Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220610095606-1.png]]
3
4
5 **Contents:**
6
7 {{toc/}}
8
9
10
11
12
13
14
15 = 1.  Introduction =
16
17 == 1.1 ​ What is LoRaWAN LiDAR ToF Distance Sensor ==
18
19 (((
20
21
22 (((
23 The Dragino LLDS12 is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
24 )))
25
26 (((
27 The LLDS12 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
28 )))
29
30 (((
31 It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
32 )))
33
34 (((
35 The LoRa wireless technology used in LLDS12 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
36 )))
37
38 (((
39 LLDS12 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
40 )))
41
42 (((
43 Each LLDS12 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
44 )))
45 )))
46
47
48 [[image:1654826306458-414.png]]
49
50
51
52 == ​1.2  Features ==
53
54 * LoRaWAN 1.0.3 Class A
55 * Ultra-low power consumption
56 * Laser technology for distance detection
57 * Operating Range - 0.1m~~12m①
58 * Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
59 * Monitor Battery Level
60 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
61 * AT Commands to change parameters
62 * Uplink on periodically
63 * Downlink to change configure
64 * 8500mAh Battery for long term use
65
66
67 == 1.3  Probe Specification ==
68
69 * Storage temperature :-20℃~~75℃
70 * Operating temperature - -20℃~~60℃
71 * Operating Range - 0.1m~~12m①
72 * Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
73 * Distance resolution - 5mm
74 * Ambient light immunity - 70klux
75 * Enclosure rating - IP65
76 * Light source - LED
77 * Central wavelength - 850nm
78 * FOV - 3.6°
79 * Material of enclosure - ABS+PC
80 * Wire length - 25cm
81
82
83 == 1.4  Probe Dimension ==
84
85
86 [[image:1654827224480-952.png]]
87
88
89 == 1.5 ​ Applications ==
90
91 * Horizontal distance measurement
92 * Parking management system
93 * Object proximity and presence detection
94 * Intelligent trash can management system
95 * Robot obstacle avoidance
96 * Automatic control
97 * Sewer
98
99
100 == 1.6  Pin mapping and power on ==
101
102
103 [[image:1654827332142-133.png]]
104
105
106 = 2.  Configure LLDS12 to connect to LoRaWAN network =
107
108 == 2.1  How it works ==
109
110 (((
111 The LLDS12 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
112 )))
113
114 (((
115 In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.A0UseATCommand"]]to set the keys in the LLDS12.
116 )))
117
118
119 == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
120
121 (((
122 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
123 )))
124
125 (((
126 [[image:1654827857527-556.png]]
127 )))
128
129 (((
130 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
131 )))
132
133 (((
134 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSPH01.
135 )))
136
137 (((
138 Each LSPH01 is shipped with a sticker with the default device EUI as below:
139 )))
140
141 [[image:image-20220607170145-1.jpeg]]
142
143
144
145 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
146
147
148 **Register the device**
149
150
151 [[image:1654592600093-601.png]]
152
153
154
155 **Add APP EUI and DEV EUI**
156
157 [[image:1654592619856-881.png]]
158
159
160
161 **Add APP EUI in the application**
162
163 [[image:1654592632656-512.png]]
164
165
166
167 **Add APP KEY**
168
169 [[image:1654592653453-934.png]]
170
171
172 (% style="color:blue" %)**Step 2**(%%): Power on LLDS12
173
174
175 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
176
177 [[image:image-20220607170442-2.png]]
178
179
180 (((
181 (% style="color:blue" %)**Step 3**(%%)**:** The LLDS12 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
182 )))
183
184 [[image:1654833501679-968.png]]
185
186
187
188 == 2.3  ​Uplink Payload ==
189
190 (((
191 LLDS12 will uplink payload via LoRaWAN with below payload format: 
192 )))
