Last modified by Mengting Qiu on 2025/06/04 18:42

From version 130.2
edited by Xiaoling
on 2024/02/19 14:44
Change comment: There is no comment for this version
To version 185.1
edited by Dilisi S
on 2024/11/10 05:32
Change comment: Nov 9 edits (saturday)

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.pradeeka
Content
... ... @@ -3,6 +3,10 @@
3 3  
4 4  
5 5  
6 +
7 +
8 +
9 +
6 6  **Table of Contents:**
7 7  
8 8  {{toc/}}
... ... @@ -13,38 +13,30 @@
13 13  
14 14  
15 15  
16 -= 1.Introduction =
20 += 1. Introduction =
17 17  
18 -== 1.1 What is LT Series I/O Controller ==
22 +== 1.1 What is the LT-22222-L I/O Controller? ==
19 19  
20 20  (((
21 -
22 -
23 23  (((
24 -The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
25 -)))
26 -)))
26 +The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
27 27  
28 -(((
29 -The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
28 +The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
30 30  )))
31 -
32 -(((
33 -The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
34 34  )))
35 35  
36 36  (((
37 -The use environment includes:
33 +With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
38 38  )))
39 39  
40 40  (((
41 -1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
42 -)))
37 +You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
43 43  
44 -(((
45 -2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
39 +* If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
40 +* If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
41 +* Setup your own private LoRaWAN network.
46 46  
47 -
43 +> You can use a LoRaWAN gateway, such as the Dragino LG308, to expand or create LoRaWAN coverage in your area.
48 48  )))
49 49  
50 50  (((
... ... @@ -55,153 +55,62 @@
55 55  
56 56  == 1.2 Specifications ==
57 57  
58 -(((
59 -
60 -
61 61  (% style="color:#037691" %)**Hardware System:**
62 -)))
63 63  
64 -* (((
65 -STM32L072xxxx MCU
66 -)))
67 -* (((
68 -SX1276/78 Wireless Chip 
69 -)))
70 -* (((
71 -(((
72 -Power Consumption:
73 -)))
56 +* STM32L072xxxx MCU
57 +* SX1276/78 Wireless Chip 
58 +* Power Consumption:
59 +** Idle: 4mA@12v
60 +** 20dB Transmit: 34mA@12V
61 +* Operating Temperature: -40 ~~ 85 Degrees, No Dew
74 74  
75 -* (((
76 -Idle: 4mA@12v
77 -)))
78 -* (((
79 -20dB Transmit: 34mA@12v
80 -)))
81 -)))
82 -
83 -(((
84 -
85 -
86 86  (% style="color:#037691" %)**Interface for Model: LT22222-L:**
87 -)))
88 88  
89 -* (((
90 -2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
91 -)))
92 -* (((
93 -2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
94 -)))
95 -* (((
96 -2 x Relay Output (5A@250VAC / 30VDC)
97 -)))
98 -* (((
99 -2 x 0~~20mA Analog Input (res:0.01mA)
100 -)))
101 -* (((
102 -2 x 0~~30V Analog Input (res:0.01v)
103 -)))
104 -* (((
105 -Power Input 7~~ 24V DC. 
106 -)))
65 +* 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
66 +* 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
67 +* 2 x Relay Output (5A@250VAC / 30VDC)
68 +* 2 x 0~~20mA Analog Input (res:0.01mA)
69 +* 2 x 0~~30V Analog Input (res:0.01V)
70 +* Power Input 7~~ 24V DC. 
107 107  
108 -(((
109 -
110 -
111 111  (% style="color:#037691" %)**LoRa Spec:**
112 -)))
113 113  
114 -* (((
115 -(((
116 -Frequency Range:
117 -)))
74 +* Frequency Range:
75 +** Band 1 (HF): 862 ~~ 1020 Mhz
76 +** Band 2 (LF): 410 ~~ 528 Mhz
77 +* 168 dB maximum link budget.
78 +* +20 dBm - 100 mW constant RF output vs.
79 +* +14 dBm high-efficiency PA.
80 +* Programmable bit rate up to 300 kbps.
81 +* High sensitivity: down to -148 dBm.
82 +* Bullet-proof front end: IIP3 = -12.5 dBm.
83 +* Excellent blocking immunity.
84 +* Low RX current of 10.3 mA, 200 nA register retention.
85 +* Fully integrated synthesizer with a resolution of 61 Hz.
86 +* FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
87 +* Built-in bit synchronizer for clock recovery.
88 +* Preamble detection.
89 +* 127 dB Dynamic Range RSSI.
90 +* Automatic RF Sense and CAD with ultra-fast AFC.
91 +* Packet engine up to 256 bytes with CRC.
118 118  
119 -* (((
120 -Band 1 (HF): 862 ~~ 1020 Mhz
121 -)))
122 -* (((
123 -Band 2 (LF): 410 ~~ 528 Mhz
124 -)))
125 -)))
126 -* (((
127 -168 dB maximum link budget.
128 -)))
129 -* (((
130 -+20 dBm - 100 mW constant RF output vs.
131 -)))
132 -* (((
133 -+14 dBm high efficiency PA.
134 -)))
135 -* (((
136 -Programmable bit rate up to 300 kbps.
137 -)))
138 -* (((
139 -High sensitivity: down to -148 dBm.
140 -)))
141 -* (((
142 -Bullet-proof front end: IIP3 = -12.5 dBm.
143 -)))
144 -* (((
145 -Excellent blocking immunity.
146 -)))
147 -* (((
148 -Low RX current of 10.3 mA, 200 nA register retention.
149 -)))
150 -* (((
151 -Fully integrated synthesizer with a resolution of 61 Hz.
152 -)))
153 -* (((
154 -FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
155 -)))
156 -* (((
157 -Built-in bit synchronizer for clock recovery.
158 -)))
159 -* (((
160 -Preamble detection.
161 -)))
162 -* (((
163 -127 dB Dynamic Range RSSI.
164 -)))
165 -* (((
166 -Automatic RF Sense and CAD with ultra-fast AFC.
167 -)))
168 -* (((
169 -Packet engine up to 256 bytes with CRC.
170 -
171 -
172 -
173 -)))
174 -
175 175  == 1.3 Features ==
176 176  
177 -
178 178  * LoRaWAN Class A & Class C protocol
179 -
180 180  * Optional Customized LoRa Protocol
181 -
182 182  * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
183 -
184 184  * AT Commands to change parameters
185 -
186 -* Remote configure parameters via LoRa Downlink
187 -
99 +* Remotely configure parameters via LoRaWAN Downlink
188 188  * Firmware upgradable via program port
189 -
190 190  * Counting
191 191  
192 192  == 1.4 Applications ==
193 193  
194 -
195 195  * Smart Buildings & Home Automation
196 -
197 197  * Logistics and Supply Chain Management
198 -
199 199  * Smart Metering
200 -
201 201  * Smart Agriculture
202 -
203 203  * Smart Cities
204 -
205 205  * Smart Factory
206 206  
207 207  == 1.5 Hardware Variants ==
... ... @@ -221,93 +221,176 @@
221 221  * 1 x Counting Port
222 222  )))
223 223  
224 -= 2. Power ON Device =
129 += 2. Assembling =
225 225  
131 +Attach the LoRa antenna to the antenna connector, **ANT**,** **located on the top right side of the device, next to the upper screw terminal block. Secure the antenna by tightening it clockwise.
226 226  
227 -(((
228 -The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
229 -)))
133 +== 2.2 Terminals ==
230 230  
231 -(((
232 -PWR will on when device is properly powered.
135 +The  LT-22222-L has two screw terminal blocks. The upper screw treminal block has 6 terminals and the lower screw terminal block has 10 terminals.
233 233  
234 -
235 -)))
137 +Upper screw terminal block (from left to right):
236 236  
237 -[[image:1653297104069-180.png]]
139 +(% style="width:634px" %)
140 +|=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function
141 +|(% style="width:295px" %)GND|(% style="width:338px" %)Ground
142 +|(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
143 +|(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
144 +|(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
145 +|(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
146 +|(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
238 238  
148 +Lower screw terminal block (from left to right):
239 239  
240 -= 3. Operation Mode =
150 +(% style="width:633px" %)
151 +|=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function
152 +|(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
153 +|(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
154 +|(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
155 +|(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
156 +|(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
157 +|(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
158 +|(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
159 +|(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
160 +|(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
161 +|(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
241 241  
242 -== 3.1 How it works? ==
163 +== 2.3 Powering the device ==
243 243  
165 +The LT-22222-L I/O Controller can be powered by a **7–24V DC** power source. Connect your power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator **(PWR) LED** will turn on when the device is properly powered.
244 244  
245 -(((
246 -The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
247 -)))
167 +Powering on the device
248 248  
249 -(((
250 -In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
251 -)))
169 +Once powered, the **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** The Things Stack. The **TX LED** will be on for **5 seconds** after joining the network. When there is a **downlink** message from the server, the **RX LED** will be on for **1 second**. When the device is sending an uplink message to the server, the **TX LED** will be on for **1 second**. See also LED status.
252 252  
171 +{{warning}}
172 +We recommend that you power on the LT-22222-L after configuring its registration information with a LoRaWAN network server. Otherwise, the device will continuously send join-request messages to attempt to join a LoRaWAN network but will fail.
