Last modified by Mengting Qiu on 2025/06/04 18:42

From version 104.2
edited by Xiaoling
on 2022/11/12 17:51
Change comment: There is no comment for this version
To version 165.1
edited by Dilisi S
on 2024/11/06 22:47
Change comment: some minor edits on 6th nov. as part 1

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LT-22222-L LoRa IO Controller User Manual
1 +LT-22222-L -- LoRa IO Controller User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.pradeeka
Content
... ... @@ -3,6 +3,10 @@
3 3  
4 4  
5 5  
6 +
7 +
8 +
9 +
6 6  **Table of Contents:**
7 7  
8 8  {{toc/}}
... ... @@ -13,39 +13,32 @@
13 13  
14 14  
15 15  
16 -= 1.Introduction =
20 += 1. Introduction =
17 17  
22 +== 1.1 What is the LT-22222-L I/O Controller? ==
18 18  
19 -== 1.1 What is LT Series I/O Controller ==
20 -
21 21  (((
22 -
23 -
24 24  (((
25 -The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
26 -)))
27 -)))
26 +The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
28 28  
29 -(((
30 -The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
28 +The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
31 31  )))
32 -
33 -(((
34 -The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
35 35  )))
36 36  
37 37  (((
38 -The use environment includes:
33 +With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
39 39  )))
40 40  
41 -(((
42 -1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
43 -)))
36 +> The LT Series I/O Controllers are designed for easy, low-cost installation on LoRaWAN networks.
44 44  
45 45  (((
46 -2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
39 +You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
47 47  
48 -
41 +* If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
42 +* If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
43 +* Setup your own private LoRaWAN network.
44 +
45 +> You can use a LoRaWAN gateway, such as the Dragino LG308, to expand or create LoRaWAN coverage in your area.
49 49  )))
50 50  
51 51  (((
... ... @@ -54,143 +54,59 @@
54 54  
55 55  )))
56 56  
54 +== 1.2 Specifications ==
57 57  
58 -== 1.2  Specifications ==
59 -
60 -(((
61 -
62 -
63 63  (% style="color:#037691" %)**Hardware System:**
64 -)))
65 65  
66 -* (((
67 -STM32L072CZT6 MCU
68 -)))
69 -* (((
70 -SX1276/78 Wireless Chip 
71 -)))
72 -* (((
73 -(((
74 -Power Consumption:
75 -)))
58 +* STM32L072xxxx MCU
59 +* SX1276/78 Wireless Chip 
60 +* Power Consumption:
61 +** Idle: 4mA@12v
62 +** 20dB Transmit: 34mA@12v
63 +* Operating Temperature: -40 ~~ 85 Degrees, No Dew
76 76  
77 -* (((
78 -Idle: 4mA@12v
79 -)))
80 -* (((
81 -20dB Transmit: 34mA@12v
82 -)))
83 -)))
84 -
85 -(((
86 -
87 -
88 88  (% style="color:#037691" %)**Interface for Model: LT22222-L:**
89 -)))
90 90  
91 -* (((
92 -2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
93 -)))
94 -* (((
95 -2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
96 -)))
97 -* (((
98 -2 x Relay Output (5A@250VAC / 30VDC)
99 -)))
100 -* (((
101 -2 x 0~~20mA Analog Input (res:0.01mA)
102 -)))
103 -* (((
104 -2 x 0~~30V Analog Input (res:0.01v)
105 -)))
106 -* (((
107 -Power Input 7~~ 24V DC. 
108 -)))
67 +* 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
68 +* 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
69 +* 2 x Relay Output (5A@250VAC / 30VDC)
70 +* 2 x 0~~20mA Analog Input (res:0.01mA)
71 +* 2 x 0~~30V Analog Input (res:0.01v)
72 +* Power Input 7~~ 24V DC. 
109 109  
110 -(((
111 -
112 -
113 113  (% style="color:#037691" %)**LoRa Spec:**
114 -)))
115 115  
116 -* (((
117 -(((
118 -Frequency Range:
119 -)))
76 +* Frequency Range:
77 +** Band 1 (HF): 862 ~~ 1020 Mhz
78 +** Band 2 (LF): 410 ~~ 528 Mhz
79 +* 168 dB maximum link budget.
80 +* +20 dBm - 100 mW constant RF output vs.
81 +* +14 dBm high-efficiency PA.
82 +* Programmable bit rate up to 300 kbps.
83 +* High sensitivity: down to -148 dBm.
84 +* Bullet-proof front end: IIP3 = -12.5 dBm.
85 +* Excellent blocking immunity.
86 +* Low RX current of 10.3 mA, 200 nA register retention.
87 +* Fully integrated synthesizer with a resolution of 61 Hz.
88 +* FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
89 +* Built-in bit synchronizer for clock recovery.
90 +* Preamble detection.
91 +* 127 dB Dynamic Range RSSI.
92 +* Automatic RF Sense and CAD with ultra-fast AFC.
93 +* Packet engine up to 256 bytes with CRC.
120 120  
121 -* (((
122 -Band 1 (HF): 862 ~~ 1020 Mhz
123 -)))
124 -* (((
125 -Band 2 (LF): 410 ~~ 528 Mhz
126 -)))
127 -)))
128 -* (((
129 -168 dB maximum link budget.
130 -)))
131 -* (((
132 -+20 dBm - 100 mW constant RF output vs.
133 -)))
134 -* (((
135 -+14 dBm high efficiency PA.
136 -)))
137 -* (((
138 -Programmable bit rate up to 300 kbps.
139 -)))
140 -* (((
141 -High sensitivity: down to -148 dBm.
142 -)))
143 -* (((
144 -Bullet-proof front end: IIP3 = -12.5 dBm.
145 -)))
146 -* (((
147 -Excellent blocking immunity.
148 -)))
149 -* (((
150 -Low RX current of 10.3 mA, 200 nA register retention.
151 -)))
152 -* (((
153 -Fully integrated synthesizer with a resolution of 61 Hz.
154 -)))
155 -* (((
156 -FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
157 -)))
158 -* (((
159 -Built-in bit synchronizer for clock recovery.
160 -)))
161 -* (((
162 -Preamble detection.
163 -)))
164 -* (((
165 -127 dB Dynamic Range RSSI.
166 -)))
167 -* (((
168 -Automatic RF Sense and CAD with ultra-fast AFC.
169 -)))
170 -* (((
171 -Packet engine up to 256 bytes with CRC.
172 -
173 -
174 -
175 -
176 -)))
177 -
178 178  == 1.3 Features ==
179 179  
180 -
181 181  * LoRaWAN Class A & Class C protocol
182 182  * Optional Customized LoRa Protocol
183 183  * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
184 184  * AT Commands to change parameters
185 -* Remote configure parameters via LoRa Downlink
101 +* Remotely configure parameters via LoRaWAN Downlink
186 186  * Firmware upgradable via program port
187 187  * Counting
188 188  
105 +== 1.4 Applications ==
189 189  
190 -
191 -== 1.4  Applications ==
192 -
193 -
194 194  * Smart Buildings & Home Automation
195 195  * Logistics and Supply Chain Management
196 196  * Smart Metering
... ... @@ -198,14 +198,15 @@
198 198  * Smart Cities
199 199  * Smart Factory
200 200  
201 -
202 -
203 203  == 1.5 Hardware Variants ==
204 204  
205 205  
206 -(% border="1" style="background-color:#f7faff; width:500px" %)
207 -|(% style="width:103px" %)**Model**|(% style="width:131px" %)**Photo**|(% style="width:334px" %)**Description**
208 -|(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)[[image:1653296302983-697.png]]|(% style="width:334px" %)(((
117 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
118 +|(% style="background-color:#4f81bd; color:white; width:103px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:131px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:266px" %)**Description**
119 +|(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)(((
120 +(% style="text-align:center" %)
121 +[[image:image-20230424115112-1.png||height="106" width="58"]]
122 +)))|(% style="width:334px" %)(((
209 209  * 2 x Digital Input (Bi-direction)
210 210  * 2 x Digital Output
211 211  * 2 x Relay Output (5A@250VAC / 30VDC)
... ... @@ -214,137 +214,193 @@
214 214  * 1 x Counting Port
215 215  )))
216 216  
131 += 2. Assembling the Device =
217 217  
133 +== 2.1 What is included in the package? ==
218 218  
219 -= 2. Power ON Device =
135 +The package includes the following items:
220 220  
137 +* 1 x LT-22222-L I/O Controller
138 +* 1 x LoRaWAN antenna matched to the frequency of the LT-22222-L
139 +* 1 x bracket for wall mounting
140 +* 1 x programming cable
221 221  
222 -(((
223 -The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
224 -)))
142 +Attach the LoRaWAN antenna to the antenna connector, ANT,** **located on the top right side of the device, next to the upper terminal block. Secure the antenna by tightening it clockwise.
