Last modified by Mengting Qiu on 2025/06/04 18:42

From version 132.3
edited by Xiaoling
on 2024/03/05 08:53
Change comment: There is no comment for this version
To version 190.1
edited by Dilisi S
on 2024/11/13 23:27
Change comment: test edit

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LT-22222-L -- LoRa IO Controller User Manual
1 +LT-22222-L -- LoRa I/O Controller User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.pradeeka
Content
... ... @@ -17,38 +17,32 @@
17 17  
18 18  
19 19  
20 -= 1.Introduction =
20 += 1. Introduction =
21 21  
22 -== 1.1 What is LT Series I/O Controller ==
22 +== 1.1 What is the LT-22222-L I/O Controller? ==
23 23  
24 24  (((
25 -
26 -
27 27  (((
28 -The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
29 -)))
30 -)))
26 +The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
31 31  
32 -(((
33 -The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
28 +The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
34 34  )))
35 -
36 -(((
37 -The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
38 38  )))
39 39  
40 40  (((
41 -The use environment includes:
33 +With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
42 42  )))
43 43  
44 44  (((
45 -1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
46 -)))
37 +You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
47 47  
48 -(((
49 -2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
39 +* If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
40 +* If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
41 +* Setup your own private LoRaWAN network.
50 50  
51 -
43 +{{info}}
44 + You can use a LoRaWAN gateway, such as the [[Dragino LG308>>https://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]], to expand or create LoRaWAN coverage in your area.
45 +{{/info}}
52 52  )))
53 53  
54 54  (((
... ... @@ -59,259 +59,238 @@
59 59  
60 60  == 1.2 Specifications ==
61 61  
62 -(((
63 -
64 -
65 65  (% style="color:#037691" %)**Hardware System:**
66 -)))
67 67  
68 -* (((
69 -STM32L072xxxx MCU
70 -)))
71 -* (((
72 -SX1276/78 Wireless Chip 
73 -)))
74 -* (((
75 -(((
76 -Power Consumption:
77 -)))
58 +* STM32L072xxxx MCU
59 +* SX1276/78 Wireless Chip 
60 +* Power Consumption:
61 +** Idle: 4mA@12V
62 +** 20dB Transmit: 34mA@12V
63 +* Operating Temperature: -40 ~~ 85 Degrees, No Dew
78 78  
79 -* (((
80 -Idle: 4mA@12v
81 -)))
82 -* (((
83 -20dB Transmit: 34mA@12v
84 -)))
85 -)))
65 +(% style="color:#037691" %)**Interface for Model: LT22222-L:**
86 86  
87 -(((
88 -
67 +* 2 x Digital dual direction Input (Detect High/Low signal, Max: 50V, or 220V with optional external resistor)
68 +* 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
69 +* 2 x Relay Output (5A@250VAC / 30VDC)
70 +* 2 x 0~~20mA Analog Input (res:0.01mA)
71 +* 2 x 0~~30V Analog Input (res:0.01V)
72 +* Power Input 7~~ 24V DC. 
89 89  
90 -(% style="color:#037691" %)**Interface for Model: LT22222-L:**
91 -)))
74 +(% style="color:#037691" %)**LoRa Spec:**
92 92  
93 -* (((
94 -2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
95 -)))
96 -* (((
97 -2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
98 -)))
99 -* (((
100 -2 x Relay Output (5A@250VAC / 30VDC)
101 -)))
102 -* (((
103 -2 x 0~~20mA Analog Input (res:0.01mA)
104 -)))
105 -* (((
106 -2 x 0~~30V Analog Input (res:0.01v)
107 -)))
108 -* (((
109 -Power Input 7~~ 24V DC. 
110 -)))
76 +* Frequency Range:
77 +** Band 1 (HF): 862 ~~ 1020 MHz
78 +** Band 2 (LF): 410 ~~ 528 MHz
79 +* 168 dB maximum link budget.
80 +* +20 dBm - 100 mW constant RF output vs.
81 +* +14 dBm high-efficiency PA.
82 +* Programmable bit rate up to 300 kbps.
83 +* High sensitivity: down to -148 dBm.
84 +* Bullet-proof front end: IIP3 = -12.5 dBm.
85 +* Excellent blocking immunity.
86 +* Low RX current of 10.3 mA, 200 nA register retention.
87 +* Fully integrated synthesizer with a resolution of 61 Hz.
88 +* FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
89 +* Built-in bit synchronizer for clock recovery.
90 +* Preamble detection.
91 +* 127 dB Dynamic Range RSSI.
92 +* Automatic RF Sense and CAD with ultra-fast AFC.
93 +* Packet engine up to 256 bytes with CRC.
111 111  
112 -(((
113 -
95 +== 1.3 Features ==
114 114  
115 -(% style="color:#037691" %)**LoRa Spec:**
116 -)))
97 +* LoRaWAN Class A & Class C modes
98 +* Optional Customized LoRa Protocol
99 +* Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
100 +* AT Commands to change parameters
101 +* Remotely configure parameters via LoRaWAN Downlink
102 +* Firmware upgradable via program port
103 +* Counting
117 117  
118 -* (((
119 -(((
120 -Frequency Range:
121 -)))
105 +== 1.4 Applications ==
122 122  
123 -* (((
124 -Band 1 (HF): 862 ~~ 1020 Mhz
125 -)))
126 -* (((
127 -Band 2 (LF): 410 ~~ 528 Mhz
128 -)))
129 -)))
130 -* (((
131 -168 dB maximum link budget.
132 -)))
133 -* (((
134 -+20 dBm - 100 mW constant RF output vs.
135 -)))
136 -* (((
137 -+14 dBm high efficiency PA.
138 -)))
139 -* (((
140 -Programmable bit rate up to 300 kbps.
141 -)))
142 -* (((
143 -High sensitivity: down to -148 dBm.
144 -)))
145 -* (((
146 -Bullet-proof front end: IIP3 = -12.5 dBm.
147 -)))
148 -* (((
149 -Excellent blocking immunity.
150 -)))
151 -* (((
152 -Low RX current of 10.3 mA, 200 nA register retention.
153 -)))
154 -* (((
155 -Fully integrated synthesizer with a resolution of 61 Hz.
156 -)))
157 -* (((
158 -FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
159 -)))
160 -* (((
161 -Built-in bit synchronizer for clock recovery.
162 -)))
163 -* (((
164 -Preamble detection.
165 -)))
166 -* (((
167 -127 dB Dynamic Range RSSI.
168 -)))
169 -* (((
170 -Automatic RF Sense and CAD with ultra-fast AFC.
171 -)))
172 -* (((
173 -Packet engine up to 256 bytes with CRC.
107 +* Smart buildings & home automation
108 +* Logistics and supply chain management
109 +* Smart metering
110 +* Smart agriculture
111 +* Smart cities
112 +* Smart factory
174 174  
175 175  
176 -
177 -)))
115 += 2. Assembling the device =
178 178  
179 -== 1.3 Features ==
117 +== 2.1 Connecting the antenna ==
180 180  
119 +Connect the LoRa antenna to the antenna connector, **ANT**,** **located on the top right side of the device, next to the upper screw terminal block. Secure the antenna by tightening it clockwise.
181 181  
182 -* LoRaWAN Class A & Class C protocol
121 +{{warning}}
122 +Warning! Do not power on the device without connecting the antenna.
123 +{{/warning}}
183 183  
184 -* Optional Customized LoRa Protocol
125 +== 2.2 Terminals ==
185 185  
186 -* Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
127 +The  LT-22222-L has two screw terminal blocks. The upper screw treminal block has 6 terminals and the lower screw terminal block has 10 terminals.
187 187  
188 -* AT Commands to change parameters
129 +Upper screw terminal block (from left to right):
189 189  
190 -* Remote configure parameters via LoRa Downlink
131 +(% style="width:634px" %)
132 +|=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function
133 +|(% style="width:295px" %)GND|(% style="width:338px" %)Ground
134 +|(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
135 +|(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
136 +|(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
137 +|(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
138 +|(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
191 191  
192 -* Firmware upgradable via program port
140 +Lower screw terminal block (from left to right):
193 193  
194 -* Counting
142 +(% style="width:633px" %)
143 +|=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function
144 +|(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
145 +|(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
146 +|(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
147 +|(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
148 +|(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
149 +|(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
150 +|(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
151 +|(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
152 +|(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
153 +|(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
195 195  
196 -== 1.4 Applications ==
155 +== 2.3 Powering the device ==
197 197  
157 +The LT-22222-L I/O Controller can be powered by a **7–24V DC** power source. Connect your power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator **(PWR) LED** will turn on when the device is properly powered.
198 198  
199 -* Smart Buildings & Home Automation
159 +Once powered, the **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** The Things Stack. The **TX LED** will be on for **5 seconds** after joining the network. When there is a **downlink** message from the server, the **RX LED** will be on for **1 second**. When the device is sending an uplink message to the server, the **TX LED** will be on for **1 second**. See also LED status.
200 200  
201 -* Logistics and Supply Chain Management
161 +{{warning}}
162 +We recommend that you power on the LT-22222-L after configuring its registration information with a LoRaWAN network server. Otherwise, the device will continuously send join-request messages to attempt to join a LoRaWAN network but will fail.
163 +{{/warning}}
202 202  
203 -* Smart Metering
204 204  
205 -* Smart Agriculture
166 +[[image:1653297104069-180.png]]
206 206  
207 -* Smart Cities
208 208  
209 -* Smart Factory
169 += 3. Registering with a LoRaWAN Network Server =
210 210  
211 -== 1.5 Hardware Variants ==
171 +By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
212 212  
173 +After powering on, the **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** the LoRaWAN network. The **TX LED** will be on for **5 seconds** after joining the network. When there is a **downlink** message from the server, the **RX LED** will be on for **1 second**. When the device is sending an uplink message to the server, the **TX LED** will be on for **1 second**. See also LED status.