193
194 (((
195 Uplink payload includes in total 11 bytes.
196 )))
197
198 (((
199
200 )))
201
202 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
203 |=(% style="width: 62.5px;" %)(((
204 **Size (bytes)**
205 )))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1**
206 |(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)(((
207 [[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]]
208 )))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
209 [[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]]
210 )))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|(((
211 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
212 )))
213
214 [[image:1654833689380-972.png]]
215
216
217
218 === 2.3.1  Battery Info ===
219
220
221 Check the battery voltage for LLDS12.
222
223 Ex1: 0x0B45 = 2885mV
224
225 Ex2: 0x0B49 = 2889mV
226
227
228
229 === 2.3.2  DS18B20 Temperature sensor ===
230
231 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
232
233
234 **Example**:
235
236 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
237
238 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
239
240
241
242 === 2.3.3  Distance ===
243
244 Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
245
246
247 **Example**:
248
249 If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
250
251
252
253 === 2.3.4  Distance signal strength ===
254
255 Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
256
257
258 **Example**:
259
260 If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
261
262 Customers can judge whether they need to adjust the environment based on the signal strength.
263
264
265
266 === 2.3.5  Interrupt Pin ===
267
268 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
269
270 Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]].
271
272 **Example:**
273
274 0x00: Normal uplink packet.
275
276 0x01: Interrupt Uplink Packet.
277
278
279
280 === 2.3.6  LiDAR temp ===
281
282 Characterize the internal temperature value of the sensor.
283
284 **Example: **
285 If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
286 If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
287
288
289
290 === 2.3.7  Message Type ===
291
292 (((
293 For a normal uplink payload, the message type is always 0x01.
294 )))
295
296 (((
297 Valid Message Type:
298 )))
299
300
301 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %)
302 |=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload**
303 |(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.32A0UplinkPayload"]]
304 |(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]]
305
306 === 2.3.8  Decode payload in The Things Network ===
307
308 While using TTN network, you can add the payload format to decode the payload.
309
310
311 [[image:1654592762713-715.png]]
312
313 (((
314 The payload decoder function for TTN is here:
315 )))
316
317 (((
318 LSPH01 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/LSPH01/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSNPK01/Decoder/]]
319 )))
320
321
322
323 == 2.4  Uplink Interval ==
324
325 The LLDS12 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
326
327
328
329 == 2.5  ​Show Data in DataCake IoT Server ==
330
331 (((
332 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
333 )))
334
335 (((
336
337 )))
338
339 (((
340 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
341 )))
342
343 (((
344 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
345 )))
346
347
348 [[image:1654592790040-760.png]]
349
350
351 [[image:1654592800389-571.png]]
352
353
354 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
355
356 (% style="color:blue" %)**Step 4**(%%)**: Create LLDS12 product.**
357
358 [[image:1654832691989-514.png]]
359
360
361 [[image:1654592833877-762.png]]
362
363
364 [[image:1654832740634-933.png]]
365
366
367
368 (((
369 (% style="color:blue" %)**Step 5**(%%)**: add payload decode**
370 )))
371
372 (((
373
374 )))
375
376 [[image:1654833065139-942.png]]
377
378
379
380 [[image:1654833092678-390.png]]
381
382
383