225 225  
226 -(((
227 -PWR will on when device is properly powered.
144 +== 2.2 Terminals ==
228 228  
229 -
230 -)))
146 +Upper screw terminal block (from left to right):
231 231  
232 -[[image:1653297104069-180.png]]
148 +(% style="width:634px" %)
149 +|=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function
150 +|(% style="width:295px" %)GND|(% style="width:338px" %)Ground
151 +|(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
152 +|(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
153 +|(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
154 +|(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
155 +|(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
233 233  
157 +Lower screw terminal block (from left to right):
234 234  
159 +(% style="width:633px" %)
160 +|=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function
161 +|(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
162 +|(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
163 +|(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
164 +|(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
165 +|(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
166 +|(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
167 +|(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
168 +|(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
169 +|(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
170 +|(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
235 235  
236 -= 3. Operation Mode =
172 +== 2.3 Powering the LT-22222-L ==
237 237  
174 +The LT-22222-L I/O Controller can be powered by a 7–24V DC power source. Connect the power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator (PWR) LED will turn on when the device is properly powered.
238 238  
239 -== 3.1 How it works? ==
240 240  
177 +[[image:1653297104069-180.png]]
241 241  
242 -(((
243 -The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
244 -)))
245 245  
246 -(((
247 -In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
248 -)))
180 += 3. Operation Mode =
249 249  
182 +== 3.1 How does it work? ==
250 250  
184 +By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
251 251  
252 -== 3.2 Example to join LoRaWAN network ==
186 +For LT-22222-L, the LED will show the Join status: After powering on, the TX LED will fast-blink 5 times which means the LT-22222-L will enter the working mode and start to JOIN the LoRaWAN network. The TX LED will be on for 5 seconds after joining the network. When there is a message from the server, the RX LED will be on for 1 second. 
253 253  
188 +In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
254 254  
255 -(((
256 -This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
190 +== 3.2 Registering with a LoRaWAN network server ==
257 257  
258 -
259 -)))
192 +The diagram below shows how the LT-22222-L connects to a typical LoRaWAN network.
260 260  
261 261  [[image:image-20220523172350-1.png||height="266" width="864"]]
262 262  
196 +=== 3.2.1 Prerequisites ===
263 263  
264 -(((
265 -The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
198 +Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
266 266  
267 -
268 -)))
200 +[[image:image-20230425173427-2.png||height="246" width="530"]]
269 269  
270 -(((
271 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
272 -)))
202 +The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
273 273  
274 -(((
275 -Each LT is shipped with a sticker with the default device EUI as below:
276 -)))
204 +=== 3.2.2 The Things Stack Sandbox (TTSS) ===
277 277  
278 -[[image:1653297924498-393.png]]
206 +* Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
207 +* Create an application if you do not have one yet.
208 +* Register LT-22222-L with that application. Two registration options are available:
279 279  
210 +==== Using the LoRaWAN Device Repository: ====
280 280  
281 -Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
212 +* Go to your application and click on the **Register end device** button.
213 +* On the **Register end device** page:
214 +** Select the option **Select the end device in the LoRaWAN Device Repository**.
215 +** Choose the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)**.
216 +** Select the **Frequency plan** that matches your device.
282 282  
283 -**Add APP EUI in the application.**
218 +[[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
284 284  
285 -[[image:1653297955910-247.png||height="321" width="716"]]
220 +*
221 +** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
222 +** Enter the **DevEUI** in the **DevEUI** field.
223 +** Enter the **AppKey** in the **AppKey** field.
224 +** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
225 +** Under **After registration**, select the **View registered end device** option.
286 286  
227 +[[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]]
287 287  
288 -**Add APP KEY and DEV EUI**
229 +==== Entering device information manually: ====
289 289  
290 -[[image:1653298023685-319.png]]
231 +* On the **Register end device** page:
232 +** Select the **Enter end device specifies manually** option as the input method.
233 +** Select the **Frequency plan** that matches your device.
234 +** Select the **LoRaWAN version**.
235 +** Select the **Regional Parameters version**.
236 +** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the section.
237 +** Select **Over the air activation (OTAA)** option under the **Activation mode**
238 +** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities**.
291 291  
240 +[[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
292 292  
293 293  
294 -(((
295 -(% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
243 +* Enter **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
244 +* Enter **DevEUI** in the **DevEUI** field.
245 +* Enter **AppKey** in the **AppKey** field.
246 +* In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
247 +* Under **After registration**, select the **View registered end device** option.
296 296  
297 -
298 -)))
249 +[[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
299 299  
251 +
252 +==== Joining ====
253 +
254 +Click on **Live Data** in the left navigation. Then, power on the device, and it will join The Things Stack Sandbox. You can see the join request, join accept, followed by uplink messages form the device showing in the Live Data panel.
255 +
300 300  [[image:1653298044601-602.png||height="405" width="709"]]
301 301  
302 302  
259 +== 3.3 Uplink Payload formats ==
303 303  
304 -== 3.3 Uplink Payload ==
305 305  
262 +The LT-22222-L has 5 working modes. It also has an interrupt/trigger mode for different types of applications that can be used together with any working mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
306 306  
307 -There are five working modes + one interrupt mode on LT for different type application:
264 +* (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2 x ACI + 2AVI + DI + DO + RO
308 308  
309 -* (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
310 310  * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
267 +
311 311  * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
269 +
312 312  * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
271 +
313 313  * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
273 +
314 314  * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
315 315  
316 -
317 -
318 318  === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
319 319  
320 320  
321 321  (((
322 -The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default.
280 +The uplink payload is 11 bytes long. Uplink packets are sent over LoRaWAN FPort=2. By default, one uplink is sent every 10 minutes. (% style="display:none" wfd-invisible="true" %)
281 +
282 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
283 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
284 +|Value|(((
285 +AVI1 voltage
286 +)))|(((
287 +AVI2 voltage
288 +)))|(((
289 +ACI1 Current
290 +)))|(((
291 +ACI2 Current
292 +)))|DIDORO*|(((
293 +Reserve
294 +)))|MOD
323 323  )))
324 324  
325 -[[image:image-20220523174024-3.png]]
326 -
327 327  (((
328 -
298 +(% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
329 329  
330 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
300 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
301 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
302 +|RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
331 331  )))
332 332  
333 -[[image:image-20220523174254-4.png]]
305 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
306 +* DI is for digital input. DIx=1: high or floating, DIx=0: low.
307 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
334 334  
335 -* RO is for relay. ROx=1 : close,ROx=0 always open.
336 -* DI is for digital input. DIx=1: high or float, DIx=0: low.
337 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
309 +(% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
338 338  
339 -(% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
311 +For example, if the payload is: [[image:image-20220523175847-2.png]]
340 340  
341 -For example if payload is: [[image:image-20220523175847-2.png]]
342 342  
314 +**The interface values can be calculated as follows:  **
343 343  
344 -**The value for the interface is **
316 +AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
345 345  
346 -AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
347 -
348 348  AVI2 channel voltage is 0x04AC/1000=1.196V
349 349  
350 350  ACI1 channel current is 0x1310/1000=4.880mA
... ... @@ -351,312 +351,306 @@
351 351  
352 352  ACI2 channel current is 0x1300/1000=4.864mA
353 353  
354 -The last byte 0xAA= 10101010(B) means
324 +The last byte 0xAA= **10101010**(b) means,
355 355  
356 -* [1] RO1 relay channel is close and the RO1 LED is ON.
357 -* [0] RO2 relay channel is open and RO2 LED is OFF;
326 +* [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
327 +* [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
328 +* [1] DI3 - not used for LT-22222-L.
329 +* [0] DI2 channel input is LOW, and the DI2 LED is OFF.
330 +* [1] DI1 channel input state:
331 +** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
332 +** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
333 +** DI1 LED is ON in both cases.
334 +* [0] DO3 - not used for LT-22222-L.
335 +* [1] DO2 channel output is LOW, and the DO2 LED is ON.
336 +* [0] DO1 channel output state:
337 +** DO1 is FLOATING when there is no load between DO1 and V+.
338 +** DO1 is HIGH when there is a load between DO1 and V+.
339 +** DO1 LED is OFF in both cases.
358 358  
359 -**LT22222-L:**
360 -
361 -* [1] DI2 channel is high input and DI2 LED is ON;
362 -* [0] DI1 channel is low input;
363 -
364 -* [0] DO3 channel output state
365 -** DO3 is float in case no load between DO3 and V+.;
366 -** DO3 is high in case there is load between DO3 and V+.
367 -** DO3 LED is off in both case
368 -* [1] DO2 channel output is low and DO2 LED is ON.
369 -* [0] DO1 channel output state
370 -** DO1 is float in case no load between DO1 and V+.;
371 -** DO1 is high in case there is load between DO1 and V+.
