Changes for page LT-22222-L -- LoRa I/O Controller User Manual
Last modified by Mengting Qiu on 2025/06/04 18:42
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 21 added, 0 removed)
- image-20240219115718-1.png
- integration-details.png
- lt-22222-device-overview.png
- lt-22222-join-network.png
- lt-22222-l-dev-repo-p1.png
- lt-22222-l-dev-repo-reg-p1.png
- lt-22222-l-dev-repo-reg-p2.png
- lt-22222-l-manually-p1.png
- lt-22222-l-manually-p2.png
- lt-22222-ul-payload-decoded.png
- lt-22222-ul-payload-fmt.png
- message-1.png
- thingseye-io-step-1.png
- thingseye-io-step-2.png
- thingseye-io-step-3.png
- thingseye-io-step-4.png
- thingseye-io-step-5.png
- thingseye-io-step-6.png
- thingseye.io_integrationsCenter_integrations-2.png
- thingseye.io_integrationsCenter_integrations.png
- tts-mqtt-integration.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -LT-22222-L LoRa IO Controller User Manual 1 +LT-22222-L -- LoRa IO Controller User Manual - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.pradeeka - Content
-
... ... @@ -3,6 +3,10 @@ 3 3 4 4 5 5 6 + 7 + 8 + 9 + 6 6 **Table of Contents:** 7 7 8 8 {{toc/}} ... ... @@ -13,38 +13,30 @@ 13 13 14 14 15 15 16 -= 1.Introduction = 20 += 1. Introduction = 17 17 18 -== 1.1 What is LT SeriesI/O Controller ==22 +== 1.1 What is the LT-22222-L I/O Controller? == 19 19 20 20 ((( 21 - 22 - 23 23 ((( 24 -The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring. 25 -))) 26 -))) 26 +The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs. 27 27 28 -((( 29 -The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on. 28 +The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology. 30 30 ))) 31 - 32 -((( 33 -The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology. 34 34 ))) 35 35 36 36 ((( 37 - The useenvironment includes:33 +With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands. 38 38 ))) 39 39 40 40 ((( 41 -1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless. 42 -))) 37 +You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways: 43 43 44 -((( 45 -2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless. 39 +* If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it. 40 +* If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network. 41 +* Setup your own private LoRaWAN network. 46 46 47 - 43 +> You can use a LoRaWAN gateway, such as the Dragino LG308, to expand or create LoRaWAN coverage in your area. 48 48 ))) 49 49 50 50 ((( ... ... @@ -55,164 +55,69 @@ 55 55 56 56 == 1.2 Specifications == 57 57 58 -((( 59 - 60 - 61 61 (% style="color:#037691" %)**Hardware System:** 62 -))) 63 63 64 -* ((( 65 -STM32L072xxxx MCU 66 -))) 67 -* ((( 68 -SX1276/78 Wireless Chip 69 -))) 70 -* ((( 71 -((( 72 -Power Consumption: 73 -))) 56 +* STM32L072xxxx MCU 57 +* SX1276/78 Wireless Chip 58 +* Power Consumption: 59 +** Idle: 4mA@12v 60 +** 20dB Transmit: 34mA@12V 61 +* Operating Temperature: -40 ~~ 85 Degrees, No Dew 74 74 75 -* ((( 76 -Idle: 4mA@12v 77 -))) 78 -* ((( 79 -20dB Transmit: 34mA@12v 80 -))) 81 -))) 82 - 83 -((( 84 - 85 - 86 86 (% style="color:#037691" %)**Interface for Model: LT22222-L:** 87 -))) 88 88 89 -* ((( 90 -2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor) 91 -))) 92 -* ((( 93 -2 x Digital Output (NPN output. Max pull up voltage 36V,450mA) 94 -))) 95 -* ((( 96 -2 x Relay Output (5A@250VAC / 30VDC) 97 -))) 98 -* ((( 99 -2 x 0~~20mA Analog Input (res:0.01mA) 100 -))) 101 -* ((( 102 -2 x 0~~30V Analog Input (res:0.01v) 103 -))) 104 -* ((( 105 -Power Input 7~~ 24V DC. 106 -))) 65 +* 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor) 66 +* 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA) 67 +* 2 x Relay Output (5A@250VAC / 30VDC) 68 +* 2 x 0~~20mA Analog Input (res:0.01mA) 69 +* 2 x 0~~30V Analog Input (res:0.01V) 70 +* Power Input 7~~ 24V DC. 107 107 108 -((( 109 - 110 - 111 111 (% style="color:#037691" %)**LoRa Spec:** 112 -))) 113 113 114 -* ((( 115 -((( 116 -Frequency Range: 117 -))) 74 +* Frequency Range: 75 +** Band 1 (HF): 862 ~~ 1020 Mhz 76 +** Band 2 (LF): 410 ~~ 528 Mhz 77 +* 168 dB maximum link budget. 78 +* +20 dBm - 100 mW constant RF output vs. 79 +* +14 dBm high-efficiency PA. 80 +* Programmable bit rate up to 300 kbps. 81 +* High sensitivity: down to -148 dBm. 82 +* Bullet-proof front end: IIP3 = -12.5 dBm. 83 +* Excellent blocking immunity. 84 +* Low RX current of 10.3 mA, 200 nA register retention. 85 +* Fully integrated synthesizer with a resolution of 61 Hz. 86 +* FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation. 87 +* Built-in bit synchronizer for clock recovery. 88 +* Preamble detection. 89 +* 127 dB Dynamic Range RSSI. 90 +* Automatic RF Sense and CAD with ultra-fast AFC. 91 +* Packet engine up to 256 bytes with CRC. 118 118 119 -* ((( 120 -Band 1 (HF): 862 ~~ 1020 Mhz 121 -))) 122 -* ((( 123 -Band 2 (LF): 410 ~~ 528 Mhz 124 -))) 125 -))) 126 -* ((( 127 -168 dB maximum link budget. 128 -))) 129 -* ((( 130 -+20 dBm - 100 mW constant RF output vs. 131 -))) 132 -* ((( 133 -+14 dBm high efficiency PA. 134 -))) 135 -* ((( 136 -Programmable bit rate up to 300 kbps. 137 -))) 138 -* ((( 139 -High sensitivity: down to -148 dBm. 140 -))) 141 -* ((( 142 -Bullet-proof front end: IIP3 = -12.5 dBm. 143 -))) 144 -* ((( 145 -Excellent blocking immunity. 146 -))) 147 -* ((( 148 -Low RX current of 10.3 mA, 200 nA register retention. 149 -))) 150 -* ((( 151 -Fully integrated synthesizer with a resolution of 61 Hz. 152 -))) 153 -* ((( 154 -FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation. 155 -))) 156 -* ((( 157 -Built-in bit synchronizer for clock recovery. 158 -))) 159 -* ((( 160 -Preamble detection. 161 -))) 162 -* ((( 163 -127 dB Dynamic Range RSSI. 164 -))) 165 -* ((( 166 -Automatic RF Sense and CAD with ultra-fast AFC. 167 -))) 168 -* ((( 169 -Packet engine up to 256 bytes with CRC. 170 - 171 - 172 - 173 -))) 174 - 175 175 == 1.3 Features == 176 176 177 - 178 178 * LoRaWAN Class A & Class C protocol 179 - 180 180 * Optional Customized LoRa Protocol 181 - 182 182 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869 183 - 184 184 * AT Commands to change parameters 185 - 186 -* Remote configure parameters via LoRa Downlink 187 - 99 +* Remotely configure parameters via LoRaWAN Downlink 188 188 * Firmware upgradable via program port 189 - 190 190 * Counting 191 191 192 - 193 - 194 194 == 1.4 Applications == 195 195 196 - 197 197 * Smart Buildings & Home Automation 198 - 199 199 * Logistics and Supply Chain Management 200 - 201 201 * Smart Metering 202 - 203 203 * Smart Agriculture 204 - 205 205 * Smart Cities 206 - 207 207 * Smart Factory 208 208 209 - 210 - 211 211 == 1.5 Hardware Variants == 212 212 213 213 214 214 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %) 215 -|(% style="background-color:# d9e2f3; color:#0070c0; width:103px" %)**Model**|(% style="background-color:#d9e2f3; color:#0070c0; width:131px" %)**Photo**|(% style="background-color:#d9e2f3; color:#0070c0; width:266px" %)**Description**116 +|(% style="background-color:#4f81bd; color:white; width:103px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:131px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:266px" %)**Description** 216 216 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)((( 217 217 (% style="text-align:center" %) 218 218 [[image:image-20230424115112-1.png||height="106" width="58"]] ... ... @@ -225,95 +225,171 @@ 225 225 * 1 x Counting Port 226 226 ))) 227 227 129 += 2. Assembling the Device = 228 228 131 +== 2.1 What is included in the package? == 229 229 230 - = 2. PowerON Device=133 +The package includes the following items: 231 231 135 +* 1 x LT-22222-L I/O Controller 136 +* 1 x LoRaWAN antenna matched to the frequency of the LT-22222-L 137 +* 1 x bracket for DIN rail mounting 138 +* 1 x programming cable 232 232 233 -((( 234 -The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller. 235 -))) 140 +Attach the LoRaWAN antenna to the antenna connector, **ANT**,** **located on the top right side of the device, next to the upper terminal block. Secure the antenna by tightening it clockwise. 236 236 237 -((( 238 -PWR will on when device is properly powered. 142 +== 2.2 Terminals == 239 239 240 - 241 -))) 144 +Upper screw terminal block (from left to right): 242 242 146 +(% style="width:634px" %) 147 +|=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function 148 +|(% style="width:295px" %)GND|(% style="width:338px" %)Ground 149 +|(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage 150 +|(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2 151 +|(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1 152 +|(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2 153 +|(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1 154 + 155 +Lower screw terminal block (from left to right): 156 + 157 +(% style="width:633px" %) 158 +|=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function 159 +|(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1 160 +|(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1 161 +|(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2 162 +|(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2 163 +|(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2 164 +|(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2 165 +|(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1 166 +|(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1 167 +|(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2 168 +|(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1 169 + 170 +== 2.3 Powering the LT-22222-L == 171 + 172 +The LT-22222-L I/O Controller can be powered by a **7–24V DC** power source. Connect the power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator (PWR) LED will turn on when the device is properly powered. 