateway, such as LG01/LG02? ==
2690
2691
2692 )))
2693
2694 (((
2695 (((
2696 In this case, you need to set the LT-22222-L to work in ABP mode and transmit on only one frequency.
2697 )))
2698 )))
2699
2700 (((
2701 (((
2702 We assume you have an LG01/LG02 working on the frequency 868400000. Below are the steps.
2703
2704
2705 )))
2706 )))
2707
2708 (((
2709 (% style="color:#0000ff" %)**Step 1**(%%): Log in to The Things Stack Sandbox account and create an ABP device in the application. To do this, use the manual registration option as explained in section 3.2.2.2, //Adding a Device Manually//. Select //Activation by Personalization (ABP)// under Activation Mode. Enter the DevEUI exactly as shown on the registration information sticker, then generate the Device Address, Application Session Key (AppSKey), and Network Session Key (NwkSKey).
2710
2711
2712 )))
2713
2714 (((
2715
2716 )))
2717
2718 {{warning}}
2719 Ensure that the Device Address (DevAddr) and the two keys match between the LT-22222-L and The Things Stack. You can modify them either in The Things Stack or on the LT-22222-L to make them align. In The Things Stack, you can configure the NwkSKey and AppSKey on the settings page, but note that the Device Address is generated by The Things Stack.
2720 {{/warning}}
2721
2722
2723 (((
2724 (% style="color:blue" %)**Step 2**(%%)**:  **(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)Run AT commands to configure the LT-22222-L to operate in single-frequency and ABP mode. The AT commands are as follows:
2725
2726
2727 )))
2728
2729 (((
2730 (% style="background-color:#dcdcdc" %)**123456** (%%) : Enter the password to enable AT access.
2731
2732 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Reset parameters to factory default, keeping keys reserved.
2733
2734 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) : Set to ABP mode.
2735
2736 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) : Disable the Adaptive Data Rate (ADR).
2737
2738 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) : Set Data Rate (Use AT+DR=3 for the 915 MHz band).
2739
2740 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) : Set transmit interval to 60 seconds.
2741
2742 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4 MHz.
2743
2744 (% style="background-color:#dcdcdc" %)**AT+DADDR=xxxx**(%%) : Set the Device Address (DevAddr)
2745
2746 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:700; text-decoration:none; white-space:pre-wrap" %)**AT+APPKEY=xxxx**(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %): Get or set the Application Key (AppKey)
2747
2748 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)**AT+NWKSKEY=xxxx**: Get or set the Network Session Key (NwkSKey)
2749
2750 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)**AT+APPSKEY=xxxx**: Get or set the Application Session Key (AppSKey)
2751
2752 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) : Reset MCU.
2753 )))
2754
2755
2756 (((
2757 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)The following figure shows the screenshot of the command set above, issued using a serial tool:
2758 )))
2759
2760
2761
2762 == 6.4 How to change the uplink interval? ==
2763
2764
2765 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2766
2767
2768 == 6.5 Can I see the counting event in the serial output? ==
2769
2770
2771 (((
2772 You can run the AT command **AT+DEBUG** to view the counting event in the serial output. If the firmware is too old and doesn’t support AT+DEBUG, update to the latest firmware first.
2773
2774
2775 == 6.6 Can I use point-to-point communication with LT-22222-L? ==
2776
2777
2778 Yes, you can. Please refer to the [[Point-to-Point Communication of LT-22222-L>>https://wiki.dragino.com/xwiki/bin/view/Main/%20Point%20to%20Point%20Communication%20of%20LT-22222-L/]] page. The firmware that supports point-to-point communication can be found [[here>>https://github.com/dragino/LT-22222-L/releases]].
2779
2780
2781 )))
2782
2783 (((
2784 == 6.7 Why does the relay output default to an open relay after the LT-22222-L is powered off? ==
2785
2786
2787 * If the device is not properly shut down and is directly powered off.
2788 * It will default to a power-off state.
2789 * In modes 2 to 5, the DO/RO status and pulse count are saved to flash memory.