173 +{{/warning}}
253 253  
254 -== 3.2 Example to join LoRaWAN network ==
255 255  
176 +[[image:1653297104069-180.png]]
256 256  
257 -(((
258 -This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
259 259  
260 -
261 -)))
179 += 3. Registering with a LoRaWAN Network Server =
262 262  
263 -[[image:image-20220523172350-1.png||height="266" width="864"]]
181 +By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
264 264  
183 +After powering on, the **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** the LoRaWAN network. The **TX LED** will be on for **5 seconds** after joining the network. When there is a **downlink** message from the server, the **RX LED** will be on for **1 second**. When the device is sending an uplink message to the server, the **TX LED** will be on for **1 second**. See also LED status.
265 265  
266 -(((
267 -The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
185 +In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
268 268  
269 -
270 -)))
187 +The network diagram below shows how the LT-22222-L is connected to a typical LoRaWAN network.
271 271  
272 -(((
273 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
274 -)))
189 +[[image:image-20220523172350-1.png||height="266" width="864"]]
275 275  
276 -(((
277 -Each LT is shipped with a sticker with the default device EUI as below:
278 -)))
191 +=== 3.2.1 Prerequisites ===
279 279  
193 +Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
194 +
280 280  [[image:image-20230425173427-2.png||height="246" width="530"]]
281 281  
197 +The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
282 282  
283 -Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
199 +=== 3.2.2 The Things Stack Sandbox (TTSS) ===
284 284  
285 -**Add APP EUI in the application.**
201 +The Things Stack Sandbox was formally called The Things Stack Community Edition.
286 286  
287 -[[image:1653297955910-247.png||height="321" width="716"]]
203 +* Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
204 +* Create an application with The Things Stack if you do not have one yet.
205 +* Go to your application page and click on the **End devices** in the left menu.
206 +* On the End devices page, click on **+ Register end device**. Two registration options are available:
288 288  
289 289  
290 -**Add APP KEY and DEV EUI**
209 +==== 3.2.2.1 Using the LoRaWAN Device Repository ====
291 291  
292 -[[image:1653298023685-319.png]]
211 +* On the **Register end device** page:
212 +** Select the option **Select the end device in the LoRaWAN Device Repository **under **Input method**.
213 +** Select the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)** from the respective dropdown lists.
214 +*** **End device brand**: Dragino Technology Co., Limited
215 +*** **Model**: LT22222-L I/O Controller
216 +*** **Hardware ver**: Unknown
217 +*** **Firmware ver**: 1.6.0
218 +*** **Profile (Region)**: Select the region that matches your device.
219 +** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
293 293  
221 +[[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
294 294  
295 -(((
296 -(% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
297 297  
298 -
299 -)))
224 +* Register end device page continued...
225 +** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message 'This end device can be registered on the network'.
226 +** In the **DevEUI** field, enter the **DevEUI**.
227 +** In the **AppKey** field, enter the **AppKey.**
228 +** In the **End device ID** field, enter a unique name for your LT-22222-N within this application.
229 +** Under **After registration**, select the **View registered end device** option.
300 300  
301 -[[image:1653298044601-602.png||height="405" width="709"]]
231 +[[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]]
302 302  
233 +==== ====
303 303  
304 -== 3.3 Uplink Payload ==
235 +==== 3.2.2.2 Adding device manually ====
305 305  
237 +* On the **Register end device** page:
238 +** Select the option **Enter end device specifies manually** under **Input method**.
239 +** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
240 +** Select the **LoRaWAN version** as **LoRaWAN Specification 1.0.3**
241 +** Select the **Regional Parameters version** as** RP001 Regional Parameters 1.0.3 revision A**
242 +** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the hidden section.
243 +** Select the option **Over the air activation (OTAA)** under the **Activation mode.**
244 +** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities** dropdown list.
306 306  
307 -There are five working modes + one interrupt mode on LT for different type application:
246 +[[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
308 308  
309 -* (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
310 310  
249 +* Register end device page continued...
250 +** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message 'This end device can be registered on the network'
251 +** In the **DevEUI** field, enter the **DevEUI**.
252 +** In the **AppKey** field, enter the **AppKey**.
253 +** In the **End device ID** field, enter a unique name for your LT-22222-N within this application.
254 +** Under **After registration**, select the **View registered end device** option.
255 +** Click the **Register end device** button.
256 +
257 +[[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
258 +
259 +
260 +You will be navigated to the **Device overview** page.
261 +
262 +
263 +[[image:lt-22222-device-overview.png||height="625" width="1000"]]
264 +
265 +
266 +==== 3.2.2.3 Joining ====
267 +
268 +On the Device overview page, click on **Live data** tab. The Live data panel for your device will display.
269 +
270 +Now power on your LT-22222-L. It will begin joining The Things Stack. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server. Once successfully joined, the device will send its first **uplink data message** to the application it belongs to (in this example, **dragino-docs**).
271 +
272 +
273 +[[image:lt-22222-join-network.png||height="625" width="1000"]]
274 +
275 +
276 +By default, you will receive an uplink data message from the device every 10 minutes.
277 +
278 +Click on one of a **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the decode_payload {} JSON object.
279 +
280 +[[image:lt-22222-ul-payload-decoded.png]]
281 +
282 +
283 +If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **End devices** > **LT-22222-L** > **Payload formatters** > **Uplink**. Then  select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes.
284 +
285 +{{info}}
286 +The Things Stack provides two levels of payload formatters: application level and device level. The device-level payload formatters **override **the application-level payload formatters.
287 +{{/info}}
288 +
289 +[[image:lt-22222-ul-payload-fmt.png||height="686" width="1000"]]
290 +
291 +
292 +== 3.3 Work Modes and their Uplink Payload formats ==
293 +
294 +
295 +The LT-22222-L has 5 **work modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any work mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
296 +
297 +* (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO
298 +
311 311  * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
312 312  
313 313  * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
... ... @@ -318,12 +318,15 @@
318 318  
319 319  * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
320 320  
309 +The uplink messages are sent over LoRaWAN FPort 2. By default, an uplink message is sent every 10 minutes.
310 +
321 321  === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
322 322  
323 -
324 324  (((
325 -The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default. (% style="display:none" %)
314 +This is the default mode.
326 326  
316 +The uplink payload is 11 bytes long. (% style="display:none" wfd-invisible="true" %)
317 +
327 327  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
328 328  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
329 329  |Value|(((
... ... @@ -334,29 +334,29 @@
334 334  ACI1 Current
335 335  )))|(((
336 336  ACI2 Current
337 -)))|DIDORO*|(((
328 +)))|**DIDORO***|(((
338 338  Reserve
339 339  )))|MOD
340 340  )))
341 341  
342 342  (((
343 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
334 +(% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below.
344 344  
345 345  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
346 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
347 -|RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1
337 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
338 +|RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
348 348  )))
349 349  
350 -* RO is for relay. ROx=1 : close, ROx=0 always open.
351 -* DI is for digital input. DIx=1: high or float, DIx=0: low.
352 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
341 +* RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
342 +* DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW.
343 +* DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
353 353  
354 -(% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
345 +(% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
355 355  
356 -For example if payload is: [[image:image-20220523175847-2.png]]
347 +For example, if the payload is: [[image:image-20220523175847-2.png]]
357 357  
358 358  
359 -**The value for the interface is:  **
350 +**The interface values can be calculated as follows:  **
360 360  
361 361  AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
362 362  
... ... @@ -366,35 +366,32 @@
366 366  
367 367  ACI2 channel current is 0x1300/1000=4.864mA
368 368  
369 -The last byte 0xAA= 10101010(B) means
360 +The last byte 0xAA= **10101010**(b) means,
370 370  
371 -* [1] RO1 relay channel is close and the RO1 LED is ON.
372 -* [0] RO2 relay channel is open and RO2 LED is OFF;
362 +* [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
363 +* [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
364 +* **[1] DI3 - not used for LT-22222-L.**
365 +* [0] DI2 channel input is LOW, and the DI2 LED is OFF.
366 +* [1] DI1 channel input state:
367 +** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
368 +** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
369 +** DI1 LED is ON in both cases.
370 +* **[0] DO3 - not used for LT-22222-L.**
371 +* [1] DO2 channel output is LOW, and the DO2 LED is ON.
372 +* [0] DO1 channel output state:
373 +** DO1 is FLOATING when there is no load between DO1 and V+.
374 +** DO1 is HIGH when there is a load between DO1 and V+.
375 +** DO1 LED is OFF in both cases.
373 373  
374 -**LT22222-L:**
375 -
376 -* [1] DI2 channel is high input and DI2 LED is ON;
377 -* [0] DI1 channel is low input;
378 -
379 -* [0] DO3 channel output state
380 -** DO3 is float in case no load between DO3 and V+.;
381 -** DO3 is high in case there is load between DO3 and V+.
382 -** DO3 LED is off in both case
383 -* [1] DO2 channel output is low and DO2 LED is ON.
384 -* [0] DO1 channel output state
385 -** DO1 is float in case no load between DO1 and V+.;
386 -** DO1 is high in case there is load between DO1 and V+.
387 -** DO1 LED is off in both case
388 -
389 389  === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
390 390  
391 391  
392 392  (((
393 -**For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
381 +**For LT-22222-L**: In this mode, **DI1 and DI2** are used as counting pins.
394 394  )))
395 395  
396 396  (((
397 -Total : 11 bytes payload
385 +The uplink payload is 11 bytes long.