372 -** DO1 LED is off in both case
373 -
374 -
375 -
376 376  === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
377 377  
378 378  
379 379  (((
380 -**For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
345 +**For LT-22222-L**: In this mode, the **DI1 and DI2** are used as counting pins.
381 381  )))
382 382  
383 383  (((
384 -Total : 11 bytes payload
349 +The uplink payload is 11 bytes long.
350 +
351 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
352 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
353 +|Value|COUNT1|COUNT2 |DIDORO*|(((
354 +Reserve
355 +)))|MOD
385 385  )))
386 386  
387 -[[image:image-20220523180452-3.png]]
358 +(((
359 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
388 388  
361 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
362 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
363 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
389 389  
390 -(((
391 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
365 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
392 392  )))
393 393  
394 -[[image:image-20220523180506-4.png]]
368 +* FIRST: Indicates that this is the first packet after joining the network.
369 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
395 395  
396 -* RO is for relay. ROx=1 : close,ROx=0 always open.
397 -* FIRST: Indicate this is the first packet after join network.
398 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
399 -
400 400  (((
401 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
402 -)))
372 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
403 403  
404 -(((
405 405  
375 +)))
406 406  
407 -**To use counting mode, please run:**
377 +(((
378 +**To activate this mode, run the following AT commands:**
408 408  )))
409 409  
381 +(((
410 410  (% class="box infomessage" %)
411 411  (((
412 -(((
413 -(((
414 414  **AT+MOD=2**
415 -)))
416 416  
417 -(((
418 418  **ATZ**
419 419  )))
420 420  )))
421 -)))
422 422  
423 423  (((
424 424  
425 425  
426 426  (% style="color:#4f81bd" %)**AT Commands for counting:**
427 -
428 -
429 429  )))
430 430  
431 431  (((
432 432  **For LT22222-L:**
433 433  
399 +(% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
434 434  
435 -(% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
401 +(% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
436 436  
437 -(% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
403 +(% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
438 438  
439 -(% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
405 +(% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
440 440  
441 -(% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
407 +(% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
442 442  
443 -(% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
444 -
445 -(% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
409 +(% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
446 446  )))
447 447  
448 448  
449 -
450 450  === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
451 451  
452 452  
453 -**LT22222-L**: This mode the DI1 is used as a counting pin.
416 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
454 454  
455 -[[image:image-20220523181246-5.png]]
418 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
419 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
420 +|Value|COUNT1|(((
421 +ACI1 Current
422 +)))|(((
423 +ACI2 Current
424 +)))|DIDORO*|Reserve|MOD
456 456  
457 457  (((
458 -
427 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
459 459  
460 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
429 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
430 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
431 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
461 461  )))
462 462  
463 -[[image:image-20220523181301-6.png]]
434 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
435 +* FIRST: Indicates that this is the first packet after joining the network.
436 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
464 464  
465 -* RO is for relay. ROx=1 : close,ROx=0 always open.
466 -* FIRST: Indicate this is the first packet after join network.
467 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
468 -
469 469  (((
470 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
439 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
471 471  )))
472 472  
473 473  
474 474  (((
475 -**To use counting mode, please run:**
444 +**To activate this mode, run the following AT commands:**
476 476  )))
477 477  
447 +(((
478 478  (% class="box infomessage" %)
479 479  (((
480 -(((
481 -(((
482 482  **AT+MOD=3**
483 -)))
484 484  
485 -(((
486 486  **ATZ**
487 487  )))
488 488  )))
489 -)))
490 490  
491 491  (((
492 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
457 +AT Commands for counting:
458 +
459 +The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
493 493  )))
494 494  
495 495  
496 -
497 497  === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
498 498  
499 499  
500 500  (((
501 -**LT22222-L**: This mode the DI1 is used as a counting pin.
467 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
502 502  )))
503 503  
504 504  (((
505 -The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
471 +The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
472 +
473 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
474 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
475 +|Value|COUNT1|AVI1 Counting|DIDORO*|(((
476 +Reserve
477 +)))|MOD
506 506  )))
507 507  
508 -[[image:image-20220523181903-8.png]]
509 -
510 -
511 511  (((
512 -(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
481 +(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
482 +
483 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
484 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
485 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
513 513  )))
514 514  
515 -[[image:image-20220523181727-7.png]]
488 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
489 +* FIRST: Indicates that this is the first packet after joining the network.
490 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
516 516  
517 -* RO is for relay. ROx=1 : close,ROx=0 always open.
518 -* FIRST: Indicate this is the first packet after join network.
519 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
520 -
521 521  (((
522 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
523 -)))
493 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
524 524  
525 -(((
526 526  
496 +)))
527 527  
528 -**To use this mode, please run:**
498 +(((
499 +**To activate this mode, run the following AT commands:**
529 529  )))
530 530  
502 +(((
531 531  (% class="box infomessage" %)
532 532  (((
533 -(((
534 -(((
535 535  **AT+MOD=4**
536 -)))
537 537  
538 -(((
539 539  **ATZ**
540 540  )))
541 541  )))
542 -)))
543 543  
544 -
545 545  (((
546 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
512 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
547 547  )))
548 548  
549 549  (((
550 -
516 +**In addition to that, below are the commands for AVI1 Counting:**
551 551  
552 -**Plus below command for AVI1 Counting:**
518 +(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (Sets AVI Count to 60)**
553 553  
554 -
555 -(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
556 -
557 557  (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
558 558  
559 559  (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
560 560  
561 -(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
524 +(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
562 562  )))
563 563  
564 564  
565 -
566 566  === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
567 567  
568 568  
569 -**LT22222-L**: This mode the DI1 is used as a counting pin.
531 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
570 570  
571 -[[image:image-20220523182334-9.png]]
533 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
534 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
535 +|Value|(((
536 +AVI1 voltage
537 +)))|(((
538 +AVI2 voltage
539 +)))|(((
540 +ACI1 Current
541 +)))|COUNT1|DIDORO*|(((
542 +Reserve
543 +)))|MOD
572 572  
573 573  (((
574 -
546 +(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
575 575  
576 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
548 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
549 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
550 +|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
577 577  )))
578 578  
579 -* RO is for relay. ROx=1 : closeROx=0 always open.
580 -* FIRST: Indicate this is the first packet after join network.
553 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
554 +* FIRST: Indicates that this is the first packet after joining the network.
581 581  * (((
582 -DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
556 +DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
583 583  )))
584 584  
585 585  (((
586 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
560 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
587 587  )))
588 588  
589 589  (((
590 -
591 -
592 -**To use this mode, please run:**
564 +**To activate this mode, run the following AT commands:**
593 593  )))
594 594  
567 +(((
595 595  (% class="box infomessage" %)
596 596  (((
597 -(((
598 -(((
599 599  **AT+MOD=5**
600 -)))
601 601  
602 -(((
603 603  **ATZ**
604 604  )))
605 605  )))
606 -)))
607 607  
608 608  (((
609 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
577 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
610 610  )))
611 611  
612 612  
613 -
614 614  === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
615 615  
616 616  
617 -(% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
584 +(% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate together with other modes.**
618 618  
619 -For example, if user has configured below commands:
586 +For example, if you configured the following commands:
620 620  
621 621  * **AT+MOD=1 ** **~-~->**  The normal working mode
622 -* **AT+ADDMOD6=1**   **~-~->**  Enable trigger
589 +* **AT+ADDMOD6=1**   **~-~->**  Enable trigger mode
623 623  
624 -LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
591 +The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. LT will send uplink packets in two cases:
625 625  
626 -1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
627 -1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
593 +1. Periodically uplink (Based on TDC time). The payload is the same as in normal mode (MOD=1 for the commands above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
594 +1. Trigger uplink when the trigger condition is met. LT will send two packets in this case. The first uplink uses the payload specified in trigger mode (MOD=6). The second packet usethe normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**CONFIRMED uplinks.**
628 628  
629 629  (% style="color:#037691" %)**AT Command to set Trigger Condition**:
630 630  
598 +(% style="color:#4f81bd" %)**Trigger based on voltage**:
631 631  
632 -(% style="color:#4f81bd" %)**Trigger base on voltage**:
633 -
634 634  Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
635 635  
636 636  
637 637  **Example:**
638 638  
639 -AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
605 +AT+AVLIM=3000,6000,0,2000   (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
640 640  
641 -AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
607 +AT+AVLIM=5000,0,0,0   (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use)
642 642  
643 643  
610 +(% style="color:#4f81bd" %)**Trigger based on current**:
644 644  
645 -(% style="color:#4f81bd" %)**Trigger base on current**:
646 -
647 647  Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
648 648  
649 649  
650 650  **Example:**
651 651  
652 -AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
617 +AT+ACLIM=10000,15000,0,0   (triggers an uplink if ACI1 voltage is lower than 10mA or higher than 15mA)
653 653  
654 654  
620 +(% style="color:#4f81bd" %)**Trigger based on DI status**:
655 655  
656 -(% style="color:#4f81bd" %)**Trigger base on DI status**:
622 +DI status triggers Flag.