384 After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
385
386 [[image:1654833163048-332.png]]
387
388
389
390 == 2.6  Frequency Plans ==
391
392 (((
393 The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
394 )))
395
396
397 === 2.6.1  EU863-870 (EU868) ===
398
399 (((
400 (% style="color:blue" %)**Uplink:**
401 )))
402
403 (((
404 868.1 - SF7BW125 to SF12BW125
405 )))
406
407 (((
408 868.3 - SF7BW125 to SF12BW125 and SF7BW250
409 )))
410
411 (((
412 868.5 - SF7BW125 to SF12BW125
413 )))
414
415 (((
416 867.1 - SF7BW125 to SF12BW125
417 )))
418
419 (((
420 867.3 - SF7BW125 to SF12BW125
421 )))
422
423 (((
424 867.5 - SF7BW125 to SF12BW125
425 )))
426
427 (((
428 867.7 - SF7BW125 to SF12BW125
429 )))
430
431 (((
432 867.9 - SF7BW125 to SF12BW125
433 )))
434
435 (((
436 868.8 - FSK
437 )))
438
439 (((
440
441 )))
442
443 (((
444 (% style="color:blue" %)**Downlink:**
445 )))
446
447 (((
448 Uplink channels 1-9 (RX1)
449 )))
450
451 (((
452 869.525 - SF9BW125 (RX2 downlink only)
453 )))
454
455
456
457 === 2.6.2  US902-928(US915) ===
458
459 (((
460 Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
461 )))
462
463 (((
464 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
465 )))
466
467 (((
468 After Join success, the end node will switch to the correct sub band by:
469 )))
470
471 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
472 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
473
474 === 2.6.3  CN470-510 (CN470) ===
475
476 (((
477 Used in China, Default use CHE=1
478 )))
479
480 (((
481 (% style="color:blue" %)**Uplink:**
482 )))
483
484 (((
485 486.3 - SF7BW125 to SF12BW125
486 )))
487
488 (((
489 486.5 - SF7BW125 to SF12BW125
490 )))
491
492 (((
493 486.7 - SF7BW125 to SF12BW125
494 )))
495
496 (((
497 486.9 - SF7BW125 to SF12BW125
498 )))
499
500 (((
501 487.1 - SF7BW125 to SF12BW125
502 )))
503
504 (((
505 487.3 - SF7BW125 to SF12BW125
506 )))
507
508 (((
509 487.5 - SF7BW125 to SF12BW125
510 )))
511
512 (((
513 487.7 - SF7BW125 to SF12BW125
514 )))
515
516 (((
517
518 )))
519
520 (((
521 (% style="color:blue" %)**Downlink:**
522 )))
523
524 (((
525 506.7 - SF7BW125 to SF12BW125
526 )))
527
528 (((
529 506.9 - SF7BW125 to SF12BW125
530 )))
531
532 (((
533 507.1 - SF7BW125 to SF12BW125
534 )))
535
536 (((
537 507.3 - SF7BW125 to SF12BW125
538 )))
539
540 (((
541 507.5 - SF7BW125 to SF12BW125
542 )))
543
544 (((
545 507.7 - SF7BW125 to SF12BW125
546 )))
547
548 (((
549 507.9 - SF7BW125 to SF12BW125
550 )))
551
552 (((
553 508.1 - SF7BW125 to SF12BW125
554 )))
555
556 (((
557 505.3 - SF12BW125 (RX2 downlink only)
558 )))
559
560
561
562
563 === 2.6.4  AU915-928(AU915) ===
564
565 (((
566 Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
567 )))
568
569 (((
570 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
571 )))
572
573 (((
574
575 )))
576
577 (((
578 After Join success, the end node will switch to the correct sub band by:
579 )))
580
581 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
582 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
583
584 === 2.6.5  AS920-923 & AS923-925 (AS923) ===
585
586 (((
587 (% style="color:blue" %)**Default Uplink channel:**
588 )))
589
590 (((
591 923.2 - SF7BW125 to SF10BW125
592 )))
593
594 (((
595 923.4 - SF7BW125 to SF10BW125
596 )))
597
598 (((
599
600 )))
601
602 (((
603 (% style="color:blue" %)**Additional Uplink Channel**:
604 )))
605
606 (((
607 (OTAA mode, channel added by JoinAccept message)
608 )))
609
610 (((
611
612 )))
613
614 (((
615 (% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
616 )))
617
618 (((
619 922.2 - SF7BW125 to SF10BW125
620 )))
621
622 (((
623 922.4 - SF7BW125 to SF10BW125
624 )))
625
626 (((
627 922.6 - SF7BW125 to SF10BW125
628 )))
629
630 (((
631 922.8 - SF7BW125 to SF10BW125
632 )))
633
634 (((
635 923.0 - SF7BW125 to SF10BW125
636 )))
637
638 (((
639 922.0 - SF7BW125 to SF10BW125
640 )))
641
642 (((
643
644 )))
645
646 (((
647 (% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
648 )))
649
650 (((
651 923.6 - SF7BW125 to SF10BW125
652 )))
653
654 (((