398 398  
399 399  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
400 400  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -404,26 +404,26 @@
404 404  )))
405 405  
406 406  (((
407 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
395 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, FIRST, Reserve, Reserve, DO3, DO2 and DO1, and its size is 1 byte long as shown below.
408 408  
409 409  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
410 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
411 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
398 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
399 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
412 412  
413 -RO is for relay. ROx=1 : close , ROx=0 always open.
401 +* RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
414 414  )))
415 415  
416 -* FIRST: Indicate this is the first packet after join network.
417 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
404 +* FIRST: Indicates that this is the first packet after joining the network.
405 +* DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
418 418  
419 419  (((
420 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
408 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
421 421  
422 422  
423 423  )))
424 424  
425 425  (((
426 -**To use counting mode, please run:**
414 +**To activate this mode, run the following AT commands:**
427 427  )))
428 428  
429 429  (((
... ... @@ -444,17 +444,17 @@
444 444  (((
445 445  **For LT22222-L:**
446 446  
447 -(% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
435 +(% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
448 448  
449 -(% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
437 +(% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
450 450  
451 -(% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
439 +(% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
452 452  
453 -(% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
441 +(% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
454 454  
455 -(% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
443 +(% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
456 456  
457 -(% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
445 +(% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
458 458  )))
459 459  
460 460  
... ... @@ -461,7 +461,7 @@
461 461  === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
462 462  
463 463  
464 -**LT22222-L**: This mode the DI1 is used as a counting pin.
452 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
465 465  
466 466  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
467 467  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -472,24 +472,24 @@
472 472  )))|DIDORO*|Reserve|MOD
473 473  
474 474  (((
475 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
463 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
476 476  
477 477  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
478 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
479 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
466 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
467 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
480 480  )))
481 481  
482 -* RO is for relay. ROx=1 : close, ROx=0 always open.
483 -* FIRST: Indicate this is the first packet after join network.
484 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
470 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
471 +* FIRST: Indicates that this is the first packet after joining the network.
472 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
485 485  
486 486  (((
487 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
475 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
488 488  )))
489 489  
490 490  
491 491  (((
492 -**To use counting mode, please run:**
480 +**To activate this mode, run the following AT commands:**
493 493  )))
494 494  
495 495  (((
... ... @@ -502,7 +502,9 @@
502 502  )))
503 503  
504 504  (((
505 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
493 +AT Commands for counting:
494 +
495 +The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
506 506  )))
507 507  
508 508  
... ... @@ -510,11 +510,11 @@
510 510  
511 511  
512 512  (((
513 -**LT22222-L**: This mode the DI1 is used as a counting pin.
503 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
514 514  )))
515 515  
516 516  (((
517 -The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
507 +The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
518 518  
519 519  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
520 520  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -524,25 +524,25 @@
524 524  )))
525 525  
526 526  (((
527 -(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
517 +(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
528 528  
529 529  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
530 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
531 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
520 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
521 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
532 532  )))
533 533  
534 -* RO is for relay. ROx=1 : close, ROx=0 always open.
535 -* FIRST: Indicate this is the first packet after join network.
536 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
524 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
525 +* FIRST: Indicates that this is the first packet after joining the network.
526 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
537 537  
538 538  (((
539 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
529 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
540 540  
541 541  
542 542  )))
543 543  
544 544  (((
545 -**To use this mode, please run:**
535 +**To activate this mode, run the following AT commands:**
546 546  )))
547 547  
548 548  (((
... ... @@ -555,19 +555,19 @@
555 555  )))
556 556  
557 557  (((
558 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
548 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
559 559  )))
560 560  
561 561  (((
562 -**Plus below command for AVI1 Counting:**
552 +**In addition to that, below are the commands for AVI1 Counting:**
563 563  
564 -(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
554 +(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (Sets AVI Count to 60)**
565 565  
566 566  (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
567 567  
568 568  (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
569 569  
570 -(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
560 +(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
571 571  )))
572 572  
573 573  
... ... @@ -574,7 +574,7 @@
574 574  === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
575 575  
576 576  
577 -**LT22222-L**: This mode the DI1 is used as a counting pin.
567 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
578 578  
579 579  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
580 580  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -589,25 +589,25 @@
589 589  )))|MOD
590 590  
591 591  (((
592 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
582 +(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
593 593  
594 594  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
595 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
585 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
596 596  |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
597 597  )))
598 598  
599 -* RO is for relay. ROx=1 : close, ROx=0 always open.
600 -* FIRST: Indicate this is the first packet after join network.
589 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
590 +* FIRST: Indicates that this is the first packet after joining the network.
601 601  * (((
602 -DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
592 +DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
603 603  )))
604 604  
605 605  (((
606 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
596 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
607 607  )))
608 608  
609 609  (((
610 -**To use this mode, please run:**
600 +**To activate this mode, run the following AT commands:**
611 611  )))
612 612  
613 613  (((
... ... @@ -620,7 +620,7 @@
620 620  )))
621 621  
622 622  (((
623 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
613 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
624 624  )))
625 625  
626 626  
... ... @@ -627,49 +627,46 @@
627 627  === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
628 628  
629 629  
630 -(% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
620 +(% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate together with other modes.**
631 631  
632 -For example, if user has configured below commands:
622 +For example, if you configured the following commands:
633 633  
634 634  * **AT+MOD=1 ** **~-~->**  The normal working mode
635 -* **AT+ADDMOD6=1**   **~-~->**  Enable trigger
625 +* **AT+ADDMOD6=1**   **~-~->**  Enable trigger mode
636 636  
637 -LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
627 +The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. LT will send uplink packets in two cases:
638 638  
639 -1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
640 -1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
629 +1. Periodically uplink (Based on TDC time). The payload is the same as in normal mode (MOD=1 for the commands above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
630 +1. Trigger uplink when the trigger condition is met. LT will send two packets in this case. The first uplink uses the payload specified in trigger mode (MOD=6). The second packet usethe normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**CONFIRMED uplinks.**
641 641  
642 642  (% style="color:#037691" %)**AT Command to set Trigger Condition**:
643 643  
634 +(% style="color:#4f81bd" %)**Trigger based on voltage**:
644 644  
645 -(% style="color:#4f81bd" %)**Trigger base on voltage**:
646 -
647 647  Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
648 648  
649 649  
650 650  **Example:**
651 651  
652 -AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
641 +AT+AVLIM=3000,6000,0,2000   (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
653 653  
654 -AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
643 +AT+AVLIM=5000,0,0,0   (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use)
655 655  
656 656  
646 +(% style="color:#4f81bd" %)**Trigger based on current**:
657 657  
658 -(% style="color:#4f81bd" %)**Trigger base on current**:
659 -
660 660  Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
661 661  
662 662  
663 663  **Example:**
664 664  
665 -AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
653 +AT+ACLIM=10000,15000,0,0   (triggers an uplink if ACI1 voltage is lower than 10mA or higher than 15mA)
666 666  
667 667  
656 +(% style="color:#4f81bd" %)**Trigger based on DI status**:
668 668  
669 -(% style="color:#4f81bd" %)**Trigger base on DI status**:
658 +DI status triggers Flag.
670 670  
671 -DI status trigger Flag.
672 -
673 673  Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
674 674  
675 675  
... ... @@ -678,39 +678,38 @@
678 678  AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
679 679  
680 680  
681 -(% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
668 +(% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
682 682  
683 683  Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
684 684  
685 685  Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
686 686  
687 - AA: Code for this downlink Command:
674 + AA: Type Code for this downlink Command:
688 688  
689 - xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
676 + xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
690 690  
691 - yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
678 + yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
692 692  
693 - yy2 yy2: AC1 or AV1 high limit.
680 + yy2 yy2: AC1 or AV1 HIGH limit.
694 694  
695 - yy3 yy3: AC2 or AV2 low limit.
682 + yy3 yy3: AC2 or AV2 LOW limit.
696 696  
697 - Yy4 yy4: AC2 or AV2 high limit.
684 + Yy4 yy4: AC2 or AV2 HIGH limit.
698 698  
699 699  
700 -**Example1**: AA 00 13 88 00 00 00 00 00 00
687 +**Example 1**: AA 00 13 88 00 00 00 00 00 00
701 701  
702 -Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
689 +Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
703 703  
704 704  
705 -**Example2**: AA 02 01 00
692 +**Example 2**: AA 02 01 00
706 706  
707 -Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
694 +Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
708 708  
709 709  
710 -
711 711  (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
712 712  
713 -MOD6 Payload : total 11 bytes payload
699 +MOD6 Payload: total of 11 bytes
714 714  
715 715  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
716 716  |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
... ... @@ -724,10 +724,10 @@
724 724  MOD(6)
725 725  )))
726 726  
727 -(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
713 +(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below
728 728  
729 729  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
730 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
716 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
731 731  |(((
732 732  AV1_LOW
733 733  )))|(((
... ... @@ -746,17 +746,17 @@
746 746  AC2_HIGH
747 747  )))
748 748  
749 -* Each bits shows if the corresponding trigger has been configured.
735 +* Each bit shows if the corresponding trigger has been configured.
750 750  
751 751  **Example:**
752 752  
753 -10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
739 +10100000: Means the system has configure to use the trigger: AV1_LOW and AV2_LOW
754 754  
755 755  
756 -(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
742 +(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below
757 757  
758 758  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
759 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
745 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
760 760  |(((
761 761  AV1_LOW
762 762  )))|(((
... ... @@ -775,11 +775,11 @@
775 775  AC2_HIGH
776 776  )))
777 777  
778 -* Each bits shows which status has been trigger on this uplink.