657 657  
658 -DI status trigger Flag.
659 -
660 660  Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
661 661  
662 662  
... ... @@ -665,73 +665,116 @@
665 665  AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
666 666  
667 667  
632 +(% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
668 668  
669 -(% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
670 -
671 671  Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
672 672  
673 673  Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
674 674  
675 - AA: Code for this downlink Command:
638 + AA: Type Code for this downlink Command:
676 676  
677 - xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
640 + xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
678 678  
679 - yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
642 + yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
680 680  
681 - yy2 yy2: AC1 or AV1 high limit.
644 + yy2 yy2: AC1 or AV1 HIGH limit.
682 682  
683 - yy3 yy3: AC2 or AV2 low limit.
646 + yy3 yy3: AC2 or AV2 LOW limit.
684 684  
685 - Yy4 yy4: AC2 or AV2 high limit.
648 + Yy4 yy4: AC2 or AV2 HIGH limit.
686 686  
687 687  
688 -**Example1**: AA 00 13 88 00 00 00 00 00 00
651 +**Example 1**: AA 00 13 88 00 00 00 00 00 00
689 689  
690 -Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
653 +Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
691 691  
692 692  
693 -**Example2**: AA 02 01 00
656 +**Example 2**: AA 02 01 00
694 694  
695 -Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
658 +Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
696 696  
697 697  
698 -
699 699  (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
700 700  
701 -MOD6 Payload : total 11 bytes payload
663 +MOD6 Payload: total of 11 bytes
702 702  
703 -[[image:image-20220524085923-1.png]]
665 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
666 +|(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
667 +|Value|(((
668 +TRI_A FLAG
669 +)))|(((
670 +TRI_A Status
671 +)))|(((
672 +TRI_DI FLAG+STA
673 +)))|Reserve|Enable/Disable MOD6|(((
674 +MOD(6)
675 +)))
704 704  
677 +(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below
705 705  
706 -(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
679 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
680 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
681 +|(((
682 +AV1_LOW
683 +)))|(((
684 +AV1_HIGH
685 +)))|(((
686 +AV2_LOW
687 +)))|(((
688 +AV2_HIGH
689 +)))|(((
690 +AC1_LOW
691 +)))|(((
692 +AC1_HIGH
693 +)))|(((
694 +AC2_LOW
695 +)))|(((
696 +AC2_HIGH
697 +)))
707 707  
708 -[[image:image-20220524090106-2.png]]
699 +* Each bit shows if the corresponding trigger has been configured.
709 709  
710 -* Each bits shows if the corresponding trigger has been configured.
711 -
712 712  **Example:**
713 713  
714 -10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
703 +10100000: Means the system has configure to use the trigger: AV1_LOW and AV2_LOW
715 715  
716 716  
706 +(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below
717 717  
718 -(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
708 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
709 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
710 +|(((
711 +AV1_LOW
712 +)))|(((
713 +AV1_HIGH
714 +)))|(((
715 +AV2_LOW
716 +)))|(((
717 +AV2_HIGH
718 +)))|(((
719 +AC1_LOW
720 +)))|(((
721 +AC1_HIGH
722 +)))|(((
723 +AC2_LOW
724 +)))|(((
725 +AC2_HIGH
726 +)))
719 719  
720 -[[image:image-20220524090249-3.png]]
728 +* Each bit shows which status has been triggered on this uplink.
721 721  
722 -* Each bits shows which status has been trigger on this uplink.
723 -
724 724  **Example:**
725 725  
726 -10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
732 +10000000: Means this uplink is triggered by AV1_LOW. That means the voltage is too low.
727 727  
728 728  
729 -
730 730  (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
731 731  
732 -[[image:image-20220524090456-4.png]]
737 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
738 +|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
739 +|N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
733 733  
734 -* Each bits shows which status has been trigger on this uplink.
741 +* Each bits shows which status has been triggered on this uplink.
735 735  
736 736  **Example:**
737 737  
... ... @@ -740,7 +740,6 @@
740 740  00000101: Means both DI1 and DI2 trigger are enabled.
741 741  
742 742  
743 -
744 744  (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
745 745  
746 746  Downlink command to poll MOD6 status:
... ... @@ -750,7 +750,6 @@
750 750  When device got this command, it will send the MOD6 payload.
751 751  
752 752  
753 -
754 754  === 3.3.7 Payload Decoder ===
755 755  
756 756  (((
... ... @@ -760,7 +760,6 @@
760 760  )))
761 761  
762 762  
763 -
764 764  == 3.4 ​Configure LT via AT or Downlink ==
765 765  
766 766  
... ... @@ -778,8 +778,6 @@
778 778  
779 779  * (% style="color:blue" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
780 780  
781 -
782 -
783 783  === 3.4.1 Common Commands ===
784 784  
785 785  
... ... @@ -788,44 +788,42 @@
788 788  )))
789 789  
790 790  
791 -
792 792  === 3.4.2 Sensor related commands ===
793 793  
794 -
795 795  ==== 3.4.2.1 Set Transmit Interval ====
796 796  
797 797  
798 -Set device uplink interval.
798 +Sets the uplink interval of the device.
799 799  
800 -* (% style="color:#037691" %)**AT Command:**
800 +* (% style="color:#037691" %)**AT command:**
801 801  
802 -(% style="color:blue" %)**AT+TDC=N **
802 +(% style="color:blue" %)**AT+TDC=N**
803 803  
804 +where N is the time in milliseconds.
804 804  
805 -**Example: **AT+TDC=30000. Means set interval to 30 seconds
806 +**Example: **AT+TDC=30000. This will set the uplink interval to 30 seconds
806 806  
807 807  
808 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
809 +* (% style="color:#037691" %)**Downlink payload (prefix 0x01):**
809 809  
810 810  (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
811 811  
812 812  
813 813  
814 -==== 3.4.2.2 Set Work Mode (AT+MOD) ====
815 +==== 3.4.2.2 Set the Work Mode (AT+MOD) ====
815 815  
816 816  
817 -Set work mode.
818 +Sets the work mode.
818 818  
819 -* (% style="color:#037691" %)**AT Command:**
820 +* (% style="color:#037691" %)**AT command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
820 820  
821 -(% style="color:blue" %)**AT+MOD=N  **
822 +Where N is the work mode.
822 822  
824 +**Example**: AT+MOD=2. This will set the work mode to Double DI counting mode.
823 823  
824 -**Example**: AT+MOD=2. Set work mode to Double DI counting mode
825 825  
827 +* (% style="color:#037691" %)**Downlink payload (prefix 0x0A):**
826 826  
827 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
828 -
829 829  (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
830 830  
831 831  
... ... @@ -833,34 +833,30 @@
833 833  ==== 3.4.2.3 Poll an uplink ====
834 834  
835 835  
836 -* (% style="color:#037691" %)**AT Command:**
836 +Asks the device to send an uplink.
837 837  
838 -There is no AT Command to poll uplink
838 +* (% style="color:#037691" %)**AT command:**(%%) There is no AT Command to poll uplink
839 839  
840 +* (% style="color:#037691" %)**Downlink payload (prefix 0x08):**
840 840  
841 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
842 -
843 843  (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
844 844  
845 -
846 846  **Example**: 0x08FF, ask device to send an Uplink
847 847  
848 848  
849 849  
850 -==== 3.4.2.4 Enable Trigger Mode ====
848 +==== 3.4.2.4 Enable/Disable Trigger Mode ====
851 851  
852 852  
853 -Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
851 +Enable or disable the trigger mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]).
854 854  
855 -* (% style="color:#037691" %)**AT Command:**
853 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
856 856  
857 -(% style="color:blue" %)**AT+ADDMOD6=1 or 0**
855 +(% style="color:red" %)**1:** (%%)Enable the trigger mode
858 858  
859 -(% style="color:red" %)**1:** (%%)Enable Trigger Mode
857 +(% style="color:red" %)**0: **(%%)Disable the trigger mode
860 860  
861 -(% style="color:red" %)**0: **(%%)Disable Trigger Mode
862 862  
863 -
864 864  * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
865 865  
866 866  (% style="color:blue" %)**0x0A 06 aa    **(%%) ~/~/ Same as AT+ADDMOD6=aa
... ... @@ -867,20 +867,18 @@
867 867  
868 868  
869 869  
870 -
871 871  ==== 3.4.2.5 Poll trigger settings ====
872 872  
873 873  
874 -Poll trigger settings,
869 +Polls the trigger settings
875 875  
876 876  * (% style="color:#037691" %)**AT Command:**
877 877  
878 878  There is no AT Command for this feature.