173 + 174 + 243 243 [[image:1653297104069-180.png]] 244 244 245 245 246 246 = 3. Operation Mode = 247 247 248 -== 3.1 How it work s? ==180 +== 3.1 How does it work? == 249 249 182 +By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots. 250 250 251 -((( 252 -The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 253 -))) 184 +After powering on, the **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** the LoRaWAN network. The **TX LED** will be on for **5 seconds** after joining the network. When there is a **downlink** message from the server, the **RX LE**D will be on for **1 second**. When the device is sending an uplink message to the server, the **TX LED** will be on for **1 second**. See also LED status. 254 254 255 -((( 256 -In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices. 257 -))) 186 +In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device. 258 258 188 +== 3.2 Registering with a LoRaWAN network server == 259 259 260 - ==3.2Exampletojoin LoRaWAN network==190 +The network diagram below shows how the LT-22222-L is connected to a typical LoRaWAN network. 261 261 192 +[[image:image-20220523172350-1.png||height="266" width="864"]] 262 262 263 -((( 264 -This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 194 +=== 3.2.1 Prerequisites === 265 265 266 - 267 -))) 196 +Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference. 268 268 269 -[[image:image-202 20523172350-1.png||height="266" width="864"]]198 +[[image:image-20230425173427-2.png||height="246" width="530"]] 270 270 200 +The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers. 271 271 272 -((( 273 -The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN: 202 +=== 3.2.2 The Things Stack Sandbox (TTSS) === 274 274 275 - 276 -))) 204 +* Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account. 205 +* Create an application if you do not have one yet. 206 +* Register LT-22222-L with that application. Two registration options are available: 277 277 278 -((( 279 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller. 280 -))) 208 +(% class="wikigeneratedid" %) 209 +==== ==== 281 281 282 -((( 283 -Each LT is shipped with a sticker with the default device EUI as below: 284 -))) 211 +==== 3.2.2.1 Using the LoRaWAN Device Repository ==== 285 285 286 -[[image:image-20230425173427-2.png||height="246" width="530"]] 213 +* Go to your application and click on the **Register end device** button. 214 +* On the **Register end device** page: 215 +** Select the option **Select the end device in the LoRaWAN Device Repository**. 216 +** Choose the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)**. 217 +** Select the **Frequency plan** that matches your device. 287 287 219 +[[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]] 288 288 289 -Input these keys in the LoRaWAN Server portal. Below is TTN screen shot: 290 290 291 -**Add APP EUI in the application.** 222 +* Page continued... 223 +** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. 224 +** Enter the **DevEUI** in the **DevEUI** field. 225 +** Enter the **AppKey** in the **AppKey** field. 226 +** In the **End device ID** field, enter a unique name within this application for your LT-22222-N. 227 +** Under **After registration**, select the **View registered end device** option. 292 292 293 -[[image: 1653297955910-247.png||height="321" width="716"]]229 +[[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]] 294 294 231 +(% class="wikigeneratedid" %) 232 +==== ==== 295 295 296 - **AddAPPKEYandDEVEUI**234 +==== 3.2.2.2 Entering device information manually ==== 297 297 298 -[[image:1653298023685-319.png]] 236 +* On the **Register end device** page: 237 +** Select the **Enter end device specifies manually** option as the input method. 238 +** Select the **Frequency plan** that matches your device. 239 +** Select the **LoRaWAN version**. 240 +** Select the **Regional Parameters version**. 241 +** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the section. 242 +** Select **Over the air activation (OTAA)** option under the **Activation mode** 243 +** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities**. 299 299 245 +[[image:lt-22222-l-manually-p1.png||height="625" width="1000"]] 300 300 301 -((( 302 -(% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel. 303 303 304 - 305 -))) 248 +* Page continued... 249 +** Enter **AppEUI** in the **JoinEUI** field and click the **Confirm** button. 250 +** Enter **DevEUI** in the **DevEUI** field. 251 +** Enter **AppKey** in the **AppKey** field. 252 +** In the **End device ID** field, enter a unique name within this application for your LT-22222-N. 253 +** Under **After registration**, select the **View registered end device** option. 254 +** Click the **Register end device** button. 306 306 307 -[[image: 1653298044601-602.png||height="405" width="709"]]256 +[[image:lt-22222-l-manually-p2.png||height="625" width="1000"]] 308 308 309 309 310 - ==3.3 UplinkPayload==259 +You will be navigated to the **Device overview** page. 311 311 312 312 313 - There are five workingmodes + oneinterrupt modeon LT fordifferent typeapplication:262 +[[image:lt-22222-device-overview.png||height="625" width="1000"]] 314 314 315 -* (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO 316 316 265 +==== 3.2.2.3 Joining ==== 266 + 267 +Click on **Live data** in the left navigation. The Live data panel for your application will display. 268 + 269 +Power on your LT-22222-L. It will begin joining The Things Stack LoRaWAN network server. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server. Once successfully joined, the device will send its first **uplink data message** to the application it belongs to (in this example, **dragino-docs**). 270 + 271 + 272 +[[image:lt-22222-join-network.png||height="625" width="1000"]] 273 + 274 + 275 +By default, you will receive an uplink data message every 10 minutes. 276 + 277 +Click on one of a **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the decode_payload {} JSON object. 278 + 279 +[[image:lt-22222-ul-payload-decoded.png]] 280 + 281 + 282 +If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **End devices** > **LT-22222-L** > **Payload formatters** > **Uplink**. Then select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes. 283 + 284 +[[image:lt-22222-ul-payload-fmt.png||height="686" width="1000"]] 285 + 286 + 287 +== 3.3 Work Modes and their Uplink Payload formats == 288 + 289 + 290 +The LT-22222-L has 5 **work modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any work mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands. 291 + 292 +* (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO 293 + 317 317 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO 318 318 319 319 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO ... ... @@ -325,15 +325,17 @@ 325 325 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5 326 326 327 327 305 +The uplink messages are sent over LoRaWAN FPort 2. By default, an uplink message is sent every 10 minutes. 328 328 329 329 === 3.3.1 AT+MOD~=1, 2ACI+2AVI === 330 330 331 - 332 332 ((( 333 -Th e uplink payload includestotally 9 bytes. Uplink packetsuse FPORT=2 and every 10 minutessendoneuplink by default. (%style="display:none" %)310 +This is the default mode. 334 334 312 +The uplink payload is 11 bytes long. (% style="display:none" wfd-invisible="true" %) 313 + 335 335 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 336 -|(% style="background-color:# d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**315 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1** 337 337 |Value|((( 338 338 AVI1 voltage 339 339 )))|((( ... ... @@ -342,29 +342,29 @@ 342 342 ACI1 Current 343 343 )))|((( 344 344 ACI2 Current 345 -)))|DIDORO*|((( 324 +)))|**DIDORO***|((( 346 346 Reserve 347 347 )))|MOD 348 348 ))) 349 349 350 350 ((( 351 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination forRO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1.Totally1bytesas below330 +(% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below. 