655 923.8 - SF7BW125 to SF10BW125
656 )))
657
658 (((
659 924.0 - SF7BW125 to SF10BW125
660 )))
661
662 (((
663 924.2 - SF7BW125 to SF10BW125
664 )))
665
666 (((
667 924.4 - SF7BW125 to SF10BW125
668 )))
669
670 (((
671 924.6 - SF7BW125 to SF10BW125
672 )))
673
674 (((
675
676 )))
677
678 (((
679 (% style="color:blue" %)**Downlink:**
680 )))
681
682 (((
683 Uplink channels 1-8 (RX1)
684 )))
685
686 (((
687 923.2 - SF10BW125 (RX2)
688 )))
689
690
691
692
693 === 2.6.6  KR920-923 (KR920) ===
694
695 (((
696 (% style="color:blue" %)**Default channel:**
697 )))
698
699 (((
700 922.1 - SF7BW125 to SF12BW125
701 )))
702
703 (((
704 922.3 - SF7BW125 to SF12BW125
705 )))
706
707 (((
708 922.5 - SF7BW125 to SF12BW125
709 )))
710
711 (((
712
713 )))
714
715 (((
716 (% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
717 )))
718
719 (((
720 922.1 - SF7BW125 to SF12BW125
721 )))
722
723 (((
724 922.3 - SF7BW125 to SF12BW125
725 )))
726
727 (((
728 922.5 - SF7BW125 to SF12BW125
729 )))
730
731 (((
732 922.7 - SF7BW125 to SF12BW125
733 )))
734
735 (((
736 922.9 - SF7BW125 to SF12BW125
737 )))
738
739 (((
740 923.1 - SF7BW125 to SF12BW125
741 )))
742
743 (((
744 923.3 - SF7BW125 to SF12BW125
745 )))
746
747 (((
748
749 )))
750
751 (((
752 (% style="color:blue" %)**Downlink:**
753 )))
754
755 (((
756 Uplink channels 1-7(RX1)
757 )))
758
759 (((
760 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
761 )))
762
763
764
765
766 === 2.6.7  IN865-867 (IN865) ===
767
768 (((
769 (% style="color:blue" %)**Uplink:**
770 )))
771
772 (((
773 865.0625 - SF7BW125 to SF12BW125
774 )))
775
776 (((
777 865.4025 - SF7BW125 to SF12BW125
778 )))
779
780 (((
781 865.9850 - SF7BW125 to SF12BW125
782 )))
783
784 (((
785
786 )))
787
788 (((
789 (% style="color:blue" %)**Downlink:**
790 )))
791
792 (((
793 Uplink channels 1-3 (RX1)
794 )))
795
796 (((
797 866.550 - SF10BW125 (RX2)
798 )))
799
800
801
802
803 == 2.7  LED Indicator ==
804
805 The LLDS12 has an internal LED which is to show the status of different state.
806
807 * The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
808 * Blink once when device transmit a packet.
809
810 == 2.8  ​Firmware Change Log ==
811
812
813 **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
814
815
816 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>path:/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/]]
817
818
819
820 = 3.  LiDAR ToF Measurement =
821
822 == 3.1 Principle of Distance Measurement ==
823
824 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
825
826 [[image:1654831757579-263.png]]
827
828
829
830 == 3.2 Distance Measurement Characteristics ==
831
832 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
833
834 [[image:1654831774373-275.png]]
835
836
837 ①Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
838
839 ②Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
840
841 ③Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
842
843
844 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
845
846
847 [[image:1654831797521-720.png]]
848
849
850 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
851
852 [[image:1654831810009-716.png]]
853
854
855 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
856
857
858
859 == 3.3 Notice of usage: ==
860
861 Possible invalid /wrong reading for LiDAR ToF tech:
862
863 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
864 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
865 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
866 * The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
867
868 = 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
869
870 (((
871 Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
872 )))
873
874 * (((
875 AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
876 )))
877 * (((
878 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>path:/xwiki/bin/view/Main/]]
879 )))
880
881 (((
882
883
884 There are two kinds of commands to configure LLDS12, they are:
885 )))
886
887 * (((
888 (% style="color:#4f81bd" %)** General Commands**.