213 213  
214 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
215 -|(% style="background-color:#4f81bd; color:white; width:103px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:131px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:266px" %)**Description**
216 -|(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)(((
217 -(% style="text-align:center" %)
218 -[[image:image-20230424115112-1.png||height="106" width="58"]]
219 -)))|(% style="width:334px" %)(((
220 -* 2 x Digital Input (Bi-direction)
221 -* 2 x Digital Output
222 -* 2 x Relay Output (5A@250VAC / 30VDC)
223 -* 2 x 0~~20mA Analog Input (res:0.01mA)
224 -* 2 x 0~~30V Analog Input (res:0.01v)
225 -* 1 x Counting Port
226 -)))
175 +In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
227 227  
228 -= 2. Power ON Device =
177 +The network diagram below shows how the LT-22222-L is connected to a typical LoRaWAN network.
229 229  
179 +[[image:image-20220523172350-1.png||height="266" width="864"]]
230 230  
231 -(((
232 -The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
233 -)))
181 +=== 3.2.1 Prerequisites ===
234 234  
235 -(((
236 -PWR will on when device is properly powered.
183 +Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
237 237  
238 -
239 -)))
185 +[[image:image-20230425173427-2.png||height="246" width="530"]]
240 240  
241 -[[image:1653297104069-180.png]]
187 +The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
242 242  
189 +=== 3.2.2 The Things Stack Sandbox (TTSS) ===
243 243  
244 -= 3. Operation Mode =
191 +The Things Stack Sandbox was formally called The Things Stack Community Edition.
245 245  
246 -== 3.1 How it works? ==
193 +* Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
194 +* Create an application with The Things Stack if you do not have one yet.
195 +* Go to your application page and click on the **End devices** in the left menu.
196 +* On the End devices page, click on **+ Register end device**. Two registration options are available:
247 247  
198 +==== 3.2.2.1 Using the LoRaWAN Device Repository ====
248 248  
249 -(((
250 -The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
251 -)))
200 +* On the **Register end device** page:
201 +** Select the option **Select the end device in the LoRaWAN Device Repository **under **Input method**.
202 +** Select the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)** from the respective dropdown lists.
203 +*** **End device brand**: Dragino Technology Co., Limited
204 +*** **Model**: LT22222-L I/O Controller
205 +*** **Hardware ver**: Unknown
206 +*** **Firmware ver**: 1.6.0
207 +*** **Profile (Region)**: Select the region that matches your device.
208 +** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
252 252  
253 -(((
254 -In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
255 -)))
210 +[[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
256 256  
257 257  
258 -== 3.2 Example to join LoRaWAN network ==
213 +* Register end device page continued...
214 +** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message 'This end device can be registered on the network'.
215 +** In the **DevEUI** field, enter the **DevEUI**.
216 +** In the **AppKey** field, enter the **AppKey.**
217 +** In the **End device ID** field, enter a unique name for your LT-22222-N within this application.
218 +** Under **After registration**, select the **View registered end device** option.
259 259  
220 +[[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]]
260 260  
261 -(((
262 -This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
222 +==== ====
263 263  
264 -
265 -)))
224 +==== 3.2.2.2 Adding device manually ====
266 266  
267 -[[image:image-20220523172350-1.png||height="266" width="864"]]
226 +* On the **Register end device** page:
227 +** Select the option **Enter end device specifies manually** under **Input method**.
228 +** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
229 +** Select the **LoRaWAN version** as **LoRaWAN Specification 1.0.3**
230 +** Select the **Regional Parameters version** as** RP001 Regional Parameters 1.0.3 revision A**
231 +** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the hidden section.
232 +** Select the option **Over the air activation (OTAA)** under the **Activation mode.**
233 +** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities** dropdown list.
268 268  
235 +[[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
269 269  
270 -(((
271 -The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
272 272  
273 -
274 -)))
238 +* Register end device page continued...
239 +** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message 'This end device can be registered on the network'
240 +** In the **DevEUI** field, enter the **DevEUI**.
241 +** In the **AppKey** field, enter the **AppKey**.
242 +** In the **End device ID** field, enter a unique name for your LT-22222-N within this application.
243 +** Under **After registration**, select the **View registered end device** option.
244 +** Click the **Register end device** button.
275 275  
276 -(((
277 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
278 -)))
246 +[[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
279 279  
280 -(((
281 -Each LT is shipped with a sticker with the default device EUI as below:
282 -)))
283 283  
284 -[[image:image-20230425173427-2.png||height="246" width="530"]]
249 +You will be navigated to the **Device overview** page.
285 285  
286 286  
287 -Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
252 +[[image:lt-22222-device-overview.png||height="625" width="1000"]]
288 288  
289 -**Add APP EUI in the application.**
290 290  
291 -[[image:1653297955910-247.png||height="321" width="716"]]
255 +==== 3.2.2.3 Joining ====
292 292  
257 +On the Device overview page, click on **Live data** tab. The Live data panel for your device will display.
293 293  
294 -**Add APP KEY and DEV EUI**
259 +Now power on your LT-22222-L. It will begin joining The Things Stack. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server. Once successfully joined, the device will send its first **uplink data message** to the application it belongs to (in this example, **dragino-docs**).
295 295  
296 -[[image:1653298023685-319.png]]
297 297  
262 +[[image:lt-22222-join-network.png||height="625" width="1000"]]
298 298  
299 -(((
300 -(% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
301 301  
302 -
303 -)))
265 +By default, you will receive an uplink data message from the device every 10 minutes.
304 304  
305 -[[image:1653298044601-602.png||height="405" width="709"]]
267 +Click on one of a **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the decode_payload {} JSON object.
306 306  
269 +[[image:lt-22222-ul-payload-decoded.png]]
307 307  
308 -== 3.3 Uplink Payload ==
309 309  
272 +If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **End devices** > **LT-22222-L** > **Payload formatters** > **Uplink**. Then  select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes.
310 310  
311 -There are five working modes + one interrupt mode on LT for different type application:
274 +{{info}}
275 +The Things Stack provides two levels of payload formatters: application level and device level. The device-level payload formatters **override **the application-level payload formatters.
276 +{{/info}}
312 312  
313 -* (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
278 +[[image:lt-22222-ul-payload-fmt.png||height="686" width="1000"]]
314 314  
280 +
281 +== 3.3 Work Modes and Uplink Payload formats ==
282 +
283 +
284 +The LT-22222-L has 5 **work modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any work mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
285 +
286 +* (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO
287 +
315 315  * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
316 316  
317 317  * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
... ... @@ -322,12 +322,19 @@
322 322  
323 323  * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
324 324  
298 +The uplink messages are sent over LoRaWAN FPort 2. By default, an uplink message is sent every 10 minutes.
299 +
325 325  === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
326 326  
327 -
328 328  (((
329 -The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default. (% style="display:none" %)
303 +This is the default mode.
330 330  
305 +The uplink payload is 11 bytes long.
306 +
307 +(% style="color:red" %)**Note:The maximum count depends on the bytes it is.
308 +The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
309 +It starts counting again when it reaches the maximum value.**(% style="display:none" wfd-invisible="true" %)
310 +
331 331  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
332 332  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
333 333  |Value|(((
... ... @@ -338,29 +338,29 @@
338 338  ACI1 Current
339 339  )))|(((
340 340  ACI2 Current
341 -)))|DIDORO*|(((
321 +)))|**DIDORO***|(((
342 342  Reserve
343 343  )))|MOD
344 344  )))
345 345  
346 346  (((
347 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
327 +(% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below.
348 348  
349 349  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
350 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
351 -|RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1
330 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
331 +|RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
352 352  )))
353 353  
354 -* RO is for relay. ROx=1 : close, ROx=0 always open.
355 -* DI is for digital input. DIx=1: high or float, DIx=0: low.
356 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
334 +* RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
335 +* DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW.
336 +* DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
357 357  
358 -(% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
338 +(% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
359 359  
360 -For example if payload is: [[image:image-20220523175847-2.png]]
340 +For example, if the payload is: [[image:image-20220523175847-2.png]]
361 361  
362 362  
363 -**The value for the interface is:  **
343 +**The interface values can be calculated as follows:  **
364 364  
365 365  AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
366 366  
... ... @@ -370,36 +370,37 @@
370 370  
371 371  ACI2 channel current is 0x1300/1000=4.864mA
372 372  
373 -The last byte 0xAA= 10101010(B) means
353 +The last byte 0xAA= **10101010**(b) means,
374 374  
375 -* [1] RO1 relay channel is close and the RO1 LED is ON.
376 -* [0] RO2 relay channel is open and RO2 LED is OFF;
355 +* [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
356 +* [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
357 +* **[1] DI3 - not used for LT-22222-L.**
358 +* [0] DI2 channel input is LOW, and the DI2 LED is OFF.
359 +* [1] DI1 channel input state:
360 +** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
361 +** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
362 +** DI1 LED is ON in both cases.
363 +* **[0] DO3 - not used for LT-22222-L.**
364 +* [1] DO2 channel output is LOW, and the DO2 LED is ON.
365 +* [0] DO1 channel output state:
366 +** DO1 is FLOATING when there is no load between DO1 and V+.
367 +** DO1 is HIGH when there is a load between DO1 and V+.
368 +** DO1 LED is OFF in both cases.
377 377  
378 -**LT22222-L:**
379 -
380 -* [1] DI2 channel is high input and DI2 LED is ON;
381 -* [0] DI1 channel is low input;
382 -
383 -* [0] DO3 channel output state
384 -** DO3 is float in case no load between DO3 and V+.;
385 -** DO3 is high in case there is load between DO3 and V+.
386 -** DO3 LED is off in both case
387 -* [1] DO2 channel output is low and DO2 LED is ON.
388 -* [0] DO1 channel output state
389 -** DO1 is float in case no load between DO1 and V+.;
390 -** DO1 is high in case there is load between DO1 and V+.
391 -** DO1 LED is off in both case
392 -
393 393  === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
394 394  
395 395  
396 396  (((
397 -**For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
374 +**For LT-22222-L**: In this mode, **DI1 and DI2** are used as counting pins.
398 398  )))
399 399  
400 400  (((
401 -Total : 11 bytes payload
378 +The uplink payload is 11 bytes long.
402 402  
380 +(% style="color:red" %)**Note:The maximum count depends on the bytes it is.