352 352 353 353 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 354 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 355 -|RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1 333 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 334 +|RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1 356 356 ))) 357 357 358 -* RO is for relay. ROx=1 close, ROx=0 alwaysopen.359 -* DI is for digital input. DIx=1: highorfloat, DIx=0:low.360 -* DO is for reverse digital output. DOx=1: output low, DOx=0:highorfloat.337 +* RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN. 338 +* DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW. 339 +* DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING. 361 361 362 -(% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L** 341 +(% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L** 363 363 364 -For example if payload is: [[image:image-20220523175847-2.png]] 343 +For example, if the payload is: [[image:image-20220523175847-2.png]] 365 365 366 366 367 -**The value fortheinterfaceis: **346 +**The interface values can be calculated as follows: ** 368 368 369 369 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V 370 370 ... ... @@ -374,40 +374,35 @@ 374 374 375 375 ACI2 channel current is 0x1300/1000=4.864mA 376 376 377 -The last byte 0xAA= 10101010( B) means356 +The last byte 0xAA= **10101010**(b) means, 378 378 379 -* [1] RO1 relay channel is close and the RO1 LED is ON. 380 -* [0] RO2 relay channel is open and RO2 LED is OFF; 358 +* [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON. 359 +* [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF. 360 +* **[1] DI3 - not used for LT-22222-L.** 361 +* [0] DI2 channel input is LOW, and the DI2 LED is OFF. 362 +* [1] DI1 channel input state: 363 +** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-. 364 +** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE. 365 +** DI1 LED is ON in both cases. 366 +* **[0] DO3 - not used for LT-22222-L.** 367 +* [1] DO2 channel output is LOW, and the DO2 LED is ON. 368 +* [0] DO1 channel output state: 369 +** DO1 is FLOATING when there is no load between DO1 and V+. 370 +** DO1 is HIGH when there is a load between DO1 and V+. 371 +** DO1 LED is OFF in both cases. 381 381 382 -**LT22222-L:** 383 - 384 -* [1] DI2 channel is high input and DI2 LED is ON; 385 -* [0] DI1 channel is low input; 386 - 387 -* [0] DO3 channel output state 388 -** DO3 is float in case no load between DO3 and V+.; 389 -** DO3 is high in case there is load between DO3 and V+. 390 -** DO3 LED is off in both case 391 -* [1] DO2 channel output is low and DO2 LED is ON. 392 -* [0] DO1 channel output state 393 -** DO1 is float in case no load between DO1 and V+.; 394 -** DO1 is high in case there is load between DO1 and V+. 395 -** DO1 LED is off in both case 396 - 397 - 398 - 399 399 === 3.3.2 AT+MOD~=2, (Double DI Counting) === 400 400 401 401 402 402 ((( 403 -**For LT-22222-L**: this mode the**DI1 and DI2** are used as counting pins.377 +**For LT-22222-L**: In this mode, **DI1 and DI2** are used as counting pins. 404 404 ))) 405 405 406 406 ((( 407 -T otal:11 bytespayload381 +The uplink payload is 11 bytes long. 408 408 409 409 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 410 -|(% style="background-color:# d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**384 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1** 411 411 |Value|COUNT1|COUNT2 |DIDORO*|((( 412 412 Reserve 413 413 )))|MOD ... ... @@ -414,26 +414,26 @@ 414 414 ))) 415 415 416 416 ((( 417 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination forRO1, RO2, DO3, DO2 and DO1.Totally1bytesas below391 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, FIRST, Reserve, Reserve, DO3, DO2 and DO1, and its size is 1 byte long as shown below. 418 418 419 419 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 420 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 421 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1 394 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 395 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1 422 422 423 -RO is for relay. ROx=1 close, ROx=0 alwaysopen.397 +* RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN. 424 424 ))) 425 425 426 -* FIRST: Indicate this is the first packet after join network. 427 -* DO is for reverse digital output. DOx=1: output low, DOx=0:highorfloat.400 +* FIRST: Indicates that this is the first packet after joining the network. 401 +* DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING. 428 428 429 429 ((( 430 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L .**404 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L** 431 431 432 432 433 433 ))) 434 434 435 435 ((( 436 -**To usecountingmode,pleaserun:**410 +**To activate this mode, run the following AT commands:** 437 437 ))) 438 438 439 439 ((( ... ... @@ -454,17 +454,17 @@ 454 454 ((( 455 455 **For LT22222-L:** 456 456 457 -(% style="color:blue" %)**AT+TRIG1=0,100**(%%)** lowlevel,valid signal is 100ms) **431 +(% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) ** 458 458 459 -(% style="color:blue" %)**AT+TRIG1=1,100**(%%)** highlevel,valid signal is 100ms433 +(% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) ** 460 460 461 -(% style="color:blue" %)**AT+TRIG2=0,100**(%%)** lowlevel,valid signal is 100ms) **435 +(% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) ** 462 462 463 -(% style="color:blue" %)**AT+TRIG2=1,100**(%%)** highlevel,valid signal is 100ms437 +(% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) ** 464 464 465 -(% style="color:blue" %)**AT+SETCNT=1,60**(%%)** Set COUNT1 value to 60)**439 +(% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)** 466 466 467 -(% style="color:blue" %)**AT+SETCNT=2,60**(%%)** Set COUNT2 value to 60)**441 +(% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)** 468 468 ))) 469 469 470 470 ... ... @@ -471,10 +471,10 @@ 471 471 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI === 472 472 473 473 474 -**LT22222-L**: This mode the DI1 is used as a counting pin.448 +**LT22222-L**: In this mode, the DI1 is used as a counting pin. 475 475 476 476 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 477 -|(% style="background-color:# d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**451 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1** 478 478 |Value|COUNT1|((( 479 479 ACI1 Current 480 480 )))|((( ... ... @@ -482,24 +482,24 @@ 482 482 )))|DIDORO*|Reserve|MOD 483 483 484 484 ((( 485 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination forRO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1.Totally1bytesas below459 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below. 486 486 487 487 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 488 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 489 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1 462 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 463 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1 490 490 ))) 491 491 492 -* RO is for relay. ROx=1 493 -* FIRST: Indicate this is the first packet after join network. 494 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float. 466 +* RO is for the relay. ROx=1: closed, ROx=0 always open. 467 +* FIRST: Indicates that this is the first packet after joining the network. 468 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating. 495 495 496 496 ((( 497 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.** 471 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.** 498 498 ))) 499 499 500 500 501 501 ((( 502 -**To usecountingmode,pleaserun:**476 +**To activate this mode, run the following AT commands:** 503 503 ))) 504 504 505 505 ((( ... ... @@ -512,7 +512,9 @@ 512 512 ))) 513 513 514 514 ((( 515 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]. 489 +AT Commands for counting: 490 + 491 +The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s. 516 516 ))) 517 517 518 518 ... ... @@ -520,14 +520,14 @@ 520 520 521 521 522 522 ((( 523 -**LT22222-L**: This mode the DI1 is used as a counting pin.499 +**LT22222-L**: In this mode, the DI1 is used as a counting pin. 524 524 ))) 525 525 526 526 ((( 527 -The AVI1 is also used for counting. AVI1 is usedtomonitor the voltage.Itwillcheck thevoltage**every 60s**,if voltage is higher or lower than VOLMAX mV, the AVI1Countingincrease 1,so AVI1 countingcanbe used to measure a machine working hour.503 +The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours. 528 528 529 529 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 530 -|(% style="background-color:# d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**506 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1** 531 531 |Value|COUNT1|AVI1 Counting|DIDORO*|((( 532 532 Reserve 533 533 )))|MOD ... ... @@ -534,25 +534,25 @@ 534 534 ))) 535 535 536 536 ((( 537 -(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination forRO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1.Totally1bytesas below513 +(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below. 538 538 539 539 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 540 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 541 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1 516 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 517 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1 542 542 ))) 543 543 544 -* RO is for relay. ROx=1 545 -* FIRST: Indicate this is the first packet after join network. 546 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float. 520 +* RO is for the relay. ROx=1: closed, ROx=0 always open. 521 +* FIRST: Indicates that this is the first packet after joining the network. 522 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating. 547 547 548 548 ((( 549 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.** 525 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.