879 879  
880 -
881 881  * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
882 882  
883 -(% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
877 +(% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll the trigger settings. Device will uplink trigger settings once receive this command
884 884  
885 885  
886 886  
... ... @@ -887,17 +887,13 @@
887 887  ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
888 888  
889 889  
890 -Enable Disable DI1/DI2/DI2 as trigger,
884 +Enable or Disable DI1/DI2/DI2 as trigger,
891 891  
892 -* (% style="color:#037691" %)**AT Command:**
886 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
893 893  
894 -(% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
888 +**Example:** AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
895 895  
896 896  
897 -**Example:**
898 -
899 -AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
900 -
901 901  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
902 902  
903 903  (% style="color:blue" %)**0xAA 02 aa bb   ** (%%) ~/~/ Same as AT+DTRI=aa,bb
... ... @@ -909,20 +909,15 @@
909 909  
910 910  Set DI1 or DI3(for LT-33222-L) trigger.
911 911  
912 -* (% style="color:#037691" %)**AT Command:**
902 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG1=a,b**
913 913  
914 -(% style="color:blue" %)**AT+TRIG1=a,b**
915 -
916 916  (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
917 917  
918 918  (% style="color:red" %)**b :** (%%)delay timing.
919 919  
908 +**Example:** AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
920 920  
921 -**Example:**
922 922  
923 -AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
924 -
925 -
926 926  * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
927 927  
928 928  (% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
... ... @@ -932,25 +932,20 @@
932 932  ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
933 933  
934 934  
935 -Set DI2 trigger.
920 +Sets DI2 trigger.
936 936  
937 -* (% style="color:#037691" %)**AT Command:**
922 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
938 938  
939 -(% style="color:blue" %)**AT+TRIG2=a,b**
924 +(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
940 940  
941 -(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
942 -
943 943  (% style="color:red" %)**b :** (%%)delay timing.
944 944  
928 +**Example:** AT+TRIG2=0,100 (set DI1 port to trigger on low level, valid signal is 100ms )
945 945  
946 -**Example:**
947 947  
948 -AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
949 -
950 -
951 951  * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
952 952  
953 -(% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG1=aa,0x(bb cc)
933 +(% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG2=aa,0x(bb cc)
954 954  
955 955  
956 956  
... ... @@ -959,11 +959,8 @@
959 959  
960 960  Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
961 961  
962 -* (% style="color:#037691" %)**AT Command**
942 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ACLIM**
963 963  
964 -(% style="color:blue" %)**AT+ACLIM**
965 -
966 -
967 967  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
968 968  
969 969  (% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh        ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
... ... @@ -975,11 +975,8 @@
975 975  
976 976  Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
977 977  
978 -* (% style="color:#037691" %)**AT Command**
955 +* (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
979 979  
980 -(% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
981 -
982 -
983 983  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
984 984  
985 985  (% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
... ... @@ -989,20 +989,15 @@
989 989  ==== 3.4.2.11 Trigger – Set minimum interval ====
990 990  
991 991  
992 -Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
966 +Sets AV and AC trigger minimum interval. Device won't response to the second trigger within this set time after the first trigger.
993 993  
994 -* (% style="color:#037691" %)**AT Command**
968 +* (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
995 995  
996 -(% style="color:blue" %)**AT+ATDC=5        ** (%%)Device won't response the second trigger within 5 minute after the first trigger.
997 -
998 -
999 999  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
1000 1000  
1001 1001  (% style="color:blue" %)**0x AC aa bb   **(%%) ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
1002 1002  
1003 1003  (((
1004 -
1005 -
1006 1006  (% style="color:red" %)**Note: ATDC setting must be more than 5min**
1007 1007  )))
1008 1008  
... ... @@ -1017,8 +1017,9 @@
1017 1017  
1018 1018  
1019 1019  * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
1020 -* (% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
1021 1021  
990 +(% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
991 +
1022 1022  (((
1023 1023  If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
1024 1024  )))
... ... @@ -1025,10 +1025,14 @@
1025 1025  
1026 1026  (((
1027 1027  01: Low,  00: High ,  11: No action
998 +
999 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1000 +|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**DO1**|(% style="background-color:#4f81bd; color:white" %)**DO2**|(% style="background-color:#4f81bd; color:white" %)**DO3**
1001 +|02  01  00  11|Low|High|No Action
1002 +|02  00  11  01|High|No Action|Low
1003 +|02  11  01  00|No Action|Low|High
1028 1028  )))
1029 1029  
1030 -[[image:image-20220524092754-5.png]]
1031 -
1032 1032  (((
1033 1033  (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1034 1034  )))
... ... @@ -1065,23 +1065,37 @@
1065 1065  
1066 1066  (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1067 1067  
1068 -[[image:image-20220524093238-6.png]]
1042 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1043 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1044 +|0x01|DO1 set to low
1045 +|0x00|DO1 set to high
1046 +|0x11|DO1 NO Action
1069 1069  
1070 -
1071 1071  (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1072 1072  
1073 -[[image:image-20220524093328-7.png]]
1050 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1051 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1052 +|0x01|DO2 set to low
1053 +|0x00|DO2 set to high
1054 +|0x11|DO2 NO Action
1074 1074  
1075 -
1076 1076  (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1077 1077  
1078 -[[image:image-20220524093351-8.png]]
1058 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1059 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1060 +|0x01|DO3 set to low
1061 +|0x00|DO3 set to high
1062 +|0x11|DO3 NO Action
1079 1079  
1064 +(% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:(%%) Latching time. Unit: ms
1080 1080  
1081 -(% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:
1082 1082  
1083 - Latching time. Unit: ms
1067 +(% style="color:red" %)**Note: **
1084 1084  
1069 + Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1070 +
1071 + Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1072 +
1085 1085  (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1086 1086  
1087 1087  
... ... @@ -1123,11 +1123,18 @@
1123 1123  )))
1124 1124  
1125 1125  (((
1126 -01: Close ,  00: Open , 11: No action
1127 -)))
1114 +00: Closed ,  01: Open , 11: No action
1128 1128  
1129 -(((
1130 -[[image:image-20220524093724-9.png]]
1116 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1117 +|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
1118 +|03  00  11|Open|No Action
1119 +|03  01  11|Close|No Action
1120 +|03  11  00|No Action|Open
1121 +|03  11  01|No Action|Close
1122 +|03  00  00|Open|Open
1123 +|03  01  01|Close|Close
1124 +|03  01  00|Close|Open
1125 +|03  00  01|Open|Close
1131 1131  )))
1132 1132  
1133 1133  (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
... ... @@ -1134,7 +1134,6 @@
1134 1134  
1135 1135  
1136 1136  
1137 -
1138 1138  ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1139 1139  
1140 1140  
... ... @@ -1166,12 +1166,20 @@
1166 1166  
1167 1167  (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1168 1168  
1163 +
1164 +(% style="color:red" %)**Note:**
1165 +
1166 + Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1167 +
1168 + Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1169 +
1170 +
1169 1169  (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1170 1170  
1171 1171  
1172 1172  **Example payload:**
1173 1173  
1174 -**~1. 05 01 11 07 D**
1176 +**~1. 05 01 11 07 D0**
1175 1175  
1176 1176  Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1177 1177  
... ... @@ -1194,11 +1194,8 @@
1194 1194  
1195 1195  When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1196 1196  
1197 -* (% style="color:#037691" %)**AT Command:**
1199 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1198 1198  
1199 -(% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1200 -
1201 -
1202 1202  * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1203 1203  
1204 1204  (% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
... ... @@ -1208,10 +1208,8 @@
1208 1208  ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1209 1209  
1210 1210  
1211 -* (% style="color:#037691" %)**AT Command:**
1210 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1212 1212  
1213 -(% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1214 -
1215 1215  (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1216 1216  
1217 1217  (% style="color:red" %)**bb cc dd ee: **(%%)number to be set
... ... @@ -1228,11 +1228,8 @@
1228 1228  
1229 1229  Clear counting for counting mode
1230 1230  
1231 -* (% style="color:#037691" %)**AT Command:**
1228 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+CLRCOUNT         **(%%) ~/~/ clear all counting
1232 1232  
1233 -(% style="color:blue" %)**AT+CLRCOUNT **(%%) ~/~/ clear all counting
1234 -
1235 -
1236 1236  * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1237 1237  
1238 1238  (% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
... ... @@ -1239,7 +1239,7 @@
1239 1239  
1240 1240  
1241 1241  
1242 -==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1236 +==== 3.4.2.19 Counting ~-~- Change counting mode to save time ====
1243 1243  
1244 1244  
1245 1245  * (% style="color:#037691" %)**AT Command:**
... ... @@ -1257,14 +1257,14 @@
1257 1257  
1258 1258  
1259 1259  
1260 -==== 3.4.2.20 Reset save DR DO state ====
1254 +==== 3.4.2.20 Reset save RO DO state ====
1261 1261  
1262 1262  
1263 1263  * (% style="color:#037691" %)**AT Command:**
1264 1264  
1265 -(% style="color:blue" %)**AT+RODORET=1    **(%%)~/~/ RODO will close when the device joining the network. (default)
1259 +(% style="color:blue" %)**AT+RODORESET=1    **(%%)~/~/ RODO will close when the device joining the network. (default)
1266 1266  
1267 -(% style="color:blue" %)**AT+RODORET=0    **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1261 +(% style="color:blue" %)**AT+RODORESET=0    **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1268 1268  
1269 1269  
1270 1270  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
... ... @@ -1306,7 +1306,6 @@
1306 1306  
1307 1307  
1308 1308  
1309 -
1310 1310  ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1311 1311  
1312 1312  
... ... @@ -1323,7 +1323,6 @@
1323 1323  
1324 1324  
1325 1325  
1326 -
1327 1327  ==== 3.4.2.25 Copy downlink to uplink ====
1328 1328  
1329 1329  
... ... @@ -1362,79 +1362,91 @@
1362 1362  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1363 1363  
1364 1364  
1357 +== 3.5 Integrating with ThingsEye.io ==
1365 1365  
1366 -== 3.5 Integrate with Mydevice ==
1359 +If you are using one of The Things Stack plans, you can integrate ThingsEye.io with your application. Once integrated, ThingsEye.io works as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1367 1367  
1361 +=== 3.5.1 Configuring The Things Stack Sandbox ===
1368 1368  
1369 -Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1363 +* Go to your Application and select MQTT under Integrations.