381 +The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
382 +It starts counting again when it reaches the maximum value.**
383 +
403 403  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
404 404  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
405 405  |Value|COUNT1|COUNT2 |DIDORO*|(((
... ... @@ -408,26 +408,26 @@
408 408  )))
409 409  
410 410  (((
411 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
392 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, FIRST, Reserve, Reserve, DO3, DO2 and DO1, and its size is 1 byte long as shown below.
412 412  
413 413  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
414 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
415 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
395 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
396 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
416 416  
417 -RO is for relay. ROx=1 : close , ROx=0 always open.
398 +* RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
418 418  )))
419 419  
420 -* FIRST: Indicate this is the first packet after join network.
421 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
401 +* FIRST: Indicates that this is the first packet after joining the network.
402 +* DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
422 422  
423 423  (((
424 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
405 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
425 425  
426 426  
427 427  )))
428 428  
429 429  (((
430 -**To use counting mode, please run:**
411 +**To activate this mode, run the following AT commands:**
431 431  )))
432 432  
433 433  (((
... ... @@ -448,24 +448,27 @@
448 448  (((
449 449  **For LT22222-L:**
450 450  
451 -(% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
432 +(% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
452 452  
453 -(% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
434 +(% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
454 454  
455 -(% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
436 +(% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
456 456  
457 -(% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
438 +(% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
458 458  
459 -(% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
440 +(% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
460 460  
461 -(% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
442 +(% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
462 462  )))
463 463  
464 464  
465 465  === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
466 466  
448 +(% style="color:red" %)**Note: The maximum count depends on the bytes it is.
449 +The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
450 +It starts counting again when it reaches the maximum value.**
467 467  
468 -**LT22222-L**: This mode the DI1 is used as a counting pin.
452 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
469 469  
470 470  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
471 471  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -476,24 +476,24 @@
476 476  )))|DIDORO*|Reserve|MOD
477 477  
478 478  (((
479 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
463 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
480 480  
481 481  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
482 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
483 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
466 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
467 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
484 484  )))
485 485  
486 -* RO is for relay. ROx=1 : close, ROx=0 always open.
487 -* FIRST: Indicate this is the first packet after join network.
488 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
470 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
471 +* FIRST: Indicates that this is the first packet after joining the network.
472 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
489 489  
490 490  (((
491 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
475 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
492 492  )))
493 493  
494 494  
495 495  (((
496 -**To use counting mode, please run:**
480 +**To activate this mode, run the following AT commands:**
497 497  )))
498 498  
499 499  (((
... ... @@ -506,19 +506,25 @@
506 506  )))
507 507  
508 508  (((
509 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
493 +AT Commands for counting:
494 +
495 +The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
510 510  )))
511 511  
512 512  
513 513  === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
514 514  
501 +(% style="color:red" %)**Note:The maximum count depends on the bytes it is.
502 +The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
503 +It starts counting again when it reaches the maximum value.**
515 515  
505 +
516 516  (((
517 -**LT22222-L**: This mode the DI1 is used as a counting pin.
507 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
518 518  )))
519 519  
520 520  (((
521 -The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
511 +The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
522 522  
523 523  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
524 524  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -528,25 +528,25 @@
528 528  )))
529 529  
530 530  (((
531 -(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
521 +(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
532 532  
533 533  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
534 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
535 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
524 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
525 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
536 536  )))
537 537  
538 -* RO is for relay. ROx=1 : close, ROx=0 always open.
539 -* FIRST: Indicate this is the first packet after join network.
540 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
528 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
529 +* FIRST: Indicates that this is the first packet after joining the network.
530 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
541 541  
542 542  (((
543 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
533 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
544 544  
545 545  
546 546  )))
547 547  
548 548  (((
549 -**To use this mode, please run:**
539 +**To activate this mode, run the following AT commands:**
550 550  )))
551 551  
552 552  (((
... ... @@ -559,27 +559,31 @@
559 559  )))
560 560  
561 561  (((
562 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
552 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
563 563  )))
564 564  
565 565  (((
566 -**Plus below command for AVI1 Counting:**
556 +**In addition to that, below are the commands for AVI1 Counting:**
567 567  
568 -(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
558 +(% style="color:blue" %)**AT+SETCNT=3,60 **(%%)**(Sets AVI Count to 60)**
569 569  
570 -(% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
560 +(% style="color:blue" %)**AT+VOLMAX=20000 **(%%)**(If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
571 571  
572 -(% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
562 +(% style="color:blue" %)**AT+VOLMAX=20000,0 **(%%)**(If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
573 573  
574 -(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
564 +(% style="color:blue" %)**AT+VOLMAX=20000,1 **(%%)**(If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
575 575  )))
576 576  
577 577  
578 578  === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
579 579  
570 +(% style="color:red" %)**Note:The maximum count depends on the bytes it is.
571 +The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
572 +It starts counting again when it reaches the maximum value.**
580 580  
581 -**LT22222-L**: This mode the DI1 is used as a counting pin.
582 582  
575 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
576 +
583 583  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
584 584  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
585 585  |Value|(((
... ... @@ -593,25 +593,25 @@
593 593  )))|MOD
594 594  
595 595  (((
596 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
590 +(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
597 597  
598 598  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
599 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
593 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
600 600  |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
601 601  )))
602 602  
603 -* RO is for relay. ROx=1 : close, ROx=0 always open.
604 -* FIRST: Indicate this is the first packet after join network.
597 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
598 +* FIRST: Indicates that this is the first packet after joining the network.
605 605  * (((
606 -DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
600 +DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
607 607  )))
608 608  
609 609  (((
610 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
604 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
611 611  )))
612 612  
613 613  (((
614 -**To use this mode, please run:**
608 +**To activate this mode, run the following AT commands:**
615 615  )))
616 616  
617 617  (((
... ... @@ -624,7 +624,7 @@
624 624  )))
625 625  
626 626  (((
627 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
621 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
628 628  )))
629 629  
630 630  
... ... @@ -631,49 +631,48 @@
631 631  === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
632 632  
633 633  
634 -(% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
628 +(% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate together with other modes.**
635 635  
636 -For example, if user has configured below commands:
630 +For example, if you configured the following commands:
637 637  
638 -* **AT+MOD=1 ** **~-~->**  The normal working mode
639 -* **AT+ADDMOD6=1**   **~-~->**  Enable trigger
632 +* **AT+MOD=1 ** **~-~->**  The default work mode
633 +* **AT+ADDMOD6=1**   **~-~->**  Enable trigger mode
640 640  
641 -LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
635 +The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. LT will send uplink packets in two cases:
642 642  
643 -1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
644 -1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
637 +1. Periodically uplink (Based on TDC time). The payload is the same as in normal mode (MOD=1 for the commands above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
638 +1. (((
639 +Trigger uplink when the trigger condition is met. LT will send two packets in this case. The first uplink uses the payload specified in trigger mode (MOD=6). The second packet uses the normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**confirmed uplinks.**
640 +)))
645 645  
646 -(% style="color:#037691" %)**AT Command to set Trigger Condition**:
642 +(% style="color:#037691" %)**AT Commands to set Trigger Condition**:
647 647  
644 +(% style="color:#4f81bd" %)**Trigger based on voltage**:
648 648  
649 -(% style="color:#4f81bd" %)**Trigger base on voltage**:
650 -
651 651  Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
652 652  
653 653  
654 654  **Example:**
655 655  
656 -AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
651 +AT+AVLIM=3000,6000,0,2000   (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
657 657  
658 -AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
653 +AT+AVLIM=5000,0,0,0   (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use)
659 659  
660 660  
656 +(% style="color:#4f81bd" %)**Trigger based on current**:
661 661  
662 -(% style="color:#4f81bd" %)**Trigger base on current**:
663 -
664 664  Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
665 665  
666 666  
667 667  **Example:**
668 668  
669 -AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
663 +AT+ACLIM=10000,15000,0,0   (triggers an uplink if ACI1 voltage is lower than 10mA or higher than 15mA)
670 670  
671 671  
666 +(% style="color:#4f81bd" %)**Trigger based on DI status**:
672 672  
673 -(% style="color:#4f81bd" %)**Trigger base on DI status**:
668 +DI status triggers Flag.
674 674  
675 -DI status trigger Flag.
676 -
677 677  Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
678 678  
679 679  
... ... @@ -682,39 +682,38 @@
682 682  AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
683 683  
684 684  
685 -(% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
678 +(% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
686 686  
687 687  Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
688 688  
689 689  Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
690 690  
691 - AA: Code for this downlink Command:
684 + AA: Type Code for this downlink Command:
692 692  
693 - xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
686 + xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
694 694  
695 - yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
688 + yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
696 696  
697 - yy2 yy2: AC1 or AV1 high limit.
690 + yy2 yy2: AC1 or AV1 HIGH limit.
698 698  
699 - yy3 yy3: AC2 or AV2 low limit.
692 + yy3 yy3: AC2 or AV2 LOW limit.
700 700  
701 - Yy4 yy4: AC2 or AV2 high limit.
694 + Yy4 yy4: AC2 or AV2 HIGH limit.
702 702  
703 703  
704 -**Example1**: AA 00 13 88 00 00 00 00 00 00
697 +**Example 1**: AA 00 13 88 00 00 00 00 00 00
705 705  
706 -Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
699 +Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
707 707  
708 708  
709 -**Example2**: AA 02 01 00
702 +**Example 2**: AA 02 01 00
710 710  
711 -Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
704 +Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
712 712  
713 713  
714 -
715 715  (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
716 716  
717 -MOD6 Payload : total 11 bytes payload
709 +MOD6 Payload: total of 11 bytes
718 718  
719 719  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
720 720  |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
... ... @@ -728,10 +728,10 @@
728 728  MOD(6)
729 729  )))
730 730  
731 -(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
723 +(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below
732 732  
733 733  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
734 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
726 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
735 735  |(((
736 736  AV1_LOW
737 737  )))|(((
... ... @@ -750,17 +750,17 @@
750 750  AC2_HIGH
751 751  )))
752 752  
753 -* Each bits shows if the corresponding trigger has been configured.
745 +* Each bit shows if the corresponding trigger has been configured.