764 +* Each bit shows which status has been triggered on this uplink.
779 779  
780 780  **Example:**
781 781  
782 -10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
768 +10000000: Means this uplink is triggered by AV1_LOW. That means the voltage is too low.
783 783  
784 784  
785 785  (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
... ... @@ -788,7 +788,7 @@
788 788  |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
789 789  |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
790 790  
791 -* Each bits shows which status has been trigger on this uplink.
777 +* Each bits shows which status has been triggered on this uplink.
792 792  
793 793  **Example:**
794 794  
... ... @@ -815,11 +815,11 @@
815 815  )))
816 816  
817 817  
818 -== 3.4 ​Configure LT via AT or Downlink ==
804 +== 3.4 ​Configure LT via AT Commands or Downlinks ==
819 819  
820 820  
821 821  (((
822 -User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
808 +User can configure LT I/O Controller via AT Commands or LoRaWAN Downlinks.
823 823  )))
824 824  
825 825  (((
... ... @@ -834,9 +834,8 @@
834 834  
835 835  === 3.4.1 Common Commands ===
836 836  
837 -
838 838  (((
839 -They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
824 +These commands should be available for all Dragino sensors, such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]].
840 840  )))
841 841  
842 842  
... ... @@ -844,34 +844,37 @@
844 844  
845 845  ==== 3.4.2.1 Set Transmit Interval ====
846 846  
832 +Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes.
847 847  
848 -Set device uplink interval.
834 +* (% style="color:#037691" %)**AT command:**
849 849  
850 -* (% style="color:#037691" %)**AT Command:**
836 +(% style="color:blue" %)**AT+TDC=N**
851 851  
852 -(% style="color:blue" %)**AT+TDC=N **
838 +where N is the time in milliseconds.
853 853  
840 +**Example: **AT+TDC=30000. This will set the uplink interval to 30 seconds
854 854  
855 -**Example: **AT+TDC=30000. Means set interval to 30 seconds
856 856  
843 +* (% style="color:#037691" %)**Downlink payload (prefix 0x01):**
857 857  
858 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
859 -
860 860  (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
861 861  
862 862  
863 863  
864 -==== 3.4.2.2 Set Work Mode (AT+MOD) ====
849 +==== 3.4.2.2 Set the Work Mode (AT+MOD) ====
865 865  
866 866  
867 -Set work mode.
852 +Sets the work mode.
868 868  
869 -* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
854 +* (% style="color:#037691" %)**AT command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
870 870  
871 -**Example**: AT+MOD=2. Set work mode to Double DI counting mode
856 +Where N is the work mode.
872 872  
873 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
858 +**Example**: AT+MOD=2. This will set the work mode to Double DI counting mode.
874 874  
860 +
861 +* (% style="color:#037691" %)**Downlink payload (prefix 0x0A):**
862 +
875 875  (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
876 876  
877 877  
... ... @@ -879,10 +879,12 @@
879 879  ==== 3.4.2.3 Poll an uplink ====
880 880  
881 881  
882 -* (% style="color:#037691" %)**AT Command:**(%%) There is no AT Command to poll uplink
870 +Asks the device to send an uplink.
883 883  
884 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
872 +* (% style="color:#037691" %)**AT command:**(%%) There is no AT Command to poll uplink
885 885  
874 +* (% style="color:#037691" %)**Downlink payload (prefix 0x08):**
875 +
886 886  (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
887 887  
888 888  **Example**: 0x08FF, ask device to send an Uplink
... ... @@ -889,16 +889,16 @@
889 889  
890 890  
891 891  
892 -==== 3.4.2.4 Enable Trigger Mode ====
882 +==== 3.4.2.4 Enable/Disable Trigger Mode ====
893 893  
894 894  
895 -Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
885 +Enable or disable the trigger mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]).
896 896  
897 897  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
898 898  
899 -(% style="color:red" %)**1:** (%%)Enable Trigger Mode
889 +(% style="color:red" %)**1:** (%%)Enable the trigger mode
900 900  
901 -(% style="color:red" %)**0: **(%%)Disable Trigger Mode
891 +(% style="color:red" %)**0: **(%%)Disable the trigger mode
902 902  
903 903  
904 904  * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
... ... @@ -910,7 +910,7 @@
910 910  ==== 3.4.2.5 Poll trigger settings ====
911 911  
912 912  
913 -Poll trigger settings
903 +Polls the trigger settings
914 914  
915 915  * (% style="color:#037691" %)**AT Command:**
916 916  
... ... @@ -918,7 +918,7 @@
918 918  
919 919  * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
920 920  
921 -(% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
911 +(% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll the trigger settings. Device will uplink trigger settings once receive this command
922 922  
923 923  
924 924  
... ... @@ -925,11 +925,11 @@
925 925  ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
926 926  
927 927  
928 -Enable Disable DI1/DI2/DI2 as trigger,
918 +Enable or Disable DI1/DI2/DI2 as trigger,
929 929  
930 930  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
931 931  
932 -**Example:** AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
922 +**Example:** AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
933 933  
934 934  
935 935  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
... ... @@ -961,15 +961,15 @@
961 961  ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
962 962  
963 963  
964 -Set DI2 trigger.
954 +Sets DI2 trigger.
965 965  
966 966  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
967 967  
968 -(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
958 +(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
969 969  
970 970  (% style="color:red" %)**b :** (%%)delay timing.
971 971  
972 -**Example:** AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
962 +**Example:** AT+TRIG2=0,100 (set DI1 port to trigger on low level, valid signal is 100ms )
973 973  
974 974  
975 975  * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
... ... @@ -1007,7 +1007,7 @@
1007 1007  ==== 3.4.2.11 Trigger – Set minimum interval ====
1008 1008  
1009 1009  
1010 -Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
1000 +Sets AV and AC trigger minimum interval. Device won't response to the second trigger within this set time after the first trigger.
1011 1011  
1012 1012  * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
1013 1013  
... ... @@ -1155,7 +1155,7 @@
1155 1155  )))
1156 1156  
1157 1157  (((
1158 -01: Close ,  00: Open , 11: No action
1148 +00: Closed ,  01: Open , 11: No action
1159 1159  
1160 1160  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1161 1161  |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
... ... @@ -1277,7 +1277,7 @@
1277 1277  
1278 1278  
1279 1279  
1280 -==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1270 +==== 3.4.2.19 Counting ~-~- Change counting mode to save time ====
1281 1281  
1282 1282  
1283 1283  * (% style="color:#037691" %)**AT Command:**
... ... @@ -1398,74 +1398,145 @@
1398 1398  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1399 1399  
1400 1400  
1401 -== 3.5 Integrate with Mydevice ==
1391 +== 3.5 Integrating with ThingsEye.io ==
1402 1402  
1393 +The Things Stack application supports integration with ThingsEye.io. Once integrated, ThingsEye.io acts as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1403 1403  
1404 -Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1395 +=== 3.5.1 Configuring The Things Stack ===
1405 1405  
1406 -(((
1407 -(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1408 -)))
1397 +We use The Things Stack Sandbox in this example:
1409 1409  
1410 -(((
1411 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1399 +* In **The Things Stack Sandbox**, go to the **Application **for the LT-22222-L you added.
1400 +* Select **MQTT** under **Integrations** in the left menu.
1401 +* In the **Connection information **section, under **Connection credentials**, The Things Stack displays an auto-generated **username**. You can use it or provide a new one.
1402 +* Click the **Generate new API key** button to generate a password. You can view it by clicking on the **visibility toggle/eye** icon. The API key works as the password.
1412 1412  
1413 -
1414 -)))
1404 +{{info}}
1405 +The username and  password (API key) you created here are required in the next section.
1406 +{{/info}}
1415 1415  
1416 -[[image:image-20220719105525-1.png||height="377" width="677"]]
1408 +[[image:tts-mqtt-integration.png||height="625" width="1000"]]
1417 1417  
1410 +=== 3.5.2 Configuring ThingsEye.io ===
1418 1418  
1412 +* Login to your [[ThingsEye.io >>https://thingseye.io]]account.
1413 +* Under the **Integrations center**, click **Integrations**.
1414 +* Click the **Add integration** button (the button with the **+** symbol).
1419 1419  
1420 -[[image:image-20220719110247-2.png||height="388" width="683"]]
1416 +[[image:thingseye-io-step-1.png||height="625" width="1000"]]
1421 1421  
1422 1422  
1423 -(% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1419 +On the **Add integration** window, configure the following:
1424 1424  
1425 -(% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L) and add DevEUI.(% style="display:none" %)
1421 +**Basic settings:**
1426 1426  
1427 -Search under The things network
1423 +* Select **The Things Stack Community** from the **Integration type** list.
1424 +* Enter a suitable name for your integration in the **Name **text** **box or keep the default name.
1425 +* Ensure the following options are turned on.
1426 +** Enable integration
1427 +** Debug mode
1428 +** Allow create devices or assets
1429 +* Click the **Next** button. you will be navigated to the **Uplink data converter** tab.
1428 1428  
1429 -[[image:1653356838789-523.png||height="337" width="740"]]
1431 +[[image:thingseye-io-step-2.png||height="625" width="1000"]]
1430 1430  
1431 1431  
1432 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1434 +**Uplink data converter:**
1433 1433  
1434 -[[image:image-20220524094909-1.png||height="335" width="729"]]
1436 +* Click the **Create new** button if it is not selected by default.