** 550 550 551 551 552 552 ))) 553 553 554 554 ((( 555 -**To use this mode,pleaserun:**531 +**To activate this mode, run the following AT commands:** 556 556 ))) 557 557 558 558 ((( ... ... @@ -565,19 +565,19 @@ 565 565 ))) 566 566 567 567 ((( 568 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]. 544 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s. 569 569 ))) 570 570 571 571 ((( 572 -** Plusbelow command for AVI1 Counting:**548 +**In addition to that, below are the commands for AVI1 Counting:** 573 573 574 -(% style="color:blue" %)**AT+SETCNT=3,60**(%%)** set AVI Count to 60)**550 +(% style="color:blue" %)**AT+SETCNT=3,60**(%%)** (Sets AVI Count to 60)** 575 575 576 576 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)** (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)** 577 577 578 578 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)** (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)** 579 579 580 -(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)** (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)** 556 +(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)** (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)** 581 581 ))) 582 582 583 583 ... ... @@ -584,10 +584,10 @@ 584 584 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI === 585 585 586 586 587 -**LT22222-L**: This mode the DI1 is used as a counting pin.563 +**LT22222-L**: In this mode, the DI1 is used as a counting pin. 588 588 589 589 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 590 -|(% style="background-color:# d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**566 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1** 591 591 |Value|((( 592 592 AVI1 voltage 593 593 )))|((( ... ... @@ -599,25 +599,25 @@ 599 599 )))|MOD 600 600 601 601 ((( 602 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination forRO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1.Totally1bytesas below578 +(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below. 603 603 604 604 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 605 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 581 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 606 606 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1 607 607 ))) 608 608 609 -* RO is for relay. ROx=1 610 -* FIRST: Indicate this is the first packet after join network. 585 +* RO is for the relay. ROx=1: closed, ROx=0 always open. 586 +* FIRST: Indicates that this is the first packet after joining the network. 611 611 * ((( 612 -DO is for reverse digital output. DOx=1: output low, DOx=0: high or float. 588 +DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating. 613 613 ))) 614 614 615 615 ((( 616 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.** 592 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.** 617 617 ))) 618 618 619 619 ((( 620 -**To use this mode,pleaserun:**596 +**To activate this mode, run the following AT commands:** 621 621 ))) 622 622 623 623 ((( ... ... @@ -630,7 +630,7 @@ 630 630 ))) 631 631 632 632 ((( 633 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]. 609 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s. 634 634 ))) 635 635 636 636 ... ... @@ -637,49 +637,46 @@ 637 637 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) === 638 638 639 639 640 -(% style="color:#4f81bd" %)**This mode is anoptionalmode for trigger purpose. It can runtogether with other mode.**616 +(% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate together with other modes.** 641 641 642 -For example, if u serhasconfiguredbelow commands:618 +For example, if you configured the following commands: 643 643 644 644 * **AT+MOD=1 ** **~-~->** The normal working mode 645 -* **AT+ADDMOD6=1** **~-~->** Enable trigger 621 +* **AT+ADDMOD6=1** **~-~->** Enable trigger mode 646 646 647 -LT will keepmonitoringAV1/AV2/AC1/AC2 every 5 seconds;LT will send uplink packets in two cases:623 +The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. LT will send uplink packets in two cases: 648 648 649 -1. Periodically uplink (Base on TDC time). Payload is same asthenormalMOD(MODabove command). This uplink usesLoRaWAN(% style="color:#4f81bd" %)**unconfirmed**(%%)data type650 -1. Trigger uplink when meetthe trigger condition. LT will senttwo packets in this case, the first uplink use payload specifyin thismod (mod=6), the second packetsuseforabovesettings). BothUplinks use LoRaWAN(% style="color:#4f81bd" %)**CONFIRMEDdata type.**625 +1. Periodically uplink (Based on TDC time). The payload is the same as in normal mode (MOD=1 for the commands above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks. 626 +1. Trigger uplink when the trigger condition is met. LT will send two packets in this case. The first uplink uses the payload specified in trigger mode (MOD=6). The second packet uses the normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**CONFIRMED uplinks.** 651 651 652 652 (% style="color:#037691" %)**AT Command to set Trigger Condition**: 653 653 630 +(% style="color:#4f81bd" %)**Trigger based on voltage**: 654 654 655 -(% style="color:#4f81bd" %)**Trigger base on voltage**: 656 - 657 657 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH> 658 658 659 659 660 660 **Example:** 661 661 662 -AT+AVLIM=3000,6000,0,2000 ( If AVI1 voltage lower than 3vor higher than 6v.v, LT will trigger Uplink)637 +AT+AVLIM=3000,6000,0,2000 (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V) 663 663 664 -AT+AVLIM=5000,0,0,0 ( If AVI1 voltage lower than 5V, triggeruplink,0 meansignore)639 +AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use) 665 665 666 666 642 +(% style="color:#4f81bd" %)**Trigger based on current**: 667 667 668 -(% style="color:#4f81bd" %)**Trigger base on current**: 669 - 670 670 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH> 671 671 672 672 673 673 **Example:** 674 674 675 -AT+ACLIM=10000,15000,0,0 ( If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)649 +AT+ACLIM=10000,15000,0,0 (triggers an uplink if ACI1 voltage is lower than 10mA or higher than 15mA) 676 676 677 677 652 +(% style="color:#4f81bd" %)**Trigger based on DI status**: 678 678 679 - (%style="color:#4f81bd"%)**Triggerbaseon DI status**:654 +DI status triggers Flag. 680 680 681 -DI status trigger Flag. 682 - 683 683 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG > 684 684 685 685 ... ... @@ -688,42 +688,41 @@ 688 688 AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger) 689 689 690 690 691 -(% style="color:#037691" %)**Downlink Command toset Trigger Condition:**664 +(% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:** 692 692 693 693 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM** 694 694 695 695 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4 696 696 697 - AA: Code for this downlink Command: 670 + AA: Type Code for this downlink Command: 698 698 699 - xx: 0: Limit for AV1 and AV2; ,DI2 trigger enable/disable672 + xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable. 700 700 701 - yy1 yy1: AC1 or AV1 lowlimit or DI1/DI2 trigger status.674 + yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status. 702 702 703 - yy2 yy2: AC1 or AV1 highlimit.676 + yy2 yy2: AC1 or AV1 HIGH limit. 704 704 705 - yy3 yy3: AC2 or AV2 lowlimit.678 + yy3 yy3: AC2 or AV2 LOW limit. 706 706 707 - Yy4 yy4: AC2 or AV2 highlimit.680 + Yy4 yy4: AC2 or AV2 HIGH limit. 708 708 709 709 710 -**Example1**: AA 00 13 88 00 00 00 00 00 00 683 +**Example 1**: AA 00 13 88 00 00 00 00 00 00 711 711 712 -Same as AT+AVLIM=5000,0,0,0 If AVI1 voltage lower than 5V, triggeruplink,0 meansignore)685 +Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use) 713 713 714 714 715 -**Example2**: AA 02 01 00 688 +**Example 2**: AA 02 01 00 716 716 717 -Same as AT+ DTRI =1,0 690 +Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger) 718 718 719 719 720 - 721 721 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:** 722 722 723 -MOD6 Payload payload695 +MOD6 Payload: total of 11 bytes 724 724 725 725 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %) 726 -|(% style="background-color:# d9e2f3; color:#0070c0; width:60px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:69px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:69px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:109px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:49px" %)**6**|(% style="background-color:#d9e2f3; color:#0070c0; width:109px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**1**698 +|(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1** 727 727 |Value|((( 728 728 TRI_A FLAG 729 729 )))|((( ... ... @@ -734,10 +734,10 @@ 734 734 MOD(6) 735 735 ))) 736 736 737 -(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below 709 +(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below 738 738 739 739 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %) 740 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 712 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 741 741 |((( 742 742 AV1_LOW 743 743 )))|((( ... ... @@ -756,17 +756,17 @@ 756 756 AC2_HIGH 757 757 ))) 758 758 759 -* Each bit sshows if the corresponding trigger has been configured.731 +* Each bit shows if the corresponding trigger has been configured. 