754 754  
755 755  **Example:**
756 756  
757 -10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
749 +10100000: Means the system has configure to use the trigger: AV1_LOW and AV2_LOW
758 758  
759 759  
760 -(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
752 +(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below
761 761  
762 762  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
763 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
755 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
764 764  |(((
765 765  AV1_LOW
766 766  )))|(((
... ... @@ -779,11 +779,11 @@
779 779  AC2_HIGH
780 780  )))
781 781  
782 -* Each bits shows which status has been trigger on this uplink.
774 +* Each bit shows which status has been triggered on this uplink.
783 783  
784 784  **Example:**
785 785  
786 -10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
778 +10000000: Means this uplink is triggered by AV1_LOW. That means the voltage is too low.
787 787  
788 788  
789 789  (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
... ... @@ -792,7 +792,7 @@
792 792  |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
793 793  |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
794 794  
795 -* Each bits shows which status has been trigger on this uplink.
787 +* Each bits shows which status has been triggered on this uplink.
796 796  
797 797  **Example:**
798 798  
... ... @@ -819,63 +819,83 @@
819 819  )))
820 820  
821 821  
822 -== 3.4 ​Configure LT via AT or Downlink ==
814 +== 3.4 ​Configure LT-22222-L via AT Commands or Downlinks ==
823 823  
824 -
825 825  (((
826 -User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
817 +You can configure LT-22222-L I/O Controller via AT Commands or LoRaWAN Downlinks.
827 827  )))
828 828  
829 829  (((
830 830  (((
831 -There are two kinds of Commands:
822 +There are two tytes of commands:
832 832  )))
833 833  )))
834 834  
835 -* (% style="color:blue" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
826 +* (% style="color:blue" %)**Common commands**(%%):
836 836  
837 -* (% style="color:blue" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
828 +* (% style="color:blue" %)**Sensor-related commands**(%%):
838 838  
839 -=== 3.4.1 Common Commands ===
830 +=== 3.4.1 Common commands ===
840 840  
841 -
842 842  (((
843 -They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
833 +These are available for each sensorand include actions such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]s.
844 844  )))
845 845  
836 +=== 3.4.2 Sensor-related commands ===
846 846  
847 -=== 3.4.2 Sensor related commands ===
838 +These commands are specially designed for the LT-22222-L. Commands can be sent to the device using options such as an AT command or a LoRaWAN downlink payload.
848 848  
849 849  ==== 3.4.2.1 Set Transmit Interval ====
850 850  
842 +Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes.
851 851  
852 -Set device uplink interval.
844 +(% style="color:#037691" %)**AT command**
853 853  
854 -* (% style="color:#037691" %)**AT Command:**
846 +(% style="width:500px" %)
847 +|**Command**|AT+TDC<time>
848 +|**Response**|
849 +|**Parameters**|<time> uplink interval is in milliseconds
850 +|**Example**|(((
851 +AT+TDC=30000
855 855  
856 -(% style="color:blue" %)**AT+TDC=N **
853 +Sets the uplink interval to 30,000 milliseconds (30 seconds)
854 +)))
857 857  
856 +(% style="color:#037691" %)**Downlink payload**
858 858  
859 -**Example: **AT+TDC=30000. Means set interval to 30 seconds
858 +(% style="width:500px" %)
859 +|**Payload**|(((
860 +<prefix><time>
861 +)))
862 +|**Parameters**|(((
863 +<prefix> 0x01
860 860  
865 +<time> uplink interval is in milliseconds, represented by 3  bytes in hexadecimal.
866 +)))
867 +|**Example**|(((
868 +01 **00 75 30**
861 861  
862 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
870 +Sets the uplink interval to 30,000 milliseconds (30 seconds)
863 863  
864 -(% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
872 +Conversion: 30000 (dec) = 00 75 30 (hex)
865 865  
874 +See [[RapidTables>>https://www.rapidtables.com/convert/number/decimal-to-hex.html?x=30000]]
875 +)))
866 866  
877 +==== 3.4.2.2 Set the Work Mode (AT+MOD) ====
867 867  
868 -==== 3.4.2.2 Set Work Mode (AT+MOD) ====
869 869  
880 +Sets the work mode.
870 870  
871 -Set work mode.
882 +* (% style="color:#037691" %)**AT command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
872 872  
873 -* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
884 +Where N is the work mode.
874 874  
875 -**Example**: AT+MOD=2. Set work mode to Double DI counting mode
886 +**Example**: AT+MOD=2. This will set the work mode to Double DI counting mode.
876 876  
877 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
878 878  
889 +* (% style="color:#037691" %)**Downlink payload (prefix 0x0A):**
890 +
879 879  (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
880 880  
881 881  
... ... @@ -882,11 +882,13 @@
882 882  
883 883  ==== 3.4.2.3 Poll an uplink ====
884 884  
897 +Requests the device to send an uplink.
885 885  
886 -* (% style="color:#037691" %)**AT Command:**(%%) There is no AT Command to poll uplink
887 887  
888 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
900 +* (% style="color:#037691" %)**AT command:**(%%) There is no AT Command to poll uplink
889 889  
902 +* (% style="color:#037691" %)**Downlink payload (prefix 0x08):**
903 +
890 890  (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
891 891  
892 892  **Example**: 0x08FF, ask device to send an Uplink
... ... @@ -893,16 +893,15 @@
893 893  
894 894  
895 895  
896 -==== 3.4.2.4 Enable Trigger Mode ====
910 +==== 3.4.2.4 Enable/Disable Trigger Mode ====
897 897  
912 +Enable or disable the trigger mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]).
898 898  
899 -Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
900 -
901 901  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
902 902  
903 -(% style="color:red" %)**1:** (%%)Enable Trigger Mode
916 +(% style="color:red" %)**1:** (%%)Enable the trigger mode
904 904  
905 -(% style="color:red" %)**0: **(%%)Disable Trigger Mode
918 +(% style="color:red" %)**0: **(%%)Disable the trigger mode
906 906  
907 907  
908 908  * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
... ... @@ -913,9 +913,8 @@
913 913  
914 914  ==== 3.4.2.5 Poll trigger settings ====
915 915  
929 +Polls the trigger settings.
916 916  
917 -Poll trigger settings
918 -
919 919  * (% style="color:#037691" %)**AT Command:**
920 920  
921 921  There is no AT Command for this feature.
... ... @@ -922,18 +922,17 @@
922 922  
923 923  * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
924 924  
925 -(% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
937 +(% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll the trigger settings. Device will uplink trigger settings once receive this command
926 926  
927 927  
928 928  
929 -==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
941 +==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as a trigger ====
930 930  
943 +Enable or disable DI1/DI2/DI2 as a trigger.
931 931  
932 -Enable Disable DI1/DI2/DI2 as trigger,
933 -
934 934  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
935 935  
936 -**Example:** AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
947 +**Example:** AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
937 937  
938 938  
939 939  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
... ... @@ -942,11 +942,10 @@
942 942  
943 943  
944 944  
945 -==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
956 +==== 3.4.2.7 Trigger1 – Set DI or DI3 as a trigger ====
946 946  
958 +Sets DI1 or DI3 (for LT-33222-L) as a trigger.
947 947  
948 -Set DI1 or DI3(for LT-33222-L) trigger.
949 -
950 950  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG1=a,b**
951 951  
952 952  (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
... ... @@ -961,19 +961,17 @@
961 961  (% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
962 962  
963 963  
974 +==== 3.4.2.8 Trigger2 – Set DI2 as a trigger ====
964 964  
965 -==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
976 +Sets DI2 as a trigger.
966 966  
967 -
968 -Set DI2 trigger.
969 -
970 970  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
971 971  
972 -(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
980 +(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
973 973  
974 974  (% style="color:red" %)**b :** (%%)delay timing.
975 975  
976 -**Example:** AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
984 +**Example:** AT+TRIG2=0,100 (set DI1 port to trigger on low level, valid signal is 100ms )
977 977  
978 978  
979 979  * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
... ... @@ -981,12 +981,10 @@
981 981  (% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG2=aa,0x(bb cc)
982 982  
983 983  
992 +==== 3.4.2.9 Trigger – Set AC (current) as a trigger ====
984 984  
985 -==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
994 +Sets the current trigger based on the AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
986 986  
987 -
988 -Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
989 -
990 990  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ACLIM**
991 991  
992 992  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
... ... @@ -997,9 +997,8 @@
997 997  
998 998  ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
999 999  
1006 +Sets the current trigger based on the AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1000 1000  
1001 -Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1002 -
1003 1003  * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
1004 1004  
1005 1005  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
... ... @@ -1007,12 +1007,10 @@
1007 1007  (% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1008 1008  
1009 1009  
1010 -
1011 1011  ==== 3.4.2.11 Trigger – Set minimum interval ====
1012 1012  
1017 +Sets AV and AC trigger minimum interval. Device won't response to the second trigger within this set time after the first trigger.
1013 1013  
1014 -Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
1015 -
1016 1016  * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
1017 1017  
1018 1018  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
... ... @@ -1027,6 +1027,7 @@
1027 1027  
1028 1028  ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1029 1029  
1033 +Controls the digital outputs DO1, DO2, and DO3
1030 1030  
1031 1031  * (% style="color:#037691" %)**AT Command**
1032 1032  
... ... @@ -1159,7 +1159,7 @@
1159 1159  )))
1160 1160  
1161 1161  (((
1162 -00: Close ,  01: Open , 11: No action
1166 +00: Closed ,  01: Open , 11: No action
1163 1163  
1164 1164  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1165 1165  |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
... ... @@ -1281,7 +1281,7 @@
1281 1281  
1282 1282  
1283 1283  
1284 -==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1288 +==== 3.4.2.19 Counting ~-~- Change counting mode to save time ====
1285 1285  
1286 1286  
1287 1287  * (% style="color:#037691" %)**AT Command:**
... ... @@ -1402,74 +1402,145 @@
1402 1402  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1403 1403  
1404 1404  
1405 -== 3.5 Integrate with Mydevice ==
1409 +== 3.5 Integrating with ThingsEye.io ==
1406 1406  
1411 +The Things Stack application supports integration with ThingsEye.io. Once integrated, ThingsEye.io acts as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1407 1407  
1408 -Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1413 +=== 3.5.1 Configuring The Things Stack ===
1409 1409  
1410 -(((
1411 -(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1412 -)))
1415 +We use The Things Stack Sandbox in this example:
1413 1413  
1414 -(((
1415 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1417 +* In **The Things Stack Sandbox**, go to the **Application **for the LT-22222-L you added.