1437 +* Enter a suitable name for the uplink data converter in the **Name **text** **box or keep the default name.
1438 +* Click the **JavaScript** button.
1439 +* Paste the uplink decoder function into the text area (first, delete the default code). The demo uplink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]].
1440 +* Click the **Next** button. You will be navigated to the **Downlink data converter **tab.
1435 1435  
1442 +[[image:thingseye-io-step-3.png||height="625" width="1000"]]
1436 1436  
1437 -[[image:image-20220524094909-2.png||height="337" width="729"]]
1438 1438  
1445 +**Downlink data converter (this is an optional step):**
1439 1439  
1440 -[[image:image-20220524094909-3.png||height="338" width="727"]]
1447 +* Click the **Create new** button if it is not selected by default.
1448 +* Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name
1449 +* Click the **JavaScript** button.
1450 +* Paste the downlink decoder function into the text area (first, delete the default code). The demo downlink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Downlink_Converter.js]].
1451 +* Click the **Next** button. You will be navigated to the **Connection** tab.
1441 1441  
1453 +[[image:thingseye-io-step-4.png||height="625" width="1000"]]
1442 1442  
1443 -[[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1444 1444  
1456 +**Connection:**
1445 1445  
1446 -[[image:image-20220524094909-5.png||height="341" width="734"]]
1458 +* Choose **Region** from the **Host type**.
1459 +* Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...).
1460 +* Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The username and password can be found on the MQTT integration page of your The Things Stack account (see Configuring MQTT Connection information with The Things Stack Sandbox).
1461 +* Click the **Check connection** button to test the connection. If the connection is successful, you will see the message saying **Connected**.
1447 1447  
1463 +[[image:message-1.png]]
1448 1448  
1449 -== 3.6 Interface Detail ==
1450 1450  
1466 +* Click the **Add** button.
1467 +
1468 +[[image:thingseye-io-step-5.png||height="625" width="1000"]]
1469 +
1470 +
1471 +Your integration has been added to the** Integrations** list and will be displayed on the **Integrations** page. Check whether the status is shown as **Active**. If not, review your configuration settings.
1472 +
1473 +
1474 +[[image:thingseye.io_integrationsCenter_integrations.png||height="686" width="1000"]]
1475 +
1476 +
1477 +**Viewing integration details**:
1478 +
1479 +Click on your integration from the list. The **Integration details** window will appear with the **Details **tab selected. The **Details **tab shows all the settings you have provided for this integration.
1480 +
1481 +[[image:integration-details.png||height="686" width="1000"]]
1482 +
1483 +
1484 +If you want to edit the settings you have provided, click on the **Toggle edit mode** button. Once you have done click on the **Apply changes **button.
1485 +
1486 +{{info}}
1487 +See also ThingsEye documentation.
1488 +{{/info}}
1489 +
1490 +**Viewing events:**
1491 +
1492 +The **Events **tab displays all the uplink messages from the LT-22222-L.
1493 +
1494 +* Select **Debug **from the **Event type** dropdown.
1495 +* Select the** time frame** from the **time window**.
1496 +
1497 +[[image:thingseye-events.png||height="686" width="1000"]]
1498 +
1499 +
1500 +* To view the JSON payload of a message, click on the three dots (...) in the Message column of the desired message.
1501 +
1502 +[[image:thingseye-json.png||width="1000"]]
1503 +
1504 +
1505 +**Deleting the integration**:
1506 +
1507 +If you want to delete this integration, click the **Delete integratio**n button.
1508 +
1509 +
1510 +== 3.6 Interface Details ==
1511 +
1451 1451  === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1452 1452  
1453 1453  
1454 -Support NPN Type sensor
1515 +Support NPN-type sensor
1455 1455  
1456 1456  [[image:1653356991268-289.png]]
1457 1457  
1458 1458  
1459 -=== 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1520 +=== 3.6.2 Digital Input Ports: DI1/DI2 ( For LT-22222-L) ===
1460 1460  
1461 1461  
1462 1462  (((
1463 -The DI port of LT-22222-L can support **NPN** or **PNP** or **Dry Contact** output sensor.
1524 +The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
1464 1464  )))
1465 1465  
1466 1466  (((
1467 1467  (((
1468 -Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA). (% class="mark" %)When there is active current pass NEC2501 pin1 to pin2. The DI will be active high and DI LED status will change.
1529 +The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
1469 1469  
1470 1470  
1471 1471  )))
... ... @@ -1475,7 +1475,7 @@
1475 1475  
1476 1476  (((
1477 1477  (((
1478 -When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1539 +(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
1479 1479  )))
1480 1480  )))
1481 1481  
... ... @@ -1484,22 +1484,22 @@
1484 1484  )))
1485 1485  
1486 1486  (((
1487 -(% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1548 +(% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
1488 1488  )))
1489 1489  
1490 1490  (((
1491 -This type of sensor will output a low signal GND when active.
1552 +This type of sensor outputs a low (GND) signal when active.
1492 1492  )))
1493 1493  
1494 1494  * (((
1495 -Connect sensor's output to DI1-
1556 +Connect the sensor's output to DI1-
1496 1496  )))
1497 1497  * (((
1498 -Connect sensor's VCC to DI1+.
1559 +Connect the sensor's VCC to DI1+.
1499 1499  )))
1500 1500  
1501 1501  (((
1502 -So when sensor active, the current between NEC2501 pin1 and pin2 is
1563 +When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be
1503 1503  )))
1504 1504  
1505 1505  (((
... ... @@ -1507,7 +1507,7 @@
1507 1507  )))
1508 1508  
1509 1509  (((
1510 -If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1571 +For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
1511 1511  )))
1512 1512  
1513 1513  (((
... ... @@ -1515,22 +1515,22 @@
1515 1515  )))
1516 1516  
1517 1517  (((
1518 -(% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1579 +(% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
1519 1519  )))
1520 1520  
1521 1521  (((
1522 -This type of sensor will output a high signal (example 24v) when active.
1583 +This type of sensor outputs a high signal (e.g., 24V) when active.
1523 1523  )))
1524 1524  
1525 1525  * (((
1526 -Connect sensor's output to DI1+
1587 +Connect the sensor's output to DI1+
1527 1527  )))
1528 1528  * (((
1529 -Connect sensor's GND DI1-.
1590 +Connect the sensor's GND DI1-.
1530 1530  )))
1531 1531  
1532 1532  (((
1533 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1594 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1534 1534  )))
1535 1535  
1536 1536  (((
... ... @@ -1538,7 +1538,7 @@
1538 1538  )))
1539 1539  
1540 1540  (((
1541 -If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1602 +If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
1542 1542  )))
1543 1543  
1544 1544  (((
... ... @@ -1546,22 +1546,22 @@
1546 1546  )))
1547 1547  
1548 1548  (((
1549 -(% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1610 +(% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
1550 1550  )))
1551 1551  
1552 1552  (((
1553 -Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1614 +Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
1554 1554  )))
1555 1555  
1556 1556  * (((
1557 -Connect sensor's output to DI1+ with a serial 50K resistor
1618 +Connect the sensor's output to DI1+ with a 50K resistor in series.
1558 1558  )))
1559 1559  * (((
1560 -Connect sensor's GND DI1-.
1621 +Connect the sensor's GND DI1-.
1561 1561  )))
1562 1562  
1563 1563  (((
1564 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1625 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1565 1565  )))
1566 1566  
1567 1567  (((
... ... @@ -1569,38 +1569,37 @@
1569 1569  )))
1570 1570  
1571 1571  (((
1572 -If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1633 +If the sensor output is 220V, the[[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
1573 1573  )))
1574 1574  
1575 1575  
1576 -(% style="color:blue" %)**Example4**(%%): Connect to Dry Contact sensor
1637 +(% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
1577 1577  
1578 -From above DI ports circuit, we can see that active the photocoupler will need to have a voltage difference between DI+ and DI- port. While the Dry Contact sensor is a passive component which can't provide this voltage difference.
1639 +From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
1579 1579  
1580 -To detect a Dry Contact, we can provide a power source to one pin of the Dry Contact. Below is a reference connection.
1641 +To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
1581 1581  
1582 1582  [[image:image-20230616235145-1.png]]
1583 1583  
1584 -(% style="color:blue" %)**Example5**(%%): Connect to Open Colleactor
1645 +(% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
1585 1585  
1586 1586  [[image:image-20240219115718-1.png]]
1587 1587  
1588 1588  
1650 +=== 3.6.3 Digital Output Ports: DO1/DO2 /DO3 ===
1589 1589  
1590 -=== 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1591 1591  
1653 +(% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
1592 1592  
1593 -(% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
1655 +(% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
1594 1594  
1595 -(% style="color:red" %)**Note: DO pins go to float when device is power off.**
1596 -
1597 1597  [[image:1653357531600-905.png]]
1598 1598  
1599 1599  
1600 -=== 3.6.4 Analog Input Interface ===
1660 +=== 3.6.4 Analog Input Interfaces ===
1601 1601  
1602 1602  
1603 -The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1663 +The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
1604 1604  
1605 1605  
1606 1606  (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
... ... @@ -1607,14 +1607,14 @@
1607 1607  
1608 1608  [[image:1653357592296-182.png]]
1609 1609  
1610 -Example to connect a 4~~20mA sensor
1670 +Example: Connecting a 4~~20mA sensor
1611 1611  
1612 -We take the wind speed sensor as an example for reference only.