760 760 761 761 **Example:** 762 762 763 -10100000: Means the system has configure to use the trigger: A C1_LOW and AV2_LOW735 +10100000: Means the system has configure to use the trigger: AV1_LOW and AV2_LOW 764 764 765 765 766 -(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below 738 +(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below 767 767 768 768 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %) 769 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 741 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 770 770 |((( 771 771 AV1_LOW 772 772 )))|((( ... ... @@ -785,11 +785,11 @@ 785 785 AC2_HIGH 786 786 ))) 787 787 788 -* Each bit sshows which status has been trigger on this uplink.760 +* Each bit shows which status has been triggered on this uplink. 789 789 790 790 **Example:** 791 791 792 -10000000: Means this p acketis trigger by AC1_LOW.Means voltage too low.764 +10000000: Means this uplink is triggered by AV1_LOW. That means the voltage is too low. 793 793 794 794 795 795 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below ... ... @@ -798,7 +798,7 @@ 798 798 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 799 799 |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG 800 800 801 -* Each bits shows which status has been trigger on this uplink. 773 +* Each bits shows which status has been triggered on this uplink. 802 802 803 803 **Example:** 804 804 ... ... @@ -825,11 +825,11 @@ 825 825 ))) 826 826 827 827 828 -== 3.4 Configure LT via AT or Downlink == 800 +== 3.4 Configure LT via AT Commands or Downlinks == 829 829 830 830 831 831 ((( 832 -User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands804 +User can configure LT I/O Controller via AT Commands or LoRaWAN Downlinks. 833 833 ))) 834 834 835 835 ((( ... ... @@ -842,13 +842,10 @@ 842 842 843 843 * (% style="color:blue" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L. User can see these commands below: 844 844 845 - 846 - 847 847 === 3.4.1 Common Commands === 848 848 849 - 850 850 ((( 851 -The yshould be available foreachofDraginoSensors, such as:change uplink interval,reset device. For firmware v1.5.4, usercan findwhat common commandsit supports:[[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]820 +These commands should be available for all Dragino sensors, such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]. 852 852 ))) 853 853 854 854 ... ... @@ -856,34 +856,37 @@ 856 856 857 857 ==== 3.4.2.1 Set Transmit Interval ==== 858 858 828 +Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes. 859 859 860 - Setdeviceuplink interval.830 +* (% style="color:#037691" %)**AT command:** 861 861 862 - *(% style="color:#037691" %)**ATommand:**832 +(% style="color:blue" %)**AT+TDC=N** 863 863 864 - (%style="color:blue"%)**AT+TDC=N**834 +where N is the time in milliseconds. 865 865 836 +**Example: **AT+TDC=30000. This will set the uplink interval to 30 seconds 866 866 867 -**Example: **AT+TDC=30000. Means set interval to 30 seconds 868 868 839 +* (% style="color:#037691" %)**Downlink payload (prefix 0x01):** 869 869 870 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x01):** 871 - 872 872 (% style="color:blue" %)**0x01 aa bb cc **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)** 873 873 874 874 875 875 876 -==== 3.4.2.2 Set Work Mode (AT+MOD) ==== 845 +==== 3.4.2.2 Set the Work Mode (AT+MOD) ==== 877 877 878 878 879 -Set work mode. 848 +Sets the work mode. 880 880 881 -* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+MOD=N **850 +* (% style="color:#037691" %)**AT command:**(%%) (% style="color:blue" %)**AT+MOD=N ** 882 882 883 - **Example**:AT+MOD=2.Set work modeto Double DI counting mode852 +Where N is the work mode. 884 884 885 -* (%style="color:#037691"%)**DownlinkPayload(prefix 0x0A):**854 +**Example**: AT+MOD=2. This will set the work mode to Double DI counting mode. 886 886 856 + 857 +* (% style="color:#037691" %)**Downlink payload (prefix 0x0A):** 858 + 887 887 (% style="color:blue" %)**0x0A aa **(%%)** ** ~/~/ Same as AT+MOD=aa 888 888 889 889 ... ... @@ -891,10 +891,12 @@ 891 891 ==== 3.4.2.3 Poll an uplink ==== 892 892 893 893 894 - * (%style="color:#037691"%)**AT Command:**(%%) ThereisnoAT Commandto polluplink866 +Asks the device to send an uplink. 895 895 896 -* (% style="color:#037691" %)** DownlinkPayload(prefix0x08):**868 +* (% style="color:#037691" %)**AT command:**(%%) There is no AT Command to poll uplink 897 897 870 +* (% style="color:#037691" %)**Downlink payload (prefix 0x08):** 871 + 898 898 (% style="color:blue" %)**0x08 FF **(%%)** **~/~/ Poll an uplink 899 899 900 900 **Example**: 0x08FF, ask device to send an Uplink ... ... @@ -901,16 +901,16 @@ 901 901 902 902 903 903 904 -==== 3.4.2.4 Enable Trigger Mode ==== 878 +==== 3.4.2.4 Enable/Disable Trigger Mode ==== 905 905 906 906 907 - Use oftrigger mode,pleasecheck[[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]881 +Enable or disable the trigger mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]). 908 908 909 909 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0** 910 910 911 -(% style="color:red" %)**1:** (%%)Enable TriggerMode885 +(% style="color:red" %)**1:** (%%)Enable the trigger mode 912 912 913 -(% style="color:red" %)**0: **(%%)Disable TriggerMode887 +(% style="color:red" %)**0: **(%%)Disable the trigger mode 914 914 915 915 916 916 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):** ... ... @@ -922,7 +922,7 @@ 922 922 ==== 3.4.2.5 Poll trigger settings ==== 923 923 924 924 925 -Poll trigger settings 899 +Polls the trigger settings 926 926 927 927 * (% style="color:#037691" %)**AT Command:** 928 928 ... ... @@ -930,7 +930,7 @@ 930 930 931 931 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):** 932 932 933 -(% style="color:blue" %)**0xAB 06 ** (%%) ~/~/ Poll trigger settings ,device will uplink trigger settings once receive this command907 +(% style="color:blue" %)**0xAB 06 ** (%%) ~/~/ Poll the trigger settings. Device will uplink trigger settings once receive this command 934 934 935 935 936 936 ... ... @@ -937,11 +937,11 @@ 937 937 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ==== 938 938 939 939 940 -Enable Disable DI1/DI2/DI2 as trigger, 914 +Enable or Disable DI1/DI2/DI2 as trigger, 941 941 942 942 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >** 943 943 944 -**Example:** AT+ DTRI =1,0 918 +**Example:** AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger) 945 945 946 946 947 947 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):** ... ... @@ -973,15 +973,15 @@ 973 973 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ==== 974 974 975 975 976 -Set DI2 trigger. 950 +Sets DI2 trigger. 977 977 978 978 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b** 979 979 980 -(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1). 954 +(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1). 981 981 982 982 (% style="color:red" %)**b :** (%%)delay timing. 983 983 984 -**Example:** AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms ) 958 +**Example:** AT+TRIG2=0,100 (set DI1 port to trigger on low level, valid signal is 100ms ) 985 985 986 986 987 987 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):** ... ... @@ -1019,7 +1019,7 @@ 1019 1019 ==== 3.4.2.11 Trigger – Set minimum interval ==== 1020 1020 1021 1021 1022 -Set AV and AC trigger minimum interval ,systemwon't response to the second trigger within this set time after the first trigger.996 +Sets AV and AC trigger minimum interval. Device won't response to the second trigger within this set time after the first trigger. 1023 1023 1024 1024 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5 ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger. 1025 1025 ... ... @@ -1053,7 +1053,7 @@ 1053 1053 01: Low, 00: High , 11: No action 1054 1054 1055 1055 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1056 -|(% style="background-color:# d9e2f3; color:#0070c0" %)**Downlink Code**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO3**1030 +|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**DO1**|(% style="background-color:#4f81bd; color:white" %)**DO2**|(% style="background-color:#4f81bd; color:white" %)**DO3** 1057 1057 |02 01 00 11|Low|High|No Action 1058 1058 |02 00 11 01|High|No Action|Low 1059 1059 |02 11 01 00|No Action|Low|High ... ... @@ -1096,7 +1096,7 @@ 1096 1096 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status: 1097 1097 1098 1098 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %) 1099 -|(% style="background-color:# d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**1073 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status** 1100 1100 |0x01|DO1 set to low 1101 1101 |0x00|DO1 set to high 1102 1102 |0x11|DO1 NO Action ... ... @@ -1104,7 +1104,7 @@ 1104 1104 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status: 1105 1105 1106 1106 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %) 1107 -|(% style="background-color:# d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**1081 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status** 1108 1108 |0x01|DO2 set to low 1109 1109 |0x00|DO2 set to high 1110 1110 |0x11|DO2 NO Action ... ... @@ -1112,7 +1112,7 @@ 1112 1112 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status: 1113 1113 1114 1114 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %) 1115 -|(% style="background-color:# d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**1089 