1418 +* Select **MQTT** under **Integrations** in the left menu.
1419 +* In the **Connection information **section, under **Connection credentials**, The Things Stack displays an auto-generated **username**. You can use it or provide a new one.
1420 +* Click the **Generate new API key** button to generate a password. You can view it by clicking on the **visibility toggle/eye** icon. The API key works as the password.
1416 1416  
1417 -
1418 -)))
1422 +{{info}}
1423 +The username and  password (API key) you created here are required in the next section.
1424 +{{/info}}
1419 1419  
1420 -[[image:image-20220719105525-1.png||height="377" width="677"]]
1426 +[[image:tts-mqtt-integration.png||height="625" width="1000"]]
1421 1421  
1428 +=== 3.5.2 Configuring ThingsEye.io ===
1422 1422  
1430 +* Login to your [[ThingsEye.io >>https://thingseye.io]]account.
1431 +* Under the **Integrations center**, click **Integrations**.
1432 +* Click the **Add integration** button (the button with the **+** symbol).
1423 1423  
1424 -[[image:image-20220719110247-2.png||height="388" width="683"]]
1434 +[[image:thingseye-io-step-1.png||height="625" width="1000"]]
1425 1425  
1426 1426  
1427 -(% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1437 +On the **Add integration** window, configure the following:
1428 1428  
1429 -(% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L) and add DevEUI.(% style="display:none" %)
1439 +**Basic settings:**
1430 1430  
1431 -Search under The things network
1441 +* Select **The Things Stack Community** from the **Integration type** list.
1442 +* Enter a suitable name for your integration in the **Name **text** **box or keep the default name.
1443 +* Ensure the following options are turned on.
1444 +** Enable integration
1445 +** Debug mode
1446 +** Allow create devices or assets
1447 +* Click the **Next** button. you will be navigated to the **Uplink data converter** tab.
1432 1432  
1433 -[[image:1653356838789-523.png||height="337" width="740"]]
1449 +[[image:thingseye-io-step-2.png||height="625" width="1000"]]
1434 1434  
1435 1435  
1436 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1452 +**Uplink data converter:**
1437 1437  
1438 -[[image:image-20220524094909-1.png||height="335" width="729"]]
1454 +* Click the **Create new** button if it is not selected by default.
1455 +* Enter a suitable name for the uplink data converter in the **Name **text** **box or keep the default name.
1456 +* Click the **JavaScript** button.
1457 +* Paste the uplink decoder function into the text area (first, delete the default code). The demo uplink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]].
1458 +* Click the **Next** button. You will be navigated to the **Downlink data converter **tab.
1439 1439  
1460 +[[image:thingseye-io-step-3.png||height="625" width="1000"]]
1440 1440  
1441 -[[image:image-20220524094909-2.png||height="337" width="729"]]
1442 1442  
1463 +**Downlink data converter (this is an optional step):**
1443 1443  
1444 -[[image:image-20220524094909-3.png||height="338" width="727"]]
1465 +* Click the **Create new** button if it is not selected by default.
1466 +* Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name.
1467 +* Click the **JavaScript** button.
1468 +* Paste the downlink decoder function into the text area (first, delete the default code). The demo downlink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Downlink_Converter.js]].
1469 +* Click the **Next** button. You will be navigated to the **Connection** tab.
1445 1445  
1471 +[[image:thingseye-io-step-4.png||height="625" width="1000"]]
1446 1446  
1447 -[[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1448 1448  
1474 +**Connection:**
1449 1449  
1450 -[[image:image-20220524094909-5.png||height="341" width="734"]]
1476 +* Choose **Region** from the **Host type**.
1477 +* Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...).
1478 +* Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The **username **and **password **can be found on the MQTT integration page of your The Things Stack account (see Configuring The Things Stack).
1479 +* Click the **Check connection** button to test the connection. If the connection is successful, you will see the message saying **Connected**.
1451 1451  
1481 +[[image:message-1.png]]
1452 1452  
1453 -== 3.6 Interface Detail ==
1454 1454  
1484 +* Click the **Add** button.
1485 +
1486 +[[image:thingseye-io-step-5.png||height="625" width="1000"]]
1487 +
1488 +
1489 +Your integration has been added to the** Integrations** list and will be displayed on the **Integrations** page. Check whether the status is shown as **Active**. If not, review your configuration settings.
1490 +
1491 +
1492 +[[image:thingseye.io_integrationsCenter_integrations.png||height="686" width="1000"]]
1493 +
1494 +
1495 +**Viewing integration details**:
1496 +
1497 +Click on your integration from the list. The **Integration details** window will appear with the **Details **tab selected. The **Details **tab shows all the settings you have provided for this integration.
1498 +
1499 +[[image:integration-details.png||height="686" width="1000"]]
1500 +
1501 +
1502 +If you want to edit the settings you have provided, click on the **Toggle edit mode** button. Once you have done click on the **Apply changes **button.
1503 +
1504 +{{info}}
1505 +See also ThingsEye documentation.
1506 +{{/info}}
1507 +
1508 +**Viewing events:**
1509 +
1510 +The **Events **tab displays all the uplink messages from the LT-22222-L.
1511 +
1512 +* Select **Debug **from the **Event type** dropdown.
1513 +* Select the** time frame** from the **time window**.
1514 +
1515 +[[image:thingseye-events.png||height="686" width="1000"]]
1516 +
1517 +
1518 +* To view the JSON payload of a message, click on the three dots (...) in the Message column of the desired message.
1519 +
1520 +[[image:thingseye-json.png||width="1000"]]
1521 +
1522 +
1523 +**Deleting the integration**:
1524 +
1525 +If you want to delete this integration, click the **Delete integratio**n button.
1526 +
1527 +
1528 +== 3.6 Interface Details ==
1529 +
1455 1455  === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1456 1456  
1457 1457  
1458 -Support NPN Type sensor
1533 +Support NPN-type sensor
1459 1459  
1460 1460  [[image:1653356991268-289.png]]
1461 1461  
1462 1462  
1463 -=== 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1538 +=== 3.6.2 Digital Input Ports: DI1/DI2 ( For LT-22222-L) ===
1464 1464  
1465 1465  
1466 1466  (((
1467 -The DI port of LT-22222-L can support **NPN** or **PNP** or **Dry Contact** output sensor.
1542 +The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
1468 1468  )))
1469 1469  
1470 1470  (((
1471 1471  (((
1472 -Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA). (% class="mark" %)When there is active current pass NEC2501 pin1 to pin2. The DI will be active high and DI LED status will change.
1547 +The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
1473 1473  
1474 1474  
1475 1475  )))
... ... @@ -1479,7 +1479,7 @@
1479 1479  
1480 1480  (((
1481 1481  (((
1482 -When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1557 +(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
1483 1483  )))
1484 1484  )))
1485 1485  
... ... @@ -1488,22 +1488,22 @@
1488 1488  )))
1489 1489  
1490 1490  (((
1491 -(% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1566 +(% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
1492 1492  )))
1493 1493  
1494 1494  (((
1495 -This type of sensor will output a low signal GND when active.
1570 +This type of sensor outputs a low (GND) signal when active.
1496 1496  )))
1497 1497  
1498 1498  * (((
1499 -Connect sensor's output to DI1-
1574 +Connect the sensor's output to DI1-
1500 1500  )))
1501 1501  * (((
1502 -Connect sensor's VCC to DI1+.
1577 +Connect the sensor's VCC to DI1+.
1503 1503  )))
1504 1504  
1505 1505  (((
1506 -So when sensor active, the current between NEC2501 pin1 and pin2 is
1581 +When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be
1507 1507  )))
1508 1508  
1509 1509  (((
... ... @@ -1511,7 +1511,7 @@
1511 1511  )))
1512 1512  
1513 1513  (((
1514 -If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1589 +For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
1515 1515  )))
1516 1516  
1517 1517  (((
... ... @@ -1519,22 +1519,22 @@
1519 1519  )))
1520 1520  
1521 1521  (((
1522 -(% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1597 +(% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
1523 1523  )))
1524 1524  
1525 1525  (((
1526 -This type of sensor will output a high signal (example 24v) when active.
1601 +This type of sensor outputs a high signal (e.g., 24V) when active.
1527 1527  )))
1528 1528  
1529 1529  * (((
1530 -Connect sensor's output to DI1+
1605 +Connect the sensor's output to DI1+
1531 1531  )))
1532 1532  * (((
1533 -Connect sensor's GND DI1-.
1608 +Connect the sensor's GND DI1-.
1534 1534  )))
1535 1535  
1536 1536  (((
1537 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1612 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1538 1538  )))
1539 1539  
1540 1540  (((
... ... @@ -1542,7 +1542,7 @@
1542 1542  )))
1543 1543  
1544 1544  (((
1545 -If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1620 +If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
1546 1546  )))
1547 1547  
1548 1548  (((
... ... @@ -1550,22 +1550,22 @@
1550 1550  )))
1551 1551  
1552 1552  (((
1553 -(% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1628 +(% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
1554 1554  )))
1555 1555  
1556 1556  (((
1557 -Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1632 +Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
1558 1558  )))
1559 1559  
1560 1560  * (((
1561 -Connect sensor's output to DI1+ with a serial 50K resistor
1636 +Connect the sensor's output to DI1+ with a 50K resistor in series.
1562 1562  )))
1563 1563  * (((
1564 -Connect sensor's GND DI1-.
1639 +Connect the sensor's GND DI1-.