1672 +We will use the wind speed sensor as an example for reference only.
1613 1613  
1614 1614  
1615 1615  (% style="color:blue" %)**Specifications of the wind speed sensor:**
1616 1616  
1617 -(% style="color:red" %)**Red:  12~~24v**
1677 +(% style="color:red" %)**Red:  12~~24V**
1618 1618  
1619 1619  (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1620 1620  
... ... @@ -1627,7 +1627,7 @@
1627 1627  [[image:1653357648330-671.png||height="155" width="733"]]
1628 1628  
1629 1629  
1630 -Example connected to a regulated power supply to measure voltage
1690 +Example: Connecting to a regulated power supply to measure voltage
1631 1631  
1632 1632  [[image:image-20230608101532-1.png||height="606" width="447"]]
1633 1633  
... ... @@ -1636,7 +1636,7 @@
1636 1636  [[image:image-20230608101722-3.png||height="102" width="1139"]]
1637 1637  
1638 1638  
1639 -(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power**(%%) (% style="color:blue" %)**:**
1699 +(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
1640 1640  
1641 1641  (% style="color:red" %)**Red:  12~~24v**
1642 1642  
... ... @@ -1647,9 +1647,9 @@
1647 1647  
1648 1648  
1649 1649  (((
1650 -The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1710 +The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
1651 1651  
1652 -**Note**: RO pins go to Open(NO) when device is power off.
1712 +**Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
1653 1653  )))
1654 1654  
1655 1655  [[image:image-20220524100215-9.png]]
... ... @@ -1661,12 +1661,9 @@
1661 1661  == 3.7 LEDs Indicators ==
1662 1662  
1663 1663  
1664 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
1665 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:470px" %)**Feature**
1724 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1725 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
1666 1666  |**PWR**|Always on if there is power
1667 -|**SYS**|(((
1668 -After device is powered on, the SYS will **fast blink in GREEN** for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be **on GREEN for 5 seconds. **SYS will **blink Blue** on every upload and **blink Green** once receive a downlink message.
1669 -)))
1670 1670  |**TX**|(((
1671 1671  (((
1672 1672  Device boot: TX blinks 5 times.
... ... @@ -1680,40 +1680,33 @@
1680 1680  Transmit a LoRa packet: TX blinks once
1681 1681  )))
1682 1682  )))
1683 -|**RX**|RX blinks once when receive a packet.
1684 -|**DO1**|
1685 -|**DO2**|
1686 -|**DO3**|
1687 -|**DI2**|(((
1688 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1740 +|**RX**|RX blinks once when receiving a packet.
1741 +|**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
1742 +|**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
1743 +|**DI1**|(((
1744 +For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
1689 1689  )))
1690 1690  |**DI2**|(((
1691 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1747 +For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
1692 1692  )))
1693 -|**DI2**|(((
1694 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1695 -)))
1696 -|**RO1**|
1697 -|**RO2**|
1749 +|**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
1750 +|**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
1698 1698  
1699 -= 4. Use AT Command =
1752 += 4. Using AT Commands =
1700 1700  
1701 -== 4.1 Access AT Command ==
1754 +The LT-22222-L supports programming using AT Commands.
1702 1702  
1756 +== 4.1 Connecting the LT-22222-L to a PC ==
1703 1703  
1704 1704  (((
1705 -LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1759 +You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a PC, as shown below.
1706 1706  )))
1707 1707  
1708 -(((
1709 -
1710 -)))
1711 -
1712 1712  [[image:1653358238933-385.png]]
1713 1713  
1714 1714  
1715 1715  (((
1716 -In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1766 +On the PC, you need to set the (% style="color:#4f81bd" %)**serial tool **(%%)(such as [[PuTTY>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]] or [[SecureCRT>>https://www.vandyke.com/cgi-bin/releases.php?product=securecrt]]) to a baud rate o(% style="color:green" %)**9600**(%%) to access the serial console of LT-22222-L. Access to AT commands is disabled by default, and a password (default: (% style="color:green" %)**123456**)(%%) must be entered to enable AT command access, as shown below:
1717 1717  )))
1718 1718  
1719 1719  [[image:1653358355238-883.png]]
... ... @@ -1720,194 +1720,63 @@
1720 1720  
1721 1721  
1722 1722  (((
1723 -More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1724 -)))
1773 +You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1725 1725  
1726 -(((
1727 -AT+<CMD>?        : Help on <CMD>
1775 +== 4.2 LT-22222-L related AT commands ==
1728 1728  )))
1729 1729  
1730 1730  (((
1731 -AT+<CMD>         : Run <CMD>
1732 -)))
1779 +The following is the list of all the AT commands related to the LT-22222-L, except for those used for switching between work modes.
1733 1733  
1734 -(((
1735 -AT+<CMD>=<value> : Set the value
1781 +* AT+<CMD>? : Help on <CMD>
1782 +* AT+<CMD> : Run <CMD>
1783 +* AT+<CMD>=<value> : Set the value
1784 +* AT+<CMD>=? : Get the value
1785 +* ATZ: Trigger a reset of the MCU
1786 +* ##**AT+FDR**##: Reset Parameters to factory default, reserve keys 
1787 +* **##AT+DEUI##**: Get or set the Device EUI (DevEUI)
1788 +* **##AT+DADDR##**: Get or set the Device Address (DevAddr)
1789 +* **##AT+APPKEY##**: Get or set the Application Key (AppKey)
1790 +* AT+NWKSKEY: Get or set the Network Session Key (NwkSKey)
1791 +* AT+APPSKEY: Get or set the Application Session Key (AppSKey)
1792 +* AT+APPEUI: Get or set the Application EUI (AppEUI)
1793 +* AT+ADR: Get or set the Adaptive Data Rate setting. (0: OFF, 1: ON)
1794 +* AT+TXP: Get or set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Specification)
1795 +* AT+DR:  Get or set the Data Rate. (0-7 corresponding to DR_X)  
1796 +* AT+DCS: Get or set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1797 +* AT+PNM: Get or set the public network mode. (0: off, 1: on)
1798 +* AT+RX2FQ: Get or set the Rx2 window frequency
1799 +* AT+RX2DR: Get or set the Rx2 window data rate (0-7 corresponding to DR_X)
1800 +* AT+RX1DL: Get or set the delay between the end of the Tx and the Rx Window 1 in ms
1801 +* AT+RX2DL: Get or set the delay between the end of the Tx and the Rx Window 2 in ms
1802 +* AT+JN1DL: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1803 +* AT+JN2DL: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1804 +* AT+NJM: Get or set the Network Join Mode. (0: ABP, 1: OTAA)
1805 +* AT+NWKID: Get or set the Network ID
1806 +* AT+FCU: Get or set the Frame Counter Uplink (FCntUp)
1807 +* AT+FCD: Get or set the Frame Counter Downlink (FCntDown)
1808 +* AT+CLASS: Get or set the Device Class
1809 +* AT+JOIN: Join network
1810 +* AT+NJS: Get OTAA Join Status
1811 +* AT+SENDB: Send hexadecimal data along with the application port
1812 +* AT+SEND: Send text data along with the application port
1813 +* AT+RECVB: Print last received data in binary format (with hexadecimal values)
1814 +* AT+RECV: Print last received data in raw format
1815 +* AT+VER: Get current image version and Frequency Band
1816 +* AT+CFM: Get or Set the confirmation mode (0-1)
1817 +* AT+CFS: Get confirmation status of the last AT+SEND (0-1)
1818 +* AT+SNR: Get the SNR of the last received packet
1819 +* AT+RSSI: Get the RSSI of the last received packet
1820 +* AT+TDC: Get or set the application data transmission interval in ms
1821 +* AT+PORT: Get or set the application port
1822 +* AT+DISAT: Disable AT commands
1823 +* AT+PWORD: Set password, max 9 digits
1824 +* AT+CHS: Get or set the Frequency (Unit: Hz) for Single Channel Mode
1825 +* AT+CHE: Get or set eight channels mode, Only for US915, AU915, CN470
1826 +* AT+CFG: Print all settings
1736 1736  )))
1737 1737  
1738 -(((
1739 -AT+<CMD>=?       :  Get the value
1740 -)))
1741 1741  
1742 -(((
1743 -ATZ: Trig a reset of the MCU
1744 -)))
1745 -
1746 -(((
1747 -AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1748 -)))
1749 -
1750 -(((
1751 -AT+DEUI: Get or Set the Device EUI
1752 -)))
1753 -
1754 -(((
1755 -AT+DADDR: Get or Set the Device Address
1756 -)))
1757 -
1758 -(((
1759 -AT+APPKEY: Get or Set the Application Key
1760 -)))
1761 -
1762 -(((
1763 -AT+NWKSKEY: Get or Set the Network Session Key
1764 -)))
1765 -
1766 -(((
1767 -AT+APPSKEY:  Get or Set the Application Session Key
1768 -)))
1769 -
1770 -(((
1771 -AT+APPEUI:  Get or Set the Application EUI
1772 -)))
1773 -
1774 -(((
1775 -AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1776 -)))
1777 -
1778 -(((
1779 -AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1780 -)))
1781 -
1782 -(((
1783 -AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1784 -)))
1785 -
1786 -(((
1787 -AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1788 -)))
1789 -
1790 -(((