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status** 1116 1116 |0x01|DO3 set to low 1117 1117 |0x00|DO3 set to high 1118 1118 |0x11|DO3 NO Action ... ... @@ -1167,10 +1167,10 @@ 1167 1167 ))) 1168 1168 1169 1169 ((( 1170 -0 1: Close , 00: Open , 11: No action1144 +00: Closed , 01: Open , 11: No action 1171 1171 1172 1172 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %) 1173 -|(% style="background-color:# d9e2f3; color:#0070c0" %)**Downlink Code**|(% style="background-color:#d9e2f3; color:#0070c0" %)**RO1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**RO2**1147 +|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2** 1174 1174 |03 00 11|Open|No Action 1175 1175 |03 01 11|Close|No Action 1176 1176 |03 11 00|No Action|Open ... ... @@ -1289,7 +1289,7 @@ 1289 1289 1290 1290 1291 1291 1292 -==== 3.4.2.19 Counting ~-~- Change counting mode save time ==== 1266 +==== 3.4.2.19 Counting ~-~- Change counting mode to save time ==== 1293 1293 1294 1294 1295 1295 * (% style="color:#037691" %)**AT Command:** ... ... @@ -1410,74 +1410,144 @@ 1410 1410 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]] 1411 1411 1412 1412 1413 -== 3.5 Integrat ewithMydevice==1387 +== 3.5 Integrating with ThingsEye.io == 1414 1414 1389 +The Things Stack applications can be integrated with ThingsEye.io. Once integrated, ThingsEye.io works as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic. 1415 1415 1416 - Mydevicesprovidesa humanendlyinterfacetoshow the sensordata,oncewehavedatainTTN, we can useMydevicestoconnectto TTNandsee the data in Mydevices. Beloware the steps:1391 +=== 3.5.1 Configuring MQTT Connection Information with The Things Stack Sandbox === 1417 1417 1418 -((( 1419 -(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time. 1420 -))) 1393 +We use The Things Stack Sandbox for demonstating the configuration but other 1421 1421 1422 -((( 1423 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps: 1395 +* In **The Things Stack Sandbox**, select your application under **Applications**. 1396 +* Select **MQTT** under **Integrations**. 1397 +* In the **Connection information **section, for **Username**, The Things Stack displays an auto-generated username. You can use it or provide a new one. 1398 +* For the **Password**, click the **Generate new API key** button to generate a password. You can see it by clicking on the **eye** button. The API key works as the password. 1424 1424 1425 - 1426 -))) 1400 +NOTE. The username and password (API key) you created here are required in the next section. 1427 1427 1428 -[[image: image-20220719105525-1.png||height="377" width="677"]]1402 +[[image:tts-mqtt-integration.png||height="625" width="1000"]] 1429 1429 1404 +=== 3.5.2 Configuring ThingsEye.io === 1430 1430 1406 +This section guides you on how to create an integration in ThingsEye to connect with The Things Stack MQTT server. 1431 1431 1432 -[[image:image-20220719110247-2.png||height="388" width="683"]] 1408 +* Login to your [[ThingsEye.io >>https://thingseye.io]]account. 1409 +* Under the **Integrations center**, click **Integrations**. 1410 +* Click the **Add integration** button (the button with the **+** symbol). 1433 1433 1412 +[[image:thingseye-io-step-1.png||height="625" width="1000"]] 1434 1434 1435 -(% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices. 1436 1436 1437 - (%style="color:blue"%)**Step 4**(%%):Search LT-22222-L(forbothLT-22222-L) and add DevEUI.(%style="display:none" %)1415 +On the **Add integration** window, configure the following: 1438 1438 1439 - Searchunder Thethingsnetwork1417 +**Basic settings:** 1440 1440 1441 -[[image:1653356838789-523.png||height="337" width="740"]] 1419 +* Select **The Things Stack Community** from the **Integration type** list. 1420 +* Enter a suitable name for your integration in the **Name **text** **box or keep the default name. 1421 +* Ensure the following options are turned on. 1422 +** Enable integration 1423 +** Debug mode 1424 +** Allow create devices or assets 1425 +* Click the **Next** button. you will be navigated to the **Uplink data converter** tab. 1442 1442 1427 +[[image:thingseye-io-step-2.png||height="625" width="1000"]] 1443 1443 1444 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 1445 1445 1446 - [[image:image-20220524094909-1.png||height="335" width="729"]]1430 +**Uplink data converter:** 1447 1447 1432 +* Click the **Create new** button if it is not selected by default. 1433 +* Enter a suitable name for the uplink data converter in the **Name **text** **box or keep the default name. 1434 +* Click the **JavaScript** button. 1435 +* Paste the uplink decoder function into the text area (first, delete the default code). The demo uplink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]]. 1436 +* Click the **Next** button. You will be navigated to the **Downlink data converter **tab. 1448 1448 1449 -[[image:i mage-20220524094909-2.png||height="337" width="729"]]1438 +[[image:thingseye-io-step-3.png||height="625" width="1000"]] 1450 1450 1451 1451 1452 - [[image:image-20220524094909-3.png||height="338"width="727"]]1441 +**Downlink data converter (this is an optional step):** 1453 1453 1443 +* Click the **Create new** button if it is not selected by default. 1444 +* Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name 1445 +* Click the **JavaScript** button. 1446 +* Paste the downlink decoder function into the text area (first, delete the default code). The demo downlink decoder function can be found here. 1447 +* Click the **Next** button. You will be navigated to the **Connection** tab. 1454 1454 1455 -[[image:i mage-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)1449 +[[image:thingseye-io-step-4.png||height="625" width="1000"]] 1456 1456 1457 1457 1458 - [[image:image-20220524094909-5.png||height="341" width="734"]]1452 +**Connection:** 1459 1459 1454 +* Choose **Region** from the **Host type**. 1455 +* Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...). 1456 +* Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The username and password can be found on the MQTT integration page of your The Things Stack account (see Configuring MQTT Connection information with The Things Stack Sandbox). 1457 +* Click the **Check connection** button to test the connection. If the connection is successful, you will see the message saying **Connected**. 1460 1460 1461 - == 3.6 InterfaceDetail ==1459 +[[image:message-1.png]] 1462 1462 1461 + 1462 +* Click the **Add** button. 1463 + 1464 +[[image:thingseye-io-step-5.png||height="625" width="1000"]] 1465 + 1466 + 1467 +Your integration has been added to the** Integrations** list and will be displayed on the **Integrations** page. Check whether the status is shown as **Active**. If not, review your configuration settings. 1468 + 1469 + 1470 +[[image:thingseye.io_integrationsCenter_integrations.png||height="686" width="1000"]] 1471 + 1472 + 1473 +**Viewing integration details**: 1474 + 1475 +Click on your integration from the list. The Integration details window will appear with the Details tab selected. The Details tab shows all the settings you have provided for this integration. 1476 + 1477 +[[image:integration-details.png||height="686" width="1000"]] 1478 + 1479 + 1480 +If you want to edit the settings you have provided, click on the **Toggle edit mode** button. Once you have done click on the **Apply changes **button. 1481 + 1482 +Note: See also ThingsEye documentation. 1483 + 1484 + 1485 +**Viewing events:** 1486 + 1487 +This tab displays all the uplink messages from the LT-22222-L. 1488 + 1489 +* Click on the **Events **tab. 1490 +* Select **Debug **from the **Event type** dropdown. 1491 +* Select the** time frame** from the **time window**. 1492 + 1493 +[insert image] 1494 + 1495 +- To view the JSON payload of a message, click on the three dots (...) in the Message column of the desired message. 1496 + 1497 +[insert image] 1498 + 1499 + 1500 +**Deleting the integration**: 1501 + 1502 +If you want to delete this integration, click the **Delete integratio**n button. 1503 + 1504 + 1505 +== 3.6 Interface Details == 1506 + 1463 1463 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) === 1464 1464 1465 1465 1466 -Support NPN Type sensor1510 +Support NPN-type sensor 1467 1467 1468 1468 [[image:1653356991268-289.png]] 1469 1469 1470 1470 1471 -=== 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) === 1515 +=== 3.6.2 Digital Input Ports: DI1/DI2 ( For LT-22222-L) === 1472 1472 1473 1473 1474 1474 ((( 1475 -The DI port of LT-22222-L can support **NPN** or**PNP** or **DryContact** output sensor.1519 +The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors. 1476 1476 ))) 1477 1477 1478 1478 ((( 1479 1479 ((( 1480 - Internal circuitas below,the NEC2501is aphotocoupler,theActive current(from NEC2501 pin 1 to pin 2 is 1maandthemax currentis50mA).(% class="mark" %)Whenthere isactive currentpassNEC2501 pin1 to pin2.The DIwillbe activehighand DI LED statuswillchange.1524 +The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes. 1481 1481 1482 1482 1483 1483 ))) ... ... @@ -1487,7 +1487,7 @@ 1487 1487 1488 1488 ((( 1489 1489 ((( 1490 - When use need1534 +(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected. 