2790 * After a restart, the status before the power failure will be read from Flash.
2791
2792 == 6.8 Can I set up LT-22222-L as an NC (Normally Closed) relay? ==
2793
2794
2795 The LT-22222-L's built-in relay is Normally Open (NO). You can use an external relay to achieve a Normally Closed (NC) configuration. The circuit diagram is shown below:
2796
2797
2798
2799
2800 == 6.9 Can the LT-22222-L save the RO state? ==
2801
2802
2803 To enable this feature, the firmware version must be 1.6.0 or higher.
2804
2805
2806 == 6.10 Why does the LT-22222-L always report 15.585V when measuring the AVI? ==
2807
2808
2809 It is likely that the GND is not connected during the measurement, or that the wire connected to the GND is loose.
2810
2811
2812 = 7. Troubleshooting =
2813
2814
2815 This section provides some known troubleshooting tips.
2816
2817
2818 )))
2819
2820 (((
2821 (((
2822 == 7.1 Downlink isn't working. How can I solve this? ==
2823
2824
2825 )))
2826 )))
2827
2828 (((
2829 Please refer to this link for debugging instructions: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2830 )))
2831
2832 (((
2833
2834
2835 == 7.2 Having trouble uploading an image? ==
2836
2837
2838 )))
2839
2840 (((
2841 Please refer to this link for troubleshooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2842 )))
2843
2844 (((
2845
2846
2847 == 7.3 Why can't I join TTN in the US915 /AU915 bands? ==
2848
2849
2850 )))
2851
2852 (((
2853 It might be related to the channel mapping. [[Please refer to this link for details.>>https://github.com/dragino/LT-22222-L/releases]]
2854 )))
2855
2856
2857 == 7.4 Why can the LT-22222-L perform uplink normally, but cannot receive downlink? ==
2858
2859
2860 The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue.
2861 Use this command to synchronize their counts: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resettingthedownlinkpacketcount"]]
2862
2863
2864 = 8. Ordering information =
2865
2866
2867 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2868
2869 (% style="color:#4f81bd" %)**XXX:**
2870
2871 * (% style="color:red" %)**EU433**(%%): LT with frequency bands EU433
2872 * (% style="color:red" %)**EU868**(%%): LT with frequency bands EU868
2873 * (% style="color:red" %)**KR920**(%%): LT with frequency bands KR920
2874 * (% style="color:red" %)**CN470**(%%): LT with frequency bands CN470
2875 * (% style="color:red" %)**AS923**(%%): LT with frequency bands AS923
2876 * (% style="color:red" %)**AU915**(%%): LT with frequency bands AU915
2877 * (% style="color:red" %)**US915**(%%): LT with frequency bands US915
2878 * (% style="color:red" %)**IN865**(%%): LT with frequency bands IN865
2879 * (% style="color:red" %)**CN779**(%%): LT with frequency bands CN779
2880
2881 = 9. Package information =
2882
2883
2884 (% style="color:#037691" %)**Package Includes**:
2885
2886 * 1 x LT-22222-L I/O Controller
2887 * 1 x LoRa antenna matched to the frequency of the LT-22222-L
2888 * 1 x bracket for DIN rail mounting
2889 * 1 x 3.5 mm programming cable
2890
2891 (% style="color:#037691" %)**Dimension and weight**:
2892
2893 * Package Size / pcs : 145×80×50 mm
2894 * Weight / pcs : 180 g
2895
2896 = 10. Support =
2897
2898
2899 * (((
2900 Support is available Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different time zones, we cannot offer live support. However, your questions will be answered as soon as possible within the aforementioned schedule.
2901 )))
2902 * (((
2903 Please provide as much information as possible regarding your inquiry (e.g., product models, a detailed description of the problem, steps to replicate it, etc.) and send an email to [[support@dragino.cc>>mailto:support@dragino.cc]]
2904
2905
2906 )))
2907
2908 = 11. Reference​​​​​ =
2909
2910
2911 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2912 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2913 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]