1791 -AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1792 -)))
1793 -
1794 -(((
1795 -AT+RX2FQ: Get or Set the Rx2 window frequency
1796 -)))
1797 -
1798 -(((
1799 -AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1800 -)))
1801 -
1802 -(((
1803 -AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1804 -)))
1805 -
1806 -(((
1807 -AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1808 -)))
1809 -
1810 -(((
1811 -AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1812 -)))
1813 -
1814 -(((
1815 -AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1816 -)))
1817 -
1818 -(((
1819 -AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1820 -)))
1821 -
1822 -(((
1823 -AT+NWKID: Get or Set the Network ID
1824 -)))
1825 -
1826 -(((
1827 -AT+FCU: Get or Set the Frame Counter Uplink
1828 -)))
1829 -
1830 -(((
1831 -AT+FCD: Get or Set the Frame Counter Downlink
1832 -)))
1833 -
1834 -(((
1835 -AT+CLASS: Get or Set the Device Class
1836 -)))
1837 -
1838 -(((
1839 -AT+JOIN: Join network
1840 -)))
1841 -
1842 -(((
1843 -AT+NJS: Get OTAA Join Status
1844 -)))
1845 -
1846 -(((
1847 -AT+SENDB: Send hexadecimal data along with the application port
1848 -)))
1849 -
1850 -(((
1851 -AT+SEND: Send text data along with the application port
1852 -)))
1853 -
1854 -(((
1855 -AT+RECVB: Print last received data in binary format (with hexadecimal values)
1856 -)))
1857 -
1858 -(((
1859 -AT+RECV: Print last received data in raw format
1860 -)))
1861 -
1862 -(((
1863 -AT+VER:  Get current image version and Frequency Band
1864 -)))
1865 -
1866 -(((
1867 -AT+CFM: Get or Set the confirmation mode (0-1)
1868 -)))
1869 -
1870 -(((
1871 -AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1872 -)))
1873 -
1874 -(((
1875 -AT+SNR: Get the SNR of the last received packet
1876 -)))
1877 -
1878 -(((
1879 -AT+RSSI: Get the RSSI of the last received packet
1880 -)))
1881 -
1882 -(((
1883 -AT+TDC: Get or set the application data transmission interval in ms
1884 -)))
1885 -
1886 -(((
1887 -AT+PORT: Get or set the application port
1888 -)))
1889 -
1890 -(((
1891 -AT+DISAT: Disable AT commands
1892 -)))
1893 -
1894 -(((
1895 -AT+PWORD: Set password, max 9 digits
1896 -)))
1897 -
1898 -(((
1899 -AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1900 -)))
1901 -
1902 -(((
1903 -AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1904 -)))
1905 -
1906 -(((
1907 -AT+CFG: Print all settings
1908 -)))
1909 -
1910 -
1911 1911  == 4.2 Common AT Command Sequence ==
1912 1912  
1913 1913  === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
... ... @@ -1916,41 +1916,41 @@
1916 1916  
1917 1917  
1918 1918  (((
1919 -(% style="color:blue" %)**If device has not joined network yet:**
1838 +(% style="color:blue" %)**If the device has not joined the network yet:**
1920 1920  )))
1921 1921  )))
1922 1922  
1923 1923  (((
1924 -(% style="background-color:#dcdcdc" %)**123456**
1843 +(% style="background-color:#dcdcdc" %)##**123456 ~/~/enable AT commands access**##
1925 1925  )))
1926 1926  
1927 1927  (((
1928 -(% style="background-color:#dcdcdc" %)**AT+FDR**
1847 +(% style="background-color:#dcdcdc" %)##**AT+FDR ~/~/reset parameters to factory default, reserve keys**##
1929 1929  )))
1930 1930  
1931 1931  (((
1932 -(% style="background-color:#dcdcdc" %)**123456**
1851 +(% style="background-color:#dcdcdc" %)##**123456 ~/~/enable AT commands access**##
1933 1933  )))
1934 1934  
1935 1935  (((
1936 -(% style="background-color:#dcdcdc" %)**AT+NJM=0**
1855 +(% style="background-color:#dcdcdc" %)##**AT+NJM=0 ~/~/set to ABP mode**##
1937 1937  )))
1938 1938  
1939 1939  (((
1940 -(% style="background-color:#dcdcdc" %)**ATZ**
1859 +(% style="background-color:#dcdcdc" %)##**ATZ ~/~/reset MCU**##
1941 1941  )))
1942 1942  
1943 1943  
1944 1944  (((
1945 -(% style="color:blue" %)**If device already joined network:**
1864 +(% style="color:blue" %)**If the device has already joined the network:**
1946 1946  )))
1947 1947  
1948 1948  (((
1949 -(% style="background-color:#dcdcdc" %)**AT+NJM=0**
1868 +(% style="background-color:#dcdcdc" %)##**AT+NJM=0**##
1950 1950  )))
1951 1951  
1952 1952  (((
1953 -(% style="background-color:#dcdcdc" %)**ATZ**
1872 +(% style="background-color:#dcdcdc" %)##**ATZ**##
1954 1954  )))
1955 1955  
1956 1956  
... ... @@ -2048,37 +2048,50 @@
2048 2048  
2049 2049  = 5. Case Study =
2050 2050  
2051 -== 5.1 Counting how many objects pass in Flow Line ==
1970 +== 5.1 Counting how many objects pass through the flow Line ==
2052 2052  
2053 2053  
2054 -Reference Link: [[How to set up to count objects pass in flow line>>How to set up to count objects pass in flow line]]?
1973 +Reference Link: [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]?
2055 2055  
2056 2056  
2057 2057  = 6. FAQ =
2058 2058  
2059 -== 6.1 How to upgrade the image? ==
1978 +This section contains some frequently asked questions, which can help you resolve common issues and find solutions quickly.
2060 2060  
1980 +== 6.1 How to update the firmware? ==
2061 2061  
2062 -The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
1982 +Dragino frequently releases firmware updates for the LT-22222-L.
2063 2063  
1984 +Updating your LT-22222-L with the latest firmware version helps to:
1985 +
2064 2064  * Support new features
2065 -* For bug fix
2066 -* Change LoRaWAN bands.
1987 +* Fix bugs
1988 +* Change LoRaWAN frequency bands
2067 2067  
2068 -Below shows the hardware connection for how to upload an image to the LT:
1990 +You will need the following things before proceeding:
2069 2069  
1992 +* 3.5mm programming cable (included with the LT-22222-L as an additional accessory)
1993 +* USB to TTL adapter
1994 +* Download and install the [[STM32 Flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]]. (replaced by STM32CubeProgrammer)
1995 +* Download the latest firmware image from [[LT-22222-L firmware image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]]. Check the file name of the firmware to find the correct region.
1996 +
1997 +{{info}}
1998 +As of this writing, the latest firmware version available for the LT-22222-L is v1.6.1.
1999 +{{/info}}
2000 +
2001 +Below is the hardware setup for uploading a firmware image to the LT-22222-L:
2002 +
2003 +
2070 2070  [[image:1653359603330-121.png]]
2071 2071  
2072 2072  
2073 -(((
2074 -(% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2075 -(% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].
2076 -(% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
2077 -
2007 +Start the STM32 Flash Loader and choose the correct COM port to update.
2078 2078  
2079 2079  (((
2010 +(((
2080 2080  (% style="color:blue" %)**For LT-22222-L**(%%):
2081 -Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
2012 +
2013 +Hold down the **PRO** button, then briefly press the **RST** button. The **DO1** LED will change from OFF to ON. When the **DO1** LED is ON, it indicates that the device is in firmware download mode.
2082 2082  )))
2083 2083  
2084 2084  
... ... @@ -2093,7 +2093,7 @@
2093 2093  [[image:image-20220524104033-15.png]]
2094 2094  
2095 2095  
2096 -(% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2028 +(% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5mm cable. The pin mapping is as follows:
2097 2097  
2098 2098  [[image:1653360054704-518.png||height="186" width="745"]]
2099 2099  
... ... @@ -2100,7 +2100,7 @@
2100 2100  
2101 2101  (((
2102 2102  (((
2103 -== 6.2 How to change the LoRa Frequency Bands/Region? ==
2035 +== 6.2 How to change the LoRaWAN frequency band/region? ==
2104 2104  
2105 2105  
2106 2106  )))
... ... @@ -2107,13 +2107,13 @@
2107 2107  )))
2108 2108  
2109 2109  (((
2110 -User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2042 +You can follow the introductions o[[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2111 2111  )))
2112 2112  
2113 2113  (((
2114 2114  
2115 2115  
2116 -== 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2048 +== 6.3 How to setup LT to work with a Single Channel Gateway, such as LG01/LG02? ==
2117 2117  
2118 2118  
2119 2119  )))
... ... @@ -2120,13 +2120,13 @@
2120 2120  
2121 2121  (((
2122 2122  (((
2123 -In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2055 +In this case, you need to set the LT-33222-L to work in ABP mode and transmit on only one frequency.
2124 2124  )))
2125 2125  )))
2126 2126  
2127 2127  (((
2128 2128  (((
2129 -Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2061 +Assume you have an LG02 working on the frequency 868400000. Below are the steps.
2130 2130  
2131 2131  
2132 2132  )))
... ... @@ -2133,7 +2133,7 @@
2133 2133  )))
2134 2134  
2135 2135  (((
2136 -(% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2068 +(% style="color:#0000ff" %)**Step 1**(%%):  Log in to The Things Stack SANDBOX, create an ABP device in the application, and input the Network Session key (NwkSKey), App session key (AppSKey) of the device.