1364 +* In the Connection credentials section, under Username, The Thins Stack displays an auto-generated username. You can use it or provide a new one.
1365 +* For the Password, click the Generate new API key button to generate a password. You can see it by clicking on the eye button.
1370 1370  
1371 -(((
1372 -(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1373 -)))
1367 +[[image:tts-mqtt-integration.png||height="625" width="1000"]]
1374 1374  
1375 -(((
1376 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1369 +=== 3.5.2 Configuring ThingsEye.io ===
1377 1377  
1378 -
1379 -)))
1371 +* Login to your thingsEye.io account.
1372 +* Under the Integrations center, click Integrations.
1373 +* Click the Add integration button (the button with the + symbol).
1380 1380  
1381 -[[image:image-20220719105525-1.png||height="377" width="677"]]
1375 +[[image:thingseye-io-step-1.png||height="625" width="1000"]]
1382 1382  
1383 1383  
1378 +On the Add integration page configure the following:
1384 1384  
1385 -[[image:image-20220719110247-2.png||height="388" width="683"]]
1380 +Basic settings:
1386 1386  
1382 +* Select The Things Stack Community from the Integration type list.
1383 +* Enter a suitable name for your integration in the Name box or keep the default name.
1384 +* Click the Next button.
1387 1387  
1388 -(% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1386 +[[image:thingseye-io-step-2.png||height="625" width="1000"]]
1389 1389  
1390 -(% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L / LT-33222-L) and add DevEUI.(% style="display:none" %)
1388 +Uplink Data converter:
1391 1391  
1392 -Search under The things network
1390 +* Click the Create New button if it is not selected by default.
1391 +* Click the JavaScript button.
1392 +* Paste the uplink decoder function into the text area (first, delete the default code). The demo decoder function can be found here.
1393 +* Click the Next button.
1393 1393  
1394 -[[image:1653356838789-523.png||height="337" width="740"]]
1395 +[[image:thingseye-io-step-3.png||height="625" width="1000"]]
1395 1395  
1397 +Downlink Data converter (this is an optional step):
1396 1396  
1399 +* Click the Create new button if it is not selected by default.
1400 +* Click the JavaScript button.
1401 +* Paste the downlink decoder function into the text area (first, delete the default code). The demo decoder function can be found here.
1402 +* Click the Next button.
1397 1397  
1398 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1404 +[[image:thingseye-io-step-4.png||height="625" width="1000"]]
1399 1399  
1400 -[[image:image-20220524094909-1.png||height="335" width="729"]]
1406 +Connection:
1401 1401  
1408 +* Choose Region from the Host type.
1409 +* Enter the cluster of your The Things Stack in the Region textbox.
1410 +* Enter the Username and Password in the Credentials section. Use the same username and password you created with the MQTT page of The Things Stack.
1411 +* Click Check connection to test the connection. If the connection is successful, you can see the message saying Connected.
1412 +* Click the Add button.
1402 1402  
1403 -[[image:image-20220524094909-2.png||height="337" width="729"]]
1414 +[[image:thingseye-io-step-5.png||height="625" width="1000"]]
1404 1404  
1405 1405  
1406 -[[image:image-20220524094909-3.png||height="338" width="727"]]
1417 +Your integration is added to the integrations list and it will display on the Integrations page.
1407 1407  
1419 +[[image:thingseye-io-step-6.png||height="625" width="1000"]]
1408 1408  
1409 -[[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1410 1410  
1422 +== 3.6 Interface Details ==
1411 1411  
1412 -[[image:image-20220524094909-5.png||height="341" width="734"]]
1413 -
1414 -
1415 -
1416 -== 3.6 Interface Detail ==
1417 -
1418 -
1419 1419  === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1420 1420  
1421 1421  
1422 -Support NPN Type sensor
1427 +Support NPN-type sensor
1423 1423  
1424 1424  [[image:1653356991268-289.png]]
1425 1425  
1426 1426  
1432 +=== 3.6.2 Digital Input Ports: DI1/DI2 ( For LT-22222-L) ===
1427 1427  
1428 -=== 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1429 1429  
1430 -
1431 1431  (((
1432 -The DI port of LT-22222-L can support NPN or PNP output sensor.
1436 +The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
1433 1433  )))
1434 1434  
1435 1435  (((
1436 1436  (((
1437 -Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high.
1441 +The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
1438 1438  
1439 1439  
1440 1440  )))
... ... @@ -1444,7 +1444,7 @@
1444 1444  
1445 1445  (((
1446 1446  (((
1447 -When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1451 +(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
1448 1448  )))
1449 1449  )))
1450 1450  
... ... @@ -1453,22 +1453,22 @@
1453 1453  )))
1454 1454  
1455 1455  (((
1456 -(% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1460 +(% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
1457 1457  )))
1458 1458  
1459 1459  (((
1460 -This type of sensor will output a low signal GND when active.
1464 +This type of sensor outputs a low (GND) signal when active.
1461 1461  )))
1462 1462  
1463 1463  * (((
1464 -Connect sensor's output to DI1-
1468 +Connect the sensor's output to DI1-
1465 1465  )))
1466 1466  * (((
1467 -Connect sensor's VCC to DI1+.
1471 +Connect the sensor's VCC to DI1+.
1468 1468  )))
1469 1469  
1470 1470  (((
1471 -So when sensor active, the current between NEC2501 pin1 and pin2 is
1475 +When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be
1472 1472  )))
1473 1473  
1474 1474  (((
... ... @@ -1476,32 +1476,30 @@
1476 1476  )))
1477 1477  
1478 1478  (((
1479 -If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1483 +For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
1480 1480  )))
1481 1481  
1482 1482  (((
1483 1483  
1484 -
1485 -
1486 1486  )))
1487 1487  
1488 1488  (((
1489 -(% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1491 +(% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
1490 1490  )))
1491 1491  
1492 1492  (((
1493 -This type of sensor will output a high signal (example 24v) when active.
1495 +This type of sensor outputs a high signal (e.g., 24V) when active.
1494 1494  )))
1495 1495  
1496 1496  * (((
1497 -Connect sensor's output to DI1+
1499 +Connect the sensor's output to DI1+
1498 1498  )))
1499 1499  * (((
1500 -Connect sensor's GND DI1-.
1502 +Connect the sensor's GND DI1-.
1501 1501  )))
1502 1502  
1503 1503  (((
1504 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1506 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1505 1505  )))
1506 1506  
1507 1507  (((
... ... @@ -1509,32 +1509,30 @@
1509 1509  )))
1510 1510  
1511 1511  (((
1512 -If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1514 +If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
1513 1513  )))
1514 1514  
1515 1515  (((
1516 1516  
1517 -
1518 -
1519 1519  )))
1520 1520  
1521 1521  (((
1522 -(% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1522 +(% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
1523 1523  )))
1524 1524  
1525 1525  (((
1526 -Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1526 +Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
1527 1527  )))
1528 1528  
1529 1529  * (((
1530 -Connect sensor's output to DI1+ with a serial 50K resistor
1530 +Connect the sensor's output to DI1+ with a 50K resistor in series.
1531 1531  )))
1532 1532  * (((
1533 -Connect sensor's GND DI1-.
1533 +Connect the sensor's GND DI1-.