1565 1565  )))
1566 1566  
1567 1567  (((
1568 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1643 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1569 1569  )))
1570 1570  
1571 1571  (((
... ... @@ -1573,37 +1573,37 @@
1573 1573  )))
1574 1574  
1575 1575  (((
1576 -If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1651 +If the sensor output is 220V, the[[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
1577 1577  )))
1578 1578  
1579 1579  
1580 -(% style="color:blue" %)**Example4**(%%): Connect to Dry Contact sensor
1655 +(% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
1581 1581  
1582 -From above DI ports circuit, we can see that active the photocoupler will need to have a voltage difference between DI+ and DI- port. While the Dry Contact sensor is a passive component which can't provide this voltage difference.
1657 +From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
1583 1583  
1584 -To detect a Dry Contact, we can provide a power source to one pin of the Dry Contact. Below is a reference connection.
1659 +To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
1585 1585  
1586 1586  [[image:image-20230616235145-1.png]]
1587 1587  
1588 -(% style="color:blue" %)**Example5**(%%): Connect to Open Colleactor
1663 +(% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
1589 1589  
1590 1590  [[image:image-20240219115718-1.png]]
1591 1591  
1592 1592  
1593 -=== 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1668 +=== 3.6.3 Digital Output Ports: DO1/DO2 /DO3 ===
1594 1594  
1595 1595  
1596 -(% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
1671 +(% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
1597 1597  
1598 -(% style="color:red" %)**Note: DO pins go to float when device is power off.**
1673 +(% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
1599 1599  
1600 1600  [[image:1653357531600-905.png]]
1601 1601  
1602 1602  
1603 -=== 3.6.4 Analog Input Interface ===
1678 +=== 3.6.4 Analog Input Interfaces ===
1604 1604  
1605 1605  
1606 -The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1681 +The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
1607 1607  
1608 1608  
1609 1609  (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
... ... @@ -1610,14 +1610,14 @@
1610 1610  
1611 1611  [[image:1653357592296-182.png]]
1612 1612  
1613 -Example to connect a 4~~20mA sensor
1688 +Example: Connecting a 4~~20mA sensor
1614 1614  
1615 -We take the wind speed sensor as an example for reference only.
1690 +We will use the wind speed sensor as an example for reference only.
1616 1616  
1617 1617  
1618 1618  (% style="color:blue" %)**Specifications of the wind speed sensor:**
1619 1619  
1620 -(% style="color:red" %)**Red:  12~~24v**
1695 +(% style="color:red" %)**Red:  12~~24V**
1621 1621  
1622 1622  (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1623 1623  
... ... @@ -1630,7 +1630,7 @@
1630 1630  [[image:1653357648330-671.png||height="155" width="733"]]
1631 1631  
1632 1632  
1633 -Example connected to a regulated power supply to measure voltage
1708 +Example: Connecting to a regulated power supply to measure voltage
1634 1634  
1635 1635  [[image:image-20230608101532-1.png||height="606" width="447"]]
1636 1636  
... ... @@ -1639,7 +1639,7 @@
1639 1639  [[image:image-20230608101722-3.png||height="102" width="1139"]]
1640 1640  
1641 1641  
1642 -(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power**(%%) (% style="color:blue" %)**:**
1717 +(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
1643 1643  
1644 1644  (% style="color:red" %)**Red:  12~~24v**
1645 1645  
... ... @@ -1650,9 +1650,9 @@
1650 1650  
1651 1651  
1652 1652  (((
1653 -The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1728 +The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
1654 1654  
1655 -**Note**: RO pins go to Open(NO) when device is power off.
1730 +**Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
1656 1656  )))
1657 1657  
1658 1658  [[image:image-20220524100215-9.png]]
... ... @@ -1663,13 +1663,11 @@
1663 1663  
1664 1664  == 3.7 LEDs Indicators ==
1665 1665  
1741 +The table below lists the behavior of LED indicators for each port function.
1666 1666  
1667 1667  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1668 1668  |(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
1669 -|**PWR**|Always on if there is power
1670 -|**SYS**|(((
1671 -After device is powered on, the SYS will **fast blink in GREEN** for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be **on GREEN for 5 seconds. **SYS will **blink Blue** on every upload and **blink Green** once receive a downlink message.
1672 -)))
1745 +|**PWR**|Always on when there is power
1673 1673  |**TX**|(((
1674 1674  (((
1675 1675  Device boot: TX blinks 5 times.
... ... @@ -1676,7 +1676,7 @@
1676 1676  )))
1677 1677  
1678 1678  (((
1679 -Successful join network: TX ON for 5 seconds.
1752 +Successful network join: TX remains ON for 5 seconds.
1680 1680  )))
1681 1681  
1682 1682  (((
... ... @@ -1683,29 +1683,26 @@
1683 1683  Transmit a LoRa packet: TX blinks once
1684 1684  )))
1685 1685  )))
1686 -|**RX**|RX blinks once when receive a packet.
1687 -|**DO1**|
1688 -|**DO2**|
1689 -|**DO3**|
1690 -|**DI2**|(((
1691 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1759 +|**RX**|RX blinks once when a packet is received.
1760 +|**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
1761 +|**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
1762 +|**DI1**|(((
1763 +For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
1692 1692  )))
1693 1693  |**DI2**|(((
1694 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1766 +For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
1695 1695  )))
1696 -|**DI2**|(((
1697 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1698 -)))
1699 -|**RO1**|
1700 -|**RO2**|
1768 +|**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
1769 +|**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
1701 1701  
1702 -= 4. Use AT Command =
1771 += 4. Using AT Commands =
1703 1703  
1704 -== 4.1 Access AT Command ==
1773 +The LT-22222-L supports programming using AT Commands.
1705 1705  
1775 +== 4.1 Connecting the LT-22222-L to a PC ==
1706 1706  
1707 1707  (((
1708 -LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1778 +You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a PC, as shown below.
1709 1709  )))
1710 1710  
1711 1711  [[image:1653358238933-385.png]]
... ... @@ -1712,7 +1712,7 @@
1712 1712  
1713 1713  
1714 1714  (((
1715 -In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1785 +On the PC, you need to set the (% style="color:#4f81bd" %)**serial tool **(%%)(such as [[PuTTY>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]] or [[SecureCRT>>https://www.vandyke.com/cgi-bin/releases.php?product=securecrt]]) to a baud rate o(% style="color:green" %)**9600**(%%) to access the serial console of LT-22222-L. Access to AT commands is disabled by default, and a password (default: (% style="color:green" %)**123456**)(%%) must be entered to enable AT command access, as shown below:
1716 1716  )))
1717 1717  
1718 1718  [[image:1653358355238-883.png]]
... ... @@ -1719,194 +1719,63 @@
1719 1719  
1720 1720  
1721 1721  (((
1722 -More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1723 -)))
1792 +You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1724 1724  
1725 -(((
1726 -AT+<CMD>?        : Help on <CMD>
1794 +== 4.2 LT-22222-L related AT commands ==
1727 1727  )))
1728 1728  
1729 1729  (((
1730 -AT+<CMD>         : Run <CMD>
1731 -)))
1798 +The following is the list of all the AT commands related to the LT-22222-L, except for those used for switching between work modes.
1732 1732  
1733 -(((
1734 -AT+<CMD>=<value> : Set the value
1800 +* AT+<CMD>? : Help on <CMD>
1801 +* AT+<CMD> : Run <CMD>
1802 +* AT+<CMD>=<value> : Set the value
1803 +* AT+<CMD>=? : Get the value
1804 +* ATZ: Trigger a reset of the MCU
1805 +* ##**AT+FDR**##: Reset Parameters to factory default, reserve keys 
1806 +* **##AT+DEUI##**: Get or set the Device EUI (DevEUI)
1807 +* **##AT+DADDR##**: Get or set the Device Address (DevAddr)
1808 +* **##AT+APPKEY##**: Get or set the Application Key (AppKey)
1809 +* AT+NWKSKEY: Get or set the Network Session Key (NwkSKey)
1810 +* AT+APPSKEY: Get or set the Application Session Key (AppSKey)
1811 +* AT+APPEUI: Get or set the Application EUI (AppEUI)
1812 +* AT+ADR: Get or set the Adaptive Data Rate setting. (0: OFF, 1: ON)
1813 +* AT+TXP: Get or set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Specification)
1814 +* AT+DR:  Get or set the Data Rate. (0-7 corresponding to DR_X)  
1815 +* AT+DCS: Get or set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1816 +* AT+PNM: Get or set the public network mode. (0: off, 1: on)
1817 +* AT+RX2FQ: Get or set the Rx2 window frequency
1818 +* AT+RX2DR: Get or set the Rx2 window data rate (0-7 corresponding to DR_X)
1819 +* AT+RX1DL: Get or set the delay between the end of the Tx and the Rx Window 1 in ms
1820 +* AT+RX2DL: Get or set the delay between the end of the Tx and the Rx Window 2 in ms
1821 +* AT+JN1DL: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1822 +* AT+JN2DL: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1823 +* AT+NJM: Get or set the Network Join Mode. (0: ABP, 1: OTAA)
1824 +* AT+NWKID: Get or set the Network ID
1825 +* AT+FCU: Get or set the Frame Counter Uplink (FCntUp)
1826 +* AT+FCD: Get or set the Frame Counter Downlink (FCntDown)
1827 +* AT+CLASS: Get or set the Device Class
1828 +* AT+JOIN: Join network
1829 +* AT+NJS: Get OTAA Join Status
1830 +* AT+SENDB: Send hexadecimal data along with the application port
1831 +* AT+SEND: Send text data along with the application port
1832 +* AT+RECVB: Print last received data in binary format (with hexadecimal values)
1833 +* AT+RECV: Print last received data in raw format
1834 +* AT+VER: Get current image version and Frequency Band