1491 1491 ))) 1492 1492 ))) 1493 1493 ... ... @@ -1496,22 +1496,22 @@ 1496 1496 ))) 1497 1497 1498 1498 ((( 1499 -(% style="color: blue" %)**Example1**(%%): Connect to aLow1543 +(% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor. 1500 1500 ))) 1501 1501 1502 1502 ((( 1503 -This type of sensor willoutput a low signalGNDwhen active.1547 +This type of sensor outputs a low (GND) signal when active. 1504 1504 ))) 1505 1505 1506 1506 * ((( 1507 -Connect sensor's output to DI1- 1551 +Connect the sensor's output to DI1- 1508 1508 ))) 1509 1509 * ((( 1510 -Connect sensor's VCC to DI1+. 1554 +Connect the sensor's VCC to DI1+. 1511 1511 ))) 1512 1512 1513 1513 ((( 1514 - So when sensor active, the current between NEC2501 pin1 and pin2 is:1558 +When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be: 1515 1515 ))) 1516 1516 1517 1517 ((( ... ... @@ -1519,7 +1519,7 @@ 1519 1519 ))) 1520 1520 1521 1521 ((( 1522 - If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA ,Sothe LT-22222-L will be able to detect this active signal.1566 +For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal. 1523 1523 ))) 1524 1524 1525 1525 ((( ... ... @@ -1527,22 +1527,22 @@ 1527 1527 ))) 1528 1528 1529 1529 ((( 1530 -(% style="color: blue" %)**Example2**(%%): Connect to aHigh1574 +(% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor. 1531 1531 ))) 1532 1532 1533 1533 ((( 1534 -This type of sensor willoutput a high signal (example24v) when active.1578 +This type of sensor outputs a high signal (e.g., 24V) when active. 1535 1535 ))) 1536 1536 1537 1537 * ((( 1538 -Connect sensor's output to DI1+ 1582 +Connect the sensor's output to DI1+ 1539 1539 ))) 1540 1540 * ((( 1541 -Connect sensor's GND DI1-. 1585 +Connect the sensor's GND DI1-. 1542 1542 ))) 1543 1543 1544 1544 ((( 1545 - So when sensor active, the current between NEC2501 pin1 and pin2 is:1589 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be: 1546 1546 ))) 1547 1547 1548 1548 ((( ... ... @@ -1550,7 +1550,7 @@ 1550 1550 ))) 1551 1551 1552 1552 ((( 1553 -If **DI1+ = 24 v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mASo the LT-22222-L willbe able todetect this high1597 +If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal. 1554 1554 ))) 1555 1555 1556 1556 ((( ... ... @@ -1558,22 +1558,22 @@ 1558 1558 ))) 1559 1559 1560 1560 ((( 1561 -(% style="color: blue" %)**Example3**(%%): Connect to a 220vhigh1605 +(% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor. 1562 1562 ))) 1563 1563 1564 1564 ((( 1565 -Assume u serwant to monitor an active signal higher than 220v,to make surenotburnthe photocoupler1609 +Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler 1566 1566 ))) 1567 1567 1568 1568 * ((( 1569 -Connect sensor's output to DI1+ with a serial50K resistor1613 +Connect the sensor's output to DI1+ with a 50K resistor in series. 1570 1570 ))) 1571 1571 * ((( 1572 -Connect sensor's GND DI1-. 1616 +Connect the sensor's GND DI1-. 1573 1573 ))) 1574 1574 1575 1575 ((( 1576 - So when sensor active, the current between NEC2501 pin1 and pin2 is:1620 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be: 1577 1577 ))) 1578 1578 1579 1579 ((( ... ... @@ -1581,33 +1581,37 @@ 1581 1581 ))) 1582 1582 1583 1583 ((( 1584 -If sensor output is 220 v, the.= 4.3mA ,Sothe LT-22222-L will be able to detect this highsafely.1628 +If the sensor output is 220V, then [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal. 1585 1585 ))) 1586 1586 1587 1587 1588 -(% style="color:blue" %)**Example4**(%%): Connect to Dry Contact sensor 1632 +(% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor 1589 1589 1590 -From above DI portscircuit,we can see that activethe photocouplerwill needto haveavoltage difference between DI+ and DI- port.While the Dry Contact sensor is a passive componentwhichcan't provide this voltage difference.1634 +From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference. 1591 1591 1592 -To detect a Dry Contact, wecan providea power source to one pin of the Dry Contact. Below is a reference connection.1636 +To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram. 1593 1593 1594 1594 [[image:image-20230616235145-1.png]] 1595 1595 1640 +(% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector 1596 1596 1597 - === 3.6.3 Digital Output Port: DO1/DO2/DO3 ===1642 +[[image:image-20240219115718-1.png]] 1598 1598 1599 1599 1600 - (% style="color:blue"%)**NPNoutput**(%%): GNDor Float. Max voltagecan apply to outputpin is 36v.1645 +=== 3.6.3 Digital Output Ports: DO1/DO2 /DO3 === 1601 1601 1602 -(% style="color:red" %)**Note: DO pins go to float when device is power off.** 1603 1603 1648 +(% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V. 1649 + 1650 +(% style="color:red" %)**Note: The DO pins will float when the device is powered off.** 1651 + 1604 1604 [[image:1653357531600-905.png]] 1605 1605 1606 1606 1607 -=== 3.6.4 Analog Input Interface === 1655 +=== 3.6.4 Analog Input Interfaces === 1608 1608 1609 1609 1610 -The analog input interface is as below. The LT will measure the IN2 voltagesoto calculate the current pass theLoad. The formula is:1658 +The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is: 1611 1611 1612 1612 1613 1613 (% style="color:blue" %)**AC2 = (IN2 voltage )/12** ... ... @@ -1614,14 +1614,14 @@ 1614 1614 1615 1615 [[image:1653357592296-182.png]] 1616 1616 1617 -Example toconnect a 4~~20mA sensor1665 +Example: Connecting a 4~~20mA sensor 1618 1618 1619 -We take the wind speed sensor as an example for reference only.1667 +We will use the wind speed sensor as an example for reference only. 1620 1620 1621 1621 1622 1622 (% style="color:blue" %)**Specifications of the wind speed sensor:** 1623 1623 1624 -(% style="color:red" %)**Red: 12~~24 v**1672 +(% style="color:red" %)**Red: 12~~24V** 1625 1625 1626 1626 (% style="color:#ffc000" %)**Yellow: 4~~20mA** 1627 1627 ... ... @@ -1634,7 +1634,7 @@ 1634 1634 [[image:1653357648330-671.png||height="155" width="733"]] 1635 1635 1636 1636 1637 -Example connectedto a regulated power supply to measure voltage1685 +Example: Connecting to a regulated power supply to measure voltage 1638 1638 1639 1639 [[image:image-20230608101532-1.png||height="606" width="447"]] 1640 1640 ... ... @@ -1643,7 +1643,7 @@ 1643 1643 [[image:image-20230608101722-3.png||height="102" width="1139"]] 1644 1644 1645 1645 1646 -(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power**(% %) (%style="color:blue" %)**:**1694 +(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:** 1647 1647 1648 1648 (% style="color:red" %)**Red: 12~~24v** 1649 1649 ... ... @@ -1654,9 +1654,9 @@ 1654 1654 1655 1655 1656 1656 ((( 1657 -The LT serial controllerhas two relay interfaces;eachinterfaceusestwo pins of the screw terminal.User can connectotherdevice'sPowerLinetoin serialof RO1_1 and RO_2. Such asbelow:1705 +The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below: 1658 1658 1659 -**Note**: RO pins gotoOpen(NO) whendeviceis power off.1707 +**Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off. 1660 1660 ))) 1661 1661 1662 1662 [[image:image-20220524100215-9.png]] ... ... @@ -1668,12 +1668,9 @@ 1668 1668 == 3.7 LEDs Indicators == 1669 1669 1670 1670 1671 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:520px" %)1672 -|(% style="background-color:# d9e2f3; color:#0070c0; width:50px" %)**LEDs**|(% style="background-color:#d9e2f3; color:#0070c0; width:470px" %)**Feature**1719 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 1720 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature** 1673 1673 |**PWR**|Always on if there is power 1674 -|**SYS**|((( 1675 -After device is powered on, the SYS will **fast blink in GREEN** for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be **on GREEN for 5 seconds. **SYS will **blink Blue** on every upload and **blink Green** once receive a downlink message. 1676 -))) 1677 1677 |**TX**|((( 1678 1678 ((( 1679 1679 Device boot: TX blinks 5 times. ... ... @@ -1687,42 +1687,32 @@ 1687 1687 Transmit a LoRa packet: TX blinks once 1688 1688 ))) 1689 1689 ))) 1690 -|**RX**|RX blinks once when receive a packet. 1691 -|**DO1**| 1692 -|**DO2**| 1693 -|**DO3**| 1694 -|**DI2**|((( 1695 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low 1735 +|**RX**|RX blinks once when receiving a packet. 1736 +|**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high 1737 +|**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high 1738 +|**DI1**|((( 1739 +For LT-22222-L: ON when DI1 is high, OFF when DI1 is low 1696 1696 ))) 1697 1697 |**DI2**|((( 1698 -For LT-22222-L: ON when DI2 is high, LOWwhen DI2 is low1742 +For LT-22222-L: ON when DI2 is high, OFF when DI2 is low 1699 1699 ))) 1700 -|**DI2**|((( 1701 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low 1702 -))) 1703 -|**RO1**| 1704 -|**RO2**| 1744 +|**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open 1745 +|**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open 1705 1705 1747 += 4. Using AT Command = 1706 1706 1749 +== 4.1 Connecting the LT-22222-L to a computer == 1707 1707 1708 -= 4. Use AT Command = 1709 1709 1710 -== 4.1 Access AT Command == 1711 - 1712 - 1713 1713 ((( 1714 -LT supports AT Command et.Usercan use a USBplusthe3.5mm Program Cable to connect toLTforusingATcommand, as below.1753 +The LT-22222-L supports programming using AT Commands. You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a computer, as shown below. 