1534 1534  )))
1535 1535  
1536 1536  (((
1537 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1537 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1538 1538  )))
1539 1539  
1540 1540  (((
... ... @@ -1542,44 +1542,56 @@
1542 1542  )))
1543 1543  
1544 1544  (((
1545 -If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1545 +If the sensor output is 220V, the[[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
1546 1546  )))
1547 1547  
1548 1548  
1549 +(% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
1549 1549  
1550 -=== 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1551 +From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
1551 1551  
1553 +To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
1552 1552  
1553 -NPN output: GND or Float. Max voltage can apply to output pin is 36v.
1555 +[[image:image-20230616235145-1.png]]
1554 1554  
1555 -[[image:1653357531600-905.png]]
1557 +(% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
1556 1556  
1559 +[[image:image-20240219115718-1.png]]
1557 1557  
1558 1558  
1559 -=== 3.6.4 Analog Input Interface ===
1562 +=== 3.6.3 Digital Output Ports: DO1/DO2 /DO3 ===
1560 1560  
1561 1561  
1562 -The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1565 +(% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
1563 1563  
1567 +(% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
1564 1564  
1569 +[[image:1653357531600-905.png]]
1570 +
1571 +
1572 +=== 3.6.4 Analog Input Interfaces ===
1573 +
1574 +
1575 +The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
1576 +
1577 +
1565 1565  (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1566 1566  
1567 1567  [[image:1653357592296-182.png]]
1568 1568  
1569 -Example to connect a 4~~20mA sensor
1582 +Example: Connecting a 4~~20mA sensor
1570 1570  
1571 -We take the wind speed sensor as an example for reference only.
1584 +We will use the wind speed sensor as an example for reference only.
1572 1572  
1573 1573  
1574 1574  (% style="color:blue" %)**Specifications of the wind speed sensor:**
1575 1575  
1576 -**Red:  12~~24v**
1589 +(% style="color:red" %)**Red:  12~~24V**
1577 1577  
1578 -**Yellow:  4~~20mA**
1591 +(% style="color:#ffc000" %)**Yellow:  4~~20mA**
1579 1579  
1580 1580  **Black:  GND**
1581 1581  
1582 -
1583 1583  **Connection diagram:**
1584 1584  
1585 1585  [[image:1653357640609-758.png]]
... ... @@ -1587,12 +1587,29 @@
1587 1587  [[image:1653357648330-671.png||height="155" width="733"]]
1588 1588  
1589 1589  
1602 +Example: Connecting to a regulated power supply to measure voltage
1590 1590  
1604 +[[image:image-20230608101532-1.png||height="606" width="447"]]
1605 +
1606 +[[image:image-20230608101608-2.jpeg||height="379" width="284"]]
1607 +
1608 +[[image:image-20230608101722-3.png||height="102" width="1139"]]
1609 +
1610 +
1611 +(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
1612 +
1613 +(% style="color:red" %)**Red:  12~~24v**
1614 +
1615 +**Black:  GND**
1616 +
1617 +
1591 1591  === 3.6.5 Relay Output ===
1592 1592  
1593 1593  
1594 1594  (((
1595 -The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device’s Power Line to in serial of RO1_1 and RO_2. Such as below:
1622 +The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
1623 +
1624 +**Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
1596 1596  )))
1597 1597  
1598 1598  [[image:image-20220524100215-9.png]]
... ... @@ -1601,33 +1601,51 @@
1601 1601  [[image:image-20220524100215-10.png||height="382" width="723"]]
1602 1602  
1603 1603  
1604 -
1605 1605  == 3.7 LEDs Indicators ==
1606 1606  
1607 1607  
1608 -[[image:image-20220524100748-11.png]]
1636 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1637 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
1638 +|**PWR**|Always on if there is power
1639 +|**TX**|(((
1640 +(((
1641 +Device boot: TX blinks 5 times.
1642 +)))
1609 1609  
1644 +(((
1645 +Successful join network: TX ON for 5 seconds.
1646 +)))
1610 1610  
1648 +(((
1649 +Transmit a LoRa packet: TX blinks once
1650 +)))
1651 +)))
1652 +|**RX**|RX blinks once when receiving a packet.
1653 +|**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
1654 +|**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
1655 +|**DI1**|(((
1656 +For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
1657 +)))
1658 +|**DI2**|(((
1659 +For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
1660 +)))
1661 +|**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
1662 +|**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
1611 1611  
1612 -= 4. Use AT Command =
1664 += 4. Using AT Command =
1613 1613  
1666 +== 4.1 Connecting the LT-22222-L to a computer ==
1614 1614  
1615 -== 4.1 Access AT Command ==
1616 1616  
1617 -
1618 1618  (((
1619 -LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1670 +The LT-22222-L supports programming using AT Commands. You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a computer, as shown below.
1620 1620  )))
1621 1621  
1622 -(((
1623 -
1624 -)))
1625 -
1626 1626  [[image:1653358238933-385.png]]
1627 1627  
1628 1628  
1629 1629  (((
1630 -In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1677 +On the PC, the user needs to set the (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) to a baud rate o(% style="color:green" %)**9600**(%%) to access to access serial console of LT-22222-L. The AT commands are disabled by default, and a password (default:(% style="color:green" %)**123456**)(%%) must be entered to active them, as shown below:
1631 1631  )))
1632 1632  
1633 1633  [[image:1653358355238-883.png]]
... ... @@ -1634,10 +1634,12 @@
1634 1634  
1635 1635  
1636 1636  (((
1637 -More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1684 +You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1638 1638  )))
1639 1639  
1640 1640  (((
1688 +The following table lists all the AT commands related to the LT-22222-L, except for those used for switching between modes.
1689 +
1641 1641  AT+<CMD>?        : Help on <CMD>
1642 1642  )))
1643 1643  
... ... @@ -1822,10 +1822,8 @@
1822 1822  )))
1823 1823  
1824 1824  
1825 -
1826 1826  == 4.2 Common AT Command Sequence ==
1827 1827  
1828 -
1829 1829  === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1830 1830  
1831 1831  (((
... ... @@ -1870,7 +1870,6 @@
1870 1870  )))
1871 1871  
1872 1872  
1873 -
1874 1874  === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1875 1875  
1876 1876  (((
... ... @@ -1943,9 +1943,7 @@
1943 1943  **3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?
1944 1944  dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
1945 1945  
1946 -**4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5**
1947 -
1948 -
1992 +**4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.**
1949 1949  )))
1950 1950  
1951 1951  (((
... ... @@ -1952,11 +1952,7 @@
1952 1952  [[image:1653359097980-169.png||height="188" width="729"]]
1953 1953  )))
1954 1954  
1955 -(((
1956 -
1957 -)))
1958 1958  
1959 -
1960 1960  === 4.2.3 Change to Class A ===
1961 1961  
1962 1962  
... ... @@ -1963,38 +1963,45 @@
1963 1963  (((
1964 1964  (% style="color:blue" %)**If sensor JOINED:**
1965 1965  
1966 -(% style="background-color:#dcdcdc" %)**AT+CLASS=A
1967 -ATZ**
2006 +(% style="background-color:#dcdcdc" %)**AT+CLASS=A**
2007 +
2008 +(% style="background-color:#dcdcdc" %)**ATZ**
1968 1968  )))
1969 1969  
1970 1970  
2012 += 5. Case Study =
1971 1971  
1972 -= 5. FAQ =
2014 +== 5.1 Counting how many objects pass through the flow Line ==
1973 1973  
1974 1974  
1975 -== 5.1 How to upgrade the image? ==
2017 +Reference Link: [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]?
1976 1976  
1977 1977  
1978 -The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
2020 += 6. FAQ =
1979 1979  
1980 -* Support new features
1981 -* For bug fix
2022 +== 6.1 How to upgrade the image? ==
2023 +
2024 +
2025 +The LT-22222-L I/O Controller is shipped with a 3.5mm cable, which is used to upload an image to LT in order to:
2026 +
2027 +* Support new features.
2028 +* Fix bugs.
1982 1982  * Change LoRaWAN bands.
1983 1983  
1984 -Below shows the hardware connection for how to upload an image to the LT:
2031 +Below is the hardware connection setup for uploading an image to the LT:
1985 1985  
1986 1986  [[image:1653359603330-121.png]]
1987 1987  
1988 1988  
1989 1989  (((
1990 -(% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1991 -(% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:https://www.dropbox.com/sh/g99v0fxcltn9r1y/AADKXQ2v5ZT-S3sxdmbvE7UAa/LT-22222-L/image?dl=0&subfolder_nav_tracking=1]].
1992 -(% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
2037 +(% style="color:#0000ff" %)**Step 1**(%%)**:** Download the F[[lash Loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2038 +(% style="color:#0000ff" %)**Step 2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].
2039 +(% style="color:#0000ff" %)**Step 3**(%%)**:** Open the Flash Loader and choose the correct COM port to update.