1835 +* AT+CFM: Get or Set the confirmation mode (0-1)
1836 +* AT+CFS: Get confirmation status of the last AT+SEND (0-1)
1837 +* AT+SNR: Get the SNR of the last received packet
1838 +* AT+RSSI: Get the RSSI of the last received packet
1839 +* AT+TDC: Get or set the application data transmission interval in ms
1840 +* AT+PORT: Get or set the application port
1841 +* AT+DISAT: Disable AT commands
1842 +* AT+PWORD: Set password, max 9 digits
1843 +* AT+CHS: Get or set the Frequency (Unit: Hz) for Single Channel Mode
1844 +* AT+CHE: Get or set eight channels mode, Only for US915, AU915, CN470
1845 +* AT+CFG: Print all settings
1735 1735  )))
1736 1736  
1737 -(((
1738 -AT+<CMD>=?       :  Get the value
1739 -)))
1740 1740  
1741 -(((
1742 -ATZ: Trig a reset of the MCU
1743 -)))
1744 -
1745 -(((
1746 -AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1747 -)))
1748 -
1749 -(((
1750 -AT+DEUI: Get or Set the Device EUI
1751 -)))
1752 -
1753 -(((
1754 -AT+DADDR: Get or Set the Device Address
1755 -)))
1756 -
1757 -(((
1758 -AT+APPKEY: Get or Set the Application Key
1759 -)))
1760 -
1761 -(((
1762 -AT+NWKSKEY: Get or Set the Network Session Key
1763 -)))
1764 -
1765 -(((
1766 -AT+APPSKEY:  Get or Set the Application Session Key
1767 -)))
1768 -
1769 -(((
1770 -AT+APPEUI:  Get or Set the Application EUI
1771 -)))
1772 -
1773 -(((
1774 -AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1775 -)))
1776 -
1777 -(((
1778 -AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1779 -)))
1780 -
1781 -(((
1782 -AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1783 -)))
1784 -
1785 -(((
1786 -AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1787 -)))
1788 -
1789 -(((
1790 -AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1791 -)))
1792 -
1793 -(((
1794 -AT+RX2FQ: Get or Set the Rx2 window frequency
1795 -)))
1796 -
1797 -(((
1798 -AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1799 -)))
1800 -
1801 -(((
1802 -AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1803 -)))
1804 -
1805 -(((
1806 -AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1807 -)))
1808 -
1809 -(((
1810 -AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1811 -)))
1812 -
1813 -(((
1814 -AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1815 -)))
1816 -
1817 -(((
1818 -AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1819 -)))
1820 -
1821 -(((
1822 -AT+NWKID: Get or Set the Network ID
1823 -)))
1824 -
1825 -(((
1826 -AT+FCU: Get or Set the Frame Counter Uplink
1827 -)))
1828 -
1829 -(((
1830 -AT+FCD: Get or Set the Frame Counter Downlink
1831 -)))
1832 -
1833 -(((
1834 -AT+CLASS: Get or Set the Device Class
1835 -)))
1836 -
1837 -(((
1838 -AT+JOIN: Join network
1839 -)))
1840 -
1841 -(((
1842 -AT+NJS: Get OTAA Join Status
1843 -)))
1844 -
1845 -(((
1846 -AT+SENDB: Send hexadecimal data along with the application port
1847 -)))
1848 -
1849 -(((
1850 -AT+SEND: Send text data along with the application port
1851 -)))
1852 -
1853 -(((
1854 -AT+RECVB: Print last received data in binary format (with hexadecimal values)
1855 -)))
1856 -
1857 -(((
1858 -AT+RECV: Print last received data in raw format
1859 -)))
1860 -
1861 -(((
1862 -AT+VER:  Get current image version and Frequency Band
1863 -)))
1864 -
1865 -(((
1866 -AT+CFM: Get or Set the confirmation mode (0-1)
1867 -)))
1868 -
1869 -(((
1870 -AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1871 -)))
1872 -
1873 -(((
1874 -AT+SNR: Get the SNR of the last received packet
1875 -)))
1876 -
1877 -(((
1878 -AT+RSSI: Get the RSSI of the last received packet
1879 -)))
1880 -
1881 -(((
1882 -AT+TDC: Get or set the application data transmission interval in ms
1883 -)))
1884 -
1885 -(((
1886 -AT+PORT: Get or set the application port
1887 -)))
1888 -
1889 -(((
1890 -AT+DISAT: Disable AT commands
1891 -)))
1892 -
1893 -(((
1894 -AT+PWORD: Set password, max 9 digits
1895 -)))
1896 -
1897 -(((
1898 -AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1899 -)))
1900 -
1901 -(((
1902 -AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1903 -)))
1904 -
1905 -(((
1906 -AT+CFG: Print all settings
1907 -)))
1908 -
1909 -
1910 1910  == 4.2 Common AT Command Sequence ==
1911 1911  
1912 1912  === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
... ... @@ -1915,41 +1915,41 @@
1915 1915  
1916 1916  
1917 1917  (((
1918 -(% style="color:blue" %)**If device has not joined network yet:**
1857 +(% style="color:blue" %)**If the device has not joined the network yet:**
1919 1919  )))
1920 1920  )))
1921 1921  
1922 1922  (((
1923 -(% style="background-color:#dcdcdc" %)**123456**
1862 +(% style="background-color:#dcdcdc" %)##**123456 ~/~/enable AT commands access**##
1924 1924  )))
1925 1925  
1926 1926  (((
1927 -(% style="background-color:#dcdcdc" %)**AT+FDR**
1866 +(% style="background-color:#dcdcdc" %)##**AT+FDR ~/~/reset parameters to factory default, reserve keys**##
1928 1928  )))
1929 1929  
1930 1930  (((
1931 -(% style="background-color:#dcdcdc" %)**123456**
1870 +(% style="background-color:#dcdcdc" %)##**123456 ~/~/enable AT commands access**##
1932 1932  )))
1933 1933  
1934 1934  (((
1935 -(% style="background-color:#dcdcdc" %)**AT+NJM=0**
1874 +(% style="background-color:#dcdcdc" %)##**AT+NJM=0 ~/~/set to ABP mode**##
1936 1936  )))
1937 1937  
1938 1938  (((
1939 -(% style="background-color:#dcdcdc" %)**ATZ**
1878 +(% style="background-color:#dcdcdc" %)##**ATZ ~/~/reset MCU**##
1940 1940  )))
1941 1941  
1942 1942  
1943 1943  (((
1944 -(% style="color:blue" %)**If device already joined network:**
1883 +(% style="color:blue" %)**If the device has already joined the network:**
1945 1945  )))
1946 1946  
1947 1947  (((
1948 -(% style="background-color:#dcdcdc" %)**AT+NJM=0**
1887 +(% style="background-color:#dcdcdc" %)##**AT+NJM=0**##
1949 1949  )))
1950 1950  
1951 1951  (((
1952 -(% style="background-color:#dcdcdc" %)**ATZ**
1891 +(% style="background-color:#dcdcdc" %)##**ATZ**##
1953 1953  )))
1954 1954  
1955 1955  
... ... @@ -2047,37 +2047,50 @@
2047 2047  
2048 2048  = 5. Case Study =
2049 2049  
2050 -== 5.1 Counting how many objects pass in Flow Line ==
1989 +== 5.1 Counting how many objects pass through the flow Line ==
2051 2051  
1991 +See [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]?
2052 2052  
2053 -Reference Link: [[How to set up to count objects pass in flow line>>How to set up to count objects pass in flow line]]?
2054 2054  
2055 -
2056 2056  = 6. FAQ =
2057 2057  
2058 -== 6.1 How to upgrade the image? ==
1996 +This section contains some frequently asked questions, which can help you resolve common issues and find solutions quickly.
2059 2059  
2060 2060  
2061 -The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
1999 +== 6.1 How to update the firmware? ==
2062 2062  
2001 +Dragino frequently releases firmware updates for the LT-22222-L.
2002 +
2003 +Updating your LT-22222-L with the latest firmware version helps to:
2004 +
2063 2063  * Support new features
2064 -* For bug fix
2065 -* Change LoRaWAN bands.
2006 +* Fix bugs
2007 +* Change LoRaWAN frequency bands
2066 2066  
2067 -Below shows the hardware connection for how to upload an image to the LT:
2009 +You will need the following things before proceeding:
2068 2068  
2011 +* 3.5mm programming cable (included with the LT-22222-L as an additional accessory)
2012 +* USB to TTL adapter
2013 +* Download and install the [[STM32 Flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]]. (replaced by STM32CubeProgrammer)
2014 +* Download the latest firmware image from [[LT-22222-L firmware image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]]. Check the file name of the firmware to find the correct region.
2015 +
2016 +{{info}}
2017 +As of this writing, the latest firmware version available for the LT-22222-L is v1.6.1.
2018 +{{/info}}
2019 +
2020 +Below is the hardware setup for uploading a firmware image to the LT-22222-L:
2021 +
2022 +
2069 2069  [[image:1653359603330-121.png]]
2070 2070  
2071 2071  
2072 -(((
2073 -(% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2074 -(% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].
2075 -(% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
2076 -
2026 +Start the STM32 Flash Loader and choose the correct COM port to update.
2077 2077  
2078 2078  (((
2029 +(((
2079 2079  (% style="color:blue" %)**For LT-22222-L**(%%):
2080 -Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
2031 +
2032 +Hold down the **PRO** button, then briefly press the **RST** button. The **DO1** LED will change from OFF to ON. When the **DO1** LED is ON, it indicates that the device is in firmware download mode.
2081 2081  )))
2082 2082  
2083 2083  
... ... @@ -2092,7 +2092,7 @@
2092 2092  [[image:image-20220524104033-15.png]]
2093 2093  
2094 2094  
2095 -(% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2047 +(% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5mm cable. The pin mapping is as follows:
2096 2096  
2097 2097  [[image:1653360054704-518.png||height="186" width="745"]]
2098 2098  
... ... @@ -2099,33 +2099,29 @@
2099 2099  
2100 2100  (((
2101 2101  (((
2102 -== 6.2 How to change the LoRa Frequency Bands/Region? ==
2103 -
2104 -
2054 +== 6.2 How to change the LoRaWAN frequency band/region? ==
2105 2105  )))
2106 2106  )))
2107 2107  
2108 2108  (((
2109 -User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2059 +You can follow the introductions o[[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2110 2110  )))
2111 2111  
2112 2112  (((
2113 2113  
2114 2114  
2115 -== 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2116 -
2117 -
2065 +== 6.3 How to setup LT to work with a Single Channel Gateway, such as LG01/LG02? ==
2118 2118  )))
2119 2119  
2120 2120  (((
2121 2121  (((
2122 -In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2070 +In this case, you need to set the LT-33222-L to work in ABP mode and transmit on only one frequency.