1715 1715 ))) 1716 1716 1717 -((( 1718 - 1719 -))) 1720 - 1721 1721 [[image:1653358238933-385.png]] 1722 1722 1723 1723 1724 1724 ((( 1725 - In PC,User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]],SecureCRT) baud ratetoo accessserial consoleforLT. The AT commands are disable by default andneedto enterpassword (default:(% style="color:green" %)**123456**)(%%) to activeit.As shown below:1760 +On the PC, the user needs to set the (% style="color:#4f81bd" %)**serial tool **(%%)(such as [[PuTTY>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]] or [[SecureCRT>>https://www.vandyke.com/cgi-bin/releases.php?product=securecrt]]) to a baud rate of (% style="color:green" %)**9600**(%%) to access the serial console of LT-22222-L. The AT commands are disabled by default, and a password (default:(% style="color:green" %)**123456**)(%%) must be entered to active them, as shown below: 1726 1726 ))) 1727 1727 1728 1728 [[image:1653358355238-883.png]] ... ... @@ -1729,10 +1729,12 @@ 1729 1729 1730 1730 1731 1731 ((( 1732 - More detailAT Commandmanual can be found at1767 +You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]] 1733 1733 ))) 1734 1734 1735 1735 ((( 1771 +The following table lists all the AT commands related to the LT-22222-L, except for those used for switching between modes. 1772 + 1736 1736 AT+<CMD>? : Help on <CMD> 1737 1737 ))) 1738 1738 ... ... @@ -2057,37 +2057,42 @@ 2057 2057 2058 2058 = 5. Case Study = 2059 2059 2060 -== 5.1 Counting how many objects pass inFlow Line ==2097 +== 5.1 Counting how many objects pass through the flow Line == 2061 2061 2062 2062 2063 -Reference Link: [[How to set up to count objects pass 2100 +Reference Link: [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]? 2064 2064 2065 2065 2066 2066 = 6. FAQ = 2067 2067 2068 -== 6.1 How to upgrade the image? == 2105 +== 6.1 How to upgrade the firmware image? == 2069 2069 2070 2070 2071 -The LT oRaWANController is shipped with a 3.5mm cable,thecableis used to upload image to LT to:2108 +The LT-22222-L I/O Controller is shipped with a 3.5mm cable, which is used to upload an image to LT in order to: 2072 2072 2073 -* Support new features 2074 -* F orbugfix2110 +* Support new features. 2111 +* Fix bugs. 2075 2075 * Change LoRaWAN bands. 2076 2076 2077 -Below s howsthe hardware connection forhow toupload an image to the LT:2114 +Below is the hardware connection setup for uploading an firmware image to the LT-22222-L: 2078 2078 2116 +(% class="box infomessage" %) 2117 +((( 2118 +The latest firmware version available for the LT-22222-L is v1.6.1 at the time of this writing. 2119 +))) 2120 + 2079 2079 [[image:1653359603330-121.png]] 2080 2080 2081 2081 2082 2082 ((( 2083 -(% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]]. 2084 -(% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]]. 2085 -(% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update. 2086 - 2125 +(% style="color:#0000ff" %)**Step 1**(%%)**:** Download the F[[lash Loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]]. (replaced by STM32CubeProgrammer) 2126 +(% style="color:#0000ff" %)**Step 2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]]. 2127 +(% style="color:#0000ff" %)**Step 3**(%%)**:** Open the Flash Loader and choose the correct COM port to update. 2087 2087 2088 2088 ((( 2089 2089 (% style="color:blue" %)**For LT-22222-L**(%%): 2090 -Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode. 2131 + 2132 +Hold down the **PRO** button, then briefly press the **RST** button. The **DO1** LED will change from OFF to ON. When the **DO1** LED is ON, it indicates that the device is in firmware download mode. 2091 2091 ))) 2092 2092 2093 2093 ... ... @@ -2102,7 +2102,7 @@ 2102 2102 [[image:image-20220524104033-15.png]] 2103 2103 2104 2104 2105 -(% style="color:red" %)**Not ice**(%%): Incaseuserhaslost the program cable.Usercanhandmade one from a 3.5mm cable. The pin mapping is:2147 +(% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5mm cable. The pin mapping is as follows: 2106 2106 2107 2107 [[image:1653360054704-518.png||height="186" width="745"]] 2108 2108 ... ... @@ -2116,13 +2116,13 @@ 2116 2116 ))) 2117 2117 2118 2118 ((( 2119 - Usercan follow the introductionfor[[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloadtheimages,choose the required image filefor download.2161 +You can follow the introductions on [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file. 2120 2120 ))) 2121 2121 2122 2122 ((( 2123 2123 2124 2124 2125 -== 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? == 2167 +== 6.3 How to set up LT to work with a Single Channel Gateway, such as LG01/LG02? == 2126 2126 2127 2127 2128 2128 ))) ... ... @@ -2129,13 +2129,13 @@ 2129 2129 2130 2130 ((( 2131 2131 ((( 2132 -In this case, u sersneed to set LT-33222-L to work in ABP mode&transmitin only one frequency.2174 +In this case, you need to set the LT-33222-L to work in ABP mode and transmit on only one frequency. 2133 2133 ))) 2134 2134 ))) 2135 2135 2136 2136 ((( 2137 2137 ((( 2138 -Assume wehave a LG02 workingin the frequency 868400000now , belowisthe step.2180 +Assume you have an LG02 working on the frequency 868400000. Below are the steps. 2139 2139 2140 2140 2141 2141 ))) ... ... @@ -2142,7 +2142,7 @@ 2142 2142 ))) 2143 2143 2144 2144 ((( 2145 -(% style="color: blue" %)**Step1**(%%): Log in TTN,Create an ABP device in the application and input thenetworksession key (NETSKEY),app session key (APPSKEY)fromthe device.2187 +(% style="color:#0000ff" %)**Step 1**(%%): Log in to The Things Stack SANDBOX, create an ABP device in the application, and input the Network Session key (NwkSKey), App session key (AppSKey) of the device. 2146 2146 2147 2147 2148 2148 ))) ... ... @@ -2199,7 +2199,7 @@ 2199 2199 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]] 2200 2200 2201 2201 2202 -== 6.5 Can I see counting event in Serial? == 2244 +== 6.5 Can I see the counting event in Serial? == 2203 2203 2204 2204 2205 2205 ((( ... ... @@ -2206,10 +2206,10 @@ 2206 2206 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first. 2207 2207 2208 2208 2209 -== 6.6 Can iuse pointforLT-22222-L? ==2251 +== 6.6 Can I use point-to-point communication with LT-22222-L? == 2210 2210 2211 2211 2212 -Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]] ,this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].2254 +Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]. this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]]. 2213 2213 2214 2214 2215 2215 ))) ... ... @@ -2312,8 +2312,6 @@ 2312 2312 * (% style="color:red" %)**IN865**(%%): LT with frequency bands IN865 2313 2313 * (% style="color:red" %)**CN779**(%%): LT with frequency bands CN779 2314 2314 2315 - 2316 - 2317 2317 = 9. Packing Info = 2318 2318 2319 2319 ... ... @@ -2331,8 +2331,6 @@ 2331 2331 * Package Size / pcs : 14.5 x 8 x 5 cm 2332 2332 * Weight / pcs : 170g 2333 2333 2334 - 2335 - 2336 2336 = 10. Support = 2337 2337 2338 2338 ... ... @@ -2352,5 +2352,3 @@ 2352 2352 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]] 2353 2353 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]] 2354 2354 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]] 2355 - 2356 -
- image-20240219115718-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +27.7 KB - Content
- integration-details.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +463.9 KB - Content
- lt-22222-device-overview.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +497.2 KB - Content
- lt-22222-join-network.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +340.6 KB - Content
- lt-22222-l-dev-repo-p1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +391.8 KB - Content
- lt-22222-l-dev-repo-reg-p1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +391.7 KB - Content
- lt-22222-l-dev-repo-reg-p2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +319.1 KB - Content
- lt-22222-l-manually-p1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +306.6 KB - Content
- lt-22222-l-manually-p2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +279.1 KB - Content
- lt-22222-ul-payload-decoded.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +48.7 KB - Content
- lt-22222-ul-payload-fmt.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +438.6 KB - Content
- message-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +20.1 KB - Content
- thingseye-io-step-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +191.8 KB - Content
- thingseye-io-step-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +260.3 KB - Content
- thingseye-io-step-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +336.6 KB - Content
- thingseye-io-step-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +361.1 KB - Content
- thingseye-io-step-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +292.1 KB - Content
- thingseye-io-step-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +203.8 KB - Content
- thingseye.io_integrationsCenter_integrations-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +469.3 KB - Content
- thingseye.io_integrationsCenter_integrations.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +302.3 KB - Content
- tts-mqtt-integration.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +306.4 KB - Content