2137 2137  
2138 2138  
2139 2139  )))
... ... @@ -2190,61 +2190,55 @@
2190 2190  Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2191 2191  
2192 2192  
2193 -== 6.5 Can I see counting event in Serial? ==
2125 +== 6.5 Can I see the counting event in the serial output? ==
2194 2194  
2195 2195  
2196 2196  (((
2197 -User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2129 +You can run the AT command AT+DEBUG to view the counting event in the serial output. If the firmware is too old and doesnt support AT+DEBUG, update to the latest firmware first.
2198 2198  
2199 2199  
2200 -== 6.6 Can i use point to point communication for LT-22222-L? ==
2132 +== 6.6 Can I use point-to-point communication with LT-22222-L? ==
2201 2201  
2202 2202  
2203 -Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  ,this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2204 -
2205 -
2135 +Yes, you can. Please refer to the [[Point-to-Point Communication of LT-22222-L>>https://wiki.dragino.com/xwiki/bin/view/Main/%20Point%20to%20Point%20Communication%20of%20LT-22222-L/]] page. The firmware that supports point-to-point communication can be found [[here>>https://github.com/dragino/LT-22222-L/releases]].
2206 2206  )))
2207 2207  
2208 2208  (((
2209 -== 6.7 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2139 +== 6.7 Why does the relay output default to an open relay after the LT-22222-L is powered off? ==
2210 2210  
2211 2211  
2212 -If the device is not shut down, but directly powered off.
2142 +* If the device is not properly shut down and is directly powered off.
2143 +* It will default to a power-off state.
2144 +* In modes 2 to 5, the DO/RO status and pulse count are saved to flash memory.
2145 +* After a restart, the status before the power failure will be read from flash.
2213 2213  
2214 -It will default that this is a power-off state.
2147 +== 6.8 Can I setup LT-22222-L as a NC (Normally Closed) relay? ==
2215 2215  
2216 -In modes 2 to 5, DO RO status and pulse count are saved in flash.
2217 2217  
2218 -After restart, the status before power failure will be read from flash.
2150 +The LT-22222-L's built-in relay is Normally Open (NO). You can use an external relay to achieve a Normally Closed (NC) configuration. The circuit diagram is shown below:
2219 2219  
2220 2220  
2221 -== 6.8 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2222 -
2223 -
2224 -LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2225 -
2226 -
2227 2227  [[image:image-20221006170630-1.png||height="610" width="945"]]
2228 2228  
2229 2229  
2230 -== 6.9 Can LT22222-L save RO state? ==
2156 +== 6.9 Can the LT-22222-L save the RO state? ==
2231 2231  
2232 2232  
2233 -Firmware version needs to be no less than 1.6.0.
2159 +The firmware version must be at least 1.6.0.
2234 2234  
2235 2235  
2236 -== 6.10 Why does the LT22222 always report 15.585V when measuring AVI? ==
2162 +== 6.10 Why does the LT-22222-L always report 15.585V when measuring the AVI? ==
2237 2237  
2238 2238  
2239 -It is likely that the GND is not connected during the measurement, or the wire connected to the GND is loose.
2165 +It is likely that the GND is not connected during the measurement, or that the wire connected to the GND is loose.
2240 2240  
2241 2241  
2242 -= 7. Trouble Shooting =
2168 += 7. Troubleshooting =
2243 2243  )))
2244 2244  
2245 2245  (((
2246 2246  (((
2247 -== 7.1 Downlink doesn't work, how to solve it? ==
2173 +== 7.1 Downlink isn't working. How can I solve this? ==
2248 2248  
2249 2249  
2250 2250  )))
... ... @@ -2251,42 +2251,42 @@
2251 2251  )))
2252 2252  
2253 2253  (((
2254 -Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2180 +Please refer to this link for debugging instructions: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2255 2255  )))
2256 2256  
2257 2257  (((
2258 2258  
2259 2259  
2260 -== 7.2 Have trouble to upload image. ==
2186 +== 7.2 Having trouble uploading an image? ==
2261 2261  
2262 2262  
2263 2263  )))
2264 2264  
2265 2265  (((
2266 -See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2192 +Please refer to this link for troubleshooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2267 2267  )))
2268 2268  
2269 2269  (((
2270 2270  
2271 2271  
2272 -== 7.3 Why I can't join TTN in US915 /AU915 bands? ==
2198 +== 7.3 Why can't I join TTN in the US915 /AU915 bands? ==
2273 2273  
2274 2274  
2275 2275  )))
2276 2276  
2277 2277  (((
2278 -It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2204 +It might be related to the channel mapping. [[Please refer to this link for details.>>https://github.com/dragino/LT-22222-L/releases]]
2279 2279  )))
2280 2280  
2281 2281  
2282 -== 7.4 Why can LT22222 perform Uplink normally, but cannot receive Downlink? ==
2208 +== 7.4 Why can the LT-22222-L perform Uplink normally, but cannot receive Downlink? ==
2283 2283  
2284 2284  
2285 -The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue state.
2286 -Use this command to bring their counts back together: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2211 +The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue.
2212 +Use this command to synchronize their counts: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2287 2287  
2288 2288  
2289 -= 8. Order Info =
2215 += 8. Ordering information =
2290 2290  
2291 2291  
2292 2292  (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
... ... @@ -2293,43 +2293,42 @@
2293 2293  
2294 2294  (% style="color:#4f81bd" %)**XXX:**
2295 2295  
2296 -* (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2297 -* (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2298 -* (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2299 -* (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2300 -* (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2301 -* (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2302 -* (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2303 -* (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2304 -* (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2222 +* (% style="color:red" %)**EU433**(%%): LT with frequency bands EU433
2223 +* (% style="color:red" %)**EU868**(%%): LT with frequency bands EU868
2224 +* (% style="color:red" %)**KR920**(%%): LT with frequency bands KR920
2225 +* (% style="color:red" %)**CN470**(%%): LT with frequency bands CN470
2226 +* (% style="color:red" %)**AS923**(%%): LT with frequency bands AS923
2227 +* (% style="color:red" %)**AU915**(%%): LT with frequency bands AU915
2228 +* (% style="color:red" %)**US915**(%%): LT with frequency bands US915
2229 +* (% style="color:red" %)**IN865**(%%): LT with frequency bands IN865
2230 +* (% style="color:red" %)**CN779**(%%): LT with frequency bands CN779
2305 2305  
2306 -= 9. Packing Info =
2232 += 9. Packing information =
2307 2307  
2308 2308  
2309 -**Package Includes**:
2235 +**Package includes**:
2310 2310  
2311 -* LT-22222-L I/O Controller x 1
2312 -* Stick Antenna for LoRa RF part x 1
2313 -* Bracket for controller x1
2314 -* Program cable x 1
2237 +* 1 x LT-22222-L I/O Controller
2238 +* 1 x LoRa antenna matched to the frequency of the LT-22222-L
2239 +* 1 x bracket for DIN rail mounting
2240 +* 1 x 3.5mm programming cable
2315 2315  
2316 2316  **Dimension and weight**:
2317 2317  
2318 2318  * Device Size: 13.5 x 7 x 3 cm
2319 -* Device Weight: 105g
2245 +* Device Weight: 105 g
2320 2320  * Package Size / pcs : 14.5 x 8 x 5 cm
2321 -* Weight / pcs : 170g
2247 +* Weight / pcs : 170 g
2322 2322  
2323 2323  = 10. Support =
2324 2324  
2325 2325  
2326 2326  * (((
2327 -Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2253 +Support is available Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different time zones, we cannot offer live support. However, your questions will be answered as soon as possible within the aforementioned schedule.
2328 2328  )))
2329 2329  * (((
2330 -Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]]
2256 +Please provide as much information as possible regarding your inquiry (e.g., product models, a detailed description of the problem, steps to replicate it, etc.) and send an email to [[support@dragino.cc>>mailto:support@dragino.cc]]
2331 2331  
2332 -
2333 2333  
2334 2334  )))
2335 2335  
integration-details.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +463.9 KB
Content
lt-22222-device-overview.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +497.2 KB
Content
lt-22222-join-network.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +340.6 KB
Content
lt-22222-l-dev-repo-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.8 KB
Content
lt-22222-l-dev-repo-reg-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.7 KB
Content
lt-22222-l-dev-repo-reg-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +319.1 KB
Content
lt-22222-l-manually-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.6 KB
Content
lt-22222-l-manually-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +279.1 KB
Content
lt-22222-ul-payload-decoded.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +48.7 KB
Content
lt-22222-ul-payload-fmt.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +438.6 KB
Content
message-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +20.1 KB
Content
thingseye-events.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +530.6 KB
Content
thingseye-io-step-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +191.8 KB
Content
thingseye-io-step-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +260.3 KB
Content
thingseye-io-step-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +336.6 KB
Content
thingseye-io-step-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +361.1 KB
Content
thingseye-io-step-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +292.1 KB
Content
thingseye-io-step-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +203.8 KB
Content
thingseye-json.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +554.8 KB
Content
thingseye.io_integrationsCenter_integrations-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +469.3 KB
Content
thingseye.io_integrationsCenter_integrations.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +302.3 KB
Content
tts-mqtt-integration.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.4 KB
Content