2123 2123  )))
2124 2124  )))
2125 2125  
2126 2126  (((
2127 2127  (((
2128 -Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2076 +Assume you have an LG02 working on the frequency 868400000. Below are the steps.
2129 2129  
2130 2130  
2131 2131  )))
... ... @@ -2132,7 +2132,7 @@
2132 2132  )))
2133 2133  
2134 2134  (((
2135 -(% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2083 +(% style="color:#0000ff" %)**Step 1**(%%):  Log in to The Things Stack SANDBOX, create an ABP device in the application, and input the Network Session key (NwkSKey), App session key (AppSKey) of the device.
2136 2136  
2137 2137  
2138 2138  )))
... ... @@ -2185,156 +2185,137 @@
2185 2185  
2186 2186  == 6.4 How to change the uplink interval? ==
2187 2187  
2188 -
2189 2189  Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2190 2190  
2191 2191  
2192 -== 6.5 Can I see counting event in Serial? ==
2139 +== 6.5 Can I see the counting event in the serial output? ==
2193 2193  
2194 -
2195 2195  (((
2196 -User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2142 +You can run the AT command AT+DEBUG to view the counting event in the serial output. If the firmware is too old and doesnt support AT+DEBUG, update to the latest firmware first.
2197 2197  
2198 2198  
2199 -== 6.6 Can i use point to point communication for LT-22222-L? ==
2145 +== 6.6 Can I use point-to-point communication with LT-22222-L? ==
2200 2200  
2147 +Yes, you can. Please refer to the [[Point-to-Point Communication of LT-22222-L>>https://wiki.dragino.com/xwiki/bin/view/Main/%20Point%20to%20Point%20Communication%20of%20LT-22222-L/]] page. The firmware that supports point-to-point communication can be found [[here>>https://github.com/dragino/LT-22222-L/releases]].
2201 2201  
2202 -Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  ,this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2203 -
2204 2204  
2205 2205  )))
2206 2206  
2207 2207  (((
2208 -== 6.7 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2153 +== 6.7 Why does the relay output default to an open relay after the LT-22222-L is powered off? ==
2209 2209  
2155 +* If the device is not properly shut down and is directly powered off.
2156 +* It will default to a power-off state.
2157 +* In modes 2 to 5, the DO/RO status and pulse count are saved to flash memory.
2158 +* After a restart, the status before the power failure will be read from flash.
2210 2210  
2211 -If the device is not shut down, but directly powered off.
2160 +== 6.8 Can I setup LT-22222-L as a NC (Normally Closed) relay? ==
2212 2212  
2213 -It will default that this is a power-off state.
2162 +The LT-22222-L's built-in relay is Normally Open (NO). You can use an external relay to achieve a Normally Closed (NC) configuration. The circuit diagram is shown below:
2214 2214  
2215 -In modes 2 to 5, DO RO status and pulse count are saved in flash.
2216 2216  
2217 -After restart, the status before power failure will be read from flash.
2218 -
2219 -
2220 -== 6.8 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2221 -
2222 -
2223 -LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2224 -
2225 -
2226 2226  [[image:image-20221006170630-1.png||height="610" width="945"]]
2227 2227  
2228 2228  
2229 -== 6.9 Can LT22222-L save RO state? ==
2168 +== 6.9 Can the LT-22222-L save the RO state? ==
2230 2230  
2170 +The firmware version must be at least 1.6.0.
2231 2231  
2232 -Firmware version needs to be no less than 1.6.0.
2233 2233  
2173 +== 6.10 Why does the LT-22222-L always report 15.585V when measuring the AVI? ==
2234 2234  
2235 -== 6.10 Why does the LT22222 always report 15.585V when measuring AVI? ==
2175 +It is likely that the GND is not connected during the measurement, or that the wire connected to the GND is loose.
2236 2236  
2237 2237  
2238 -It is likely that the GND is not connected during the measurement, or the wire connected to the GND is loose.
2178 += 7. Troubleshooting =
2239 2239  
2180 +This section provides some known troubleshooting tips.
2240 2240  
2241 -= 7. Trouble Shooting =
2182 +
2242 2242  )))
2243 2243  
2244 2244  (((
2245 2245  (((
2246 -== 7.1 Downlink doesn't work, how to solve it? ==
2247 -
2248 -
2187 +== 7.1 Downlink isn't working. How can I solve this? ==
2249 2249  )))
2250 2250  )))
2251 2251  
2252 2252  (((
2253 -Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2192 +Please refer to this link for debugging instructions: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2254 2254  )))
2255 2255  
2256 2256  (((
2257 2257  
2258 2258  
2259 -== 7.2 Have trouble to upload image. ==
2260 -
2261 -
2198 +== 7.2 Having trouble uploading an image? ==
2262 2262  )))
2263 2263  
2264 2264  (((
2265 -See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2202 +Please refer to this link for troubleshooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2266 2266  )))
2267 2267  
2268 2268  (((
2269 2269  
2270 2270  
2271 -== 7.3 Why I can't join TTN in US915 /AU915 bands? ==
2272 -
2273 -
2208 +== 7.3 Why can't I join TTN in the US915 /AU915 bands? ==
2274 2274  )))
2275 2275  
2276 2276  (((
2277 -It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2212 +It might be related to the channel mapping. [[Please refer to this link for details.>>https://github.com/dragino/LT-22222-L/releases]]
2278 2278  )))
2279 2279  
2280 2280  
2281 -== 7.4 Why can LT22222 perform Uplink normally, but cannot receive Downlink? ==
2216 +== 7.4 Why can the LT-22222-L perform Uplink normally, but cannot receive Downlink? ==
2282 2282  
2218 +The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue.
2219 +Use this command to synchronize their counts: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2283 2283  
2284 -The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue state.
2285 -Use this command to bring their counts back together: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2286 2286  
2222 += 8. Ordering information =
2287 2287  
2288 -= 8. Order Info =
2289 -
2290 -
2291 2291  (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2292 2292  
2293 2293  (% style="color:#4f81bd" %)**XXX:**
2294 2294  
2295 -* (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2296 -* (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2297 -* (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2298 -* (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2299 -* (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2300 -* (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2301 -* (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2302 -* (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2303 -* (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2228 +* (% style="color:red" %)**EU433**(%%): LT with frequency bands EU433
2229 +* (% style="color:red" %)**EU868**(%%): LT with frequency bands EU868
2230 +* (% style="color:red" %)**KR920**(%%): LT with frequency bands KR920
2231 +* (% style="color:red" %)**CN470**(%%): LT with frequency bands CN470
2232 +* (% style="color:red" %)**AS923**(%%): LT with frequency bands AS923
2233 +* (% style="color:red" %)**AU915**(%%): LT with frequency bands AU915
2234 +* (% style="color:red" %)**US915**(%%): LT with frequency bands US915
2235 +* (% style="color:red" %)**IN865**(%%): LT with frequency bands IN865
2236 +* (% style="color:red" %)**CN779**(%%): LT with frequency bands CN779
2304 2304  
2305 -= 9. Packing Info =
2238 += 9. Packing information =
2306 2306  
2240 +**Package includes**:
2307 2307  
2308 -**Package Includes**:
2242 +* 1 x LT-22222-L I/O Controller
2243 +* 1 x LoRa antenna matched to the frequency of the LT-22222-L
2244 +* 1 x bracket for DIN rail mounting
2245 +* 1 x 3.5mm programming cable
2309 2309  
2310 -* LT-22222-L I/O Controller x 1
2311 -* Stick Antenna for LoRa RF part x 1
2312 -* Bracket for controller x1
2313 -* Program cable x 1
2314 -
2315 2315  **Dimension and weight**:
2316 2316  
2317 2317  * Device Size: 13.5 x 7 x 3 cm
2318 -* Device Weight: 105g
2250 +* Device Weight: 105 g
2319 2319  * Package Size / pcs : 14.5 x 8 x 5 cm
2320 -* Weight / pcs : 170g
2252 +* Weight / pcs : 170 g
2321 2321  
2322 2322  = 10. Support =
2323 2323  
2324 -
2325 2325  * (((
2326 -Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2257 +Support is available Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different time zones, we cannot offer live support. However, your questions will be answered as soon as possible within the aforementioned schedule.
2327 2327  )))
2328 2328  * (((
2329 -Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]]
2260 +Please provide as much information as possible regarding your inquiry (e.g., product models, a detailed description of the problem, steps to replicate it, etc.) and send an email to [[support@dragino.cc>>mailto:support@dragino.cc]]
2330 2330  
2331 -
2332 2332  
2333 2333  )))
2334 2334  
2335 2335  = 11. Reference​​​​​ =
2336 2336  
2337 -
2338 2338  * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2339 2339  * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2340 2340  * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
integration-details.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +463.9 KB
Content
lt-22222-device-overview.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +497.2 KB
Content
lt-22222-join-network.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +340.6 KB
Content
lt-22222-l-dev-repo-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.8 KB
Content
lt-22222-l-dev-repo-reg-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.7 KB
Content
lt-22222-l-dev-repo-reg-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +319.1 KB
Content
lt-22222-l-manually-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.6 KB
Content
lt-22222-l-manually-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +279.1 KB
Content
lt-22222-ul-payload-decoded.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +48.7 KB
Content
lt-22222-ul-payload-fmt.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +438.6 KB
Content
message-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +20.1 KB
Content
thingseye-events.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +530.6 KB
Content
thingseye-io-step-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +191.8 KB
Content
thingseye-io-step-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +260.3 KB
Content
thingseye-io-step-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +336.6 KB
Content
thingseye-io-step-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +361.1 KB
Content
thingseye-io-step-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +292.1 KB
Content
thingseye-io-step-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +203.8 KB
Content
thingseye-json.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +554.8 KB
Content
thingseye.io_integrationsCenter_integrations-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +469.3 KB
Content
thingseye.io_integrationsCenter_integrations.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +302.3 KB
Content
tts-mqtt-integration.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.4 KB
Content
usb-ttl-programming.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +462.9 KB
Content