1993 1993  
1994 1994  
1995 1995  (((
1996 1996  (% style="color:blue" %)**For LT-22222-L**(%%):
1997 -Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
2044 +Hold down the PRO button, then momentarily press the RST reset button. The (% style="color:red" %)**DO1 LED**(%%) will change from OFF to ON. When the (% style="color:red" %)**DO1 LED**(%%) is ON, it indicates that the device is in download mode.
1998 1998  )))
1999 1999  
2000 2000  
... ... @@ -2002,49 +2002,47 @@
2002 2002  
2003 2003   [[image:image-20220524103407-12.png]]
2004 2004  
2052 +
2005 2005  [[image:image-20220524103429-13.png]]
2006 2006  
2055 +
2007 2007  [[image:image-20220524104033-15.png]]
2008 2008  
2009 2009  
2010 -(% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2059 +(% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5mm cable. The pin mapping is as follows:
2011 2011  
2012 -
2013 2013  [[image:1653360054704-518.png||height="186" width="745"]]
2014 2014  
2015 2015  
2016 2016  (((
2017 2017  (((
2018 -
2066 +== 6.2 How to change the LoRa Frequency Bands/Region? ==
2019 2019  
2020 -== 5.2 How to change the LoRa Frequency Bands/Region? ==
2021 -
2022 2022  
2023 2023  )))
2024 2024  )))
2025 2025  
2026 2026  (((
2027 -User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2073 +You can follow the introductions o[[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2028 2028  )))
2029 2029  
2030 2030  (((
2031 2031  
2032 2032  
2079 +== 6.3 How to set up LT to work with a Single Channel Gateway, such as LG01/LG02? ==
2033 2033  
2034 -== 5.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2035 -
2036 2036  
2037 2037  )))
2038 2038  
2039 2039  (((
2040 2040  (((
2041 -In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2086 +In this case, you need to set the LT-33222-L to work in ABP mode and transmit on only one frequency.
2042 2042  )))
2043 2043  )))
2044 2044  
2045 2045  (((
2046 2046  (((
2047 -Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2092 +Assume you have an LG02 working on the frequency 868400000. Below are the steps.
2048 2048  
2049 2049  
2050 2050  )))
... ... @@ -2051,7 +2051,7 @@
2051 2051  )))
2052 2052  
2053 2053  (((
2054 -(% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2099 +(% style="color:#0000ff" %)**Step 1**(%%):  Log in to The Things Stack SANDBOX, create an ABP device in the application, and input the Network Session key (NwkSKey), App session key (AppSKey) of the device.
2055 2055  
2056 2056  
2057 2057  )))
... ... @@ -2076,13 +2076,21 @@
2076 2076  
2077 2077  (((
2078 2078  (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2124 +
2079 2079  (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2126 +
2080 2080  (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2128 +
2081 2081  (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2130 +
2082 2082  (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2132 +
2083 2083  (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2134 +
2084 2084  (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2136 +
2085 2085  (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2138 +
2086 2086  (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2087 2087  )))
2088 2088  
... ... @@ -2094,26 +2094,29 @@
2094 2094  [[image:1653360498588-932.png||height="485" width="726"]]
2095 2095  
2096 2096  
2150 +== 6.4 How to change the uplink interval? ==
2097 2097  
2098 -== 5.4 Can I see counting event in Serial? ==
2099 2099  
2153 +Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2100 2100  
2101 -(((
2102 -User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2103 2103  
2156 +== 6.5 Can I see the counting event in Serial? ==
2104 2104  
2105 2105  
2106 -== 5.5 Can i use point to point communication for LT-22222-L? ==
2159 +(((
2160 +User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2107 2107  
2108 2108  
2109 -Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  ,this is [[firmware>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AADKXQ2v5ZT-S3sxdmbvE7UAa/LT-22222-L/image?dl=0&subfolder_nav_tracking=1]].
2163 +== 6.6 Can I use point-to-point communication with LT-22222-L? ==
2110 2110  
2111 2111  
2166 +Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]. this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2167 +
2112 2112  
2113 2113  )))
2114 2114  
2115 2115  (((
2116 -== 5.6 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2172 +== 6.7 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2117 2117  
2118 2118  
2119 2119  If the device is not shut down, but directly powered off.
... ... @@ -2125,10 +2125,9 @@
2125 2125  After restart, the status before power failure will be read from flash.
2126 2126  
2127 2127  
2184 +== 6.8 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2128 2128  
2129 -== 5.7 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2130 2130  
2131 -
2132 2132  LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2133 2133  
2134 2134  
... ... @@ -2135,21 +2135,24 @@
2135 2135  [[image:image-20221006170630-1.png||height="610" width="945"]]
2136 2136  
2137 2137  
2138 -== 5.Can LT22222-L save RO state? ==
2193 +== 6.9 Can LT22222-L save RO state? ==
2139 2139  
2140 2140  
2141 2141  Firmware version needs to be no less than 1.6.0.
2142 2142  
2143 2143  
2199 +== 6.10 Why does the LT22222 always report 15.585V when measuring AVI? ==
2144 2144  
2145 -= 6. Trouble Shooting =
2146 2146  
2147 -
2202 +It is likely that the GND is not connected during the measurement, or the wire connected to the GND is loose.
2203 +
2204 +
2205 += 7. Trouble Shooting =
2148 2148  )))
2149 2149  
2150 2150  (((
2151 2151  (((
2152 -== 6.1 Downlink doesn't work, how to solve it? ==
2210 +== 7.1 Downlink doesn't work, how to solve it? ==
2153 2153  
2154 2154  
2155 2155  )))
... ... @@ -2162,9 +2162,8 @@
2162 2162  (((
2163 2163  
2164 2164  
2223 +== 7.2 Have trouble to upload image. ==
2165 2165  
2166 -== 6.2 Have trouble to upload image. ==
2167 -
2168 2168  
2169 2169  )))
2170 2170  
... ... @@ -2175,9 +2175,8 @@
2175 2175  (((
2176 2176  
2177 2177  
2235 +== 7.3 Why I can't join TTN in US915 /AU915 bands? ==
2178 2178  
2179 -== 6.3 Why I can't join TTN in US915 /AU915 bands? ==
2180 -
2181 2181  
2182 2182  )))
2183 2183  
... ... @@ -2186,10 +2186,16 @@
2186 2186  )))
2187 2187  
2188 2188  
2245 +== 7.4 Why can LT22222 perform Uplink normally, but cannot receive Downlink? ==
2189 2189  
2190 -= 7. Order Info =
2191 2191  
2248 +The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue state.
2249 +Use this command to bring their counts back together: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2192 2192  
2251 +
2252 += 8. Order Info =
2253 +
2254 +
2193 2193  (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2194 2194  
2195 2195  (% style="color:#4f81bd" %)**XXX:**
... ... @@ -2204,11 +2204,9 @@
2204 2204  * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2205 2205  * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2206 2206  
2269 += 9. Packing Info =
2207 2207  
2208 2208  
2209 -= 8. Packing Info =
2210 -
2211 -
2212 2212  **Package Includes**:
2213 2213  
2214 2214  * LT-22222-L I/O Controller x 1
... ... @@ -2223,22 +2223,20 @@
2223 2223  * Package Size / pcs : 14.5 x 8 x 5 cm
2224 2224  * Weight / pcs : 170g
2225 2225  
2286 += 10. Support =
2226 2226  
2227 2227  
2228 -= 9. Support =
2229 -
2230 -
2231 2231  * (((
2232 2232  Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2233 2233  )))
2234 2234  * (((
2235 -Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
2293 +Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]]
2236 2236  
2237 2237  
2238 2238  
2239 2239  )))
2240 2240  
2241 -= 10. Reference​​​​​ =
2299 += 11. Reference​​​​​ =
2242 2242  
2243 2243  
2244 2244  * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
image-20230424115112-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +27.1 KB
Content
image-20230425173351-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +207.8 KB
Content
image-20230425173427-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +150.1 KB
Content
image-20230426161322-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +15.2 KB
Content
image-20230608101532-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +563.0 KB
Content
image-20230608101608-2.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +287.8 KB
Content
image-20230608101722-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +25.4 KB
Content
image-20230616235145-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +19.4 KB
Content
image-20240219115718-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +27.7 KB
Content
lt-22222-l-dev-repo-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.8 KB
Content
lt-22222-l-dev-repo-reg-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.7 KB
Content
lt-22222-l-dev-repo-reg-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +319.1 KB
Content
lt-22222-l-manually-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.6 KB
Content
lt-22222-l-manually-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +279.1 KB
Content
thingseye-io-step-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +191.8 KB
Content
thingseye-io-step-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +260.3 KB
Content
thingseye-io-step-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +336.6 KB
Content
thingseye-io-step-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +361.1 KB
Content
thingseye-io-step-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +292.1 KB
Content
thingseye-io-step-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +203.8 KB
Content
tts-mqtt-integration.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.4 KB
Content