889 )))
890
891 (((
892 These commands are to configure:
893 )))
894
895 * (((
896 General system settings like: uplink interval.
897 )))
898 * (((
899 LoRaWAN protocol & radio related command.
900 )))
901
902 (((
903 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>path:/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
904 )))
905
906 (((
907
908 )))
909
910 * (((
911 (% style="color:#4f81bd" %)** Commands special design for LLDS12**
912 )))
913
914 (((
915 These commands only valid for LLDS12, as below:
916 )))
917
918
919
920 == 4.1  Set Transmit Interval Time ==
921
922 Feature: Change LoRaWAN End Node Transmit Interval.
923
924 (% style="color:#037691" %)**AT Command: AT+TDC**
925
926 [[image:image-20220607171554-8.png]]
927
928
929
930 (((
931 (% style="color:#037691" %)**Downlink Command: 0x01**
932 )))
933
934 (((
935 Format: Command Code (0x01) followed by 3 bytes time value.
936 )))
937
938 (((
939 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
940 )))
941
942 * (((
943 Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
944 )))
945 * (((
946 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
947
948
949
950 )))
951
952 == 4.2  Set Interrupt Mode ==
953
954 Feature, Set Interrupt mode for GPIO_EXIT.
955
956 (% style="color:#037691" %)**AT Command: AT+INTMOD**
957
958 [[image:image-20220610105806-2.png]]
959
960
961
962
963 (((
964 (% style="color:#037691" %)**Downlink Command: 0x06**
965 )))
966
967 (((
968 Format: Command Code (0x06) followed by 3 bytes.
969 )))
970
971 (((
972 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
973 )))
974
975 * (((
976 Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
977 )))
978 * (((
979 Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
980 )))
981
982 == 4.3  Get Firmware Version Info ==
983
984 Feature: use downlink to get firmware version.
985
986 (% style="color:#037691" %)**Downlink Command: 0x26**
987
988 [[image:image-20220607171917-10.png]]
989
990 * Reply to the confirmation package: 26 01
991 * Reply to non-confirmed packet: 26 00
992
993 Device will send an uplink after got this downlink command. With below payload:
994
995 Configures info payload:
996
997 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
998 |=(((
999 **Size(bytes)**
1000 )))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1001 |**Value**|Software Type|(((
1002 Frequency
1003
1004 Band
1005 )))|Sub-band|(((
1006 Firmware
1007
1008 Version
1009 )))|Sensor Type|Reserve|(((
1010 [[Message Type>>||anchor="H2.3.6MessageType"]]
1011 Always 0x02
1012 )))
1013
1014 **Software Type**: Always 0x03 for LLDS12
1015
1016
1017 **Frequency Band**:
1018
1019 *0x01: EU868
1020
1021 *0x02: US915
1022
1023 *0x03: IN865
1024
1025 *0x04: AU915
1026
1027 *0x05: KZ865
1028
1029 *0x06: RU864
1030
1031 *0x07: AS923
1032
1033 *0x08: AS923-1
1034
1035 *0x09: AS923-2
1036
1037 *0xa0: AS923-3
1038
1039
1040 **Sub-Band**: value 0x00 ~~ 0x08
1041
1042
1043 **Firmware Version**: 0x0100, Means: v1.0.0 version
1044
1045
1046 **Sensor Type**:
1047
1048 0x01: LSE01
1049
1050 0x02: LDDS75
1051
1052 0x03: LDDS20
1053
1054 0x04: LLMS01
1055
1056 0x05: LSPH01
1057
1058 0x06: LSNPK01
1059
1060 0x07: LLDS12
1061
1062
1063
1064 = 5.  Battery & How to replace =
1065
1066 == 5.1  Battery Type ==
1067
1068 (((
1069 LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1070 )))
1071
1072 (((
1073 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1074 )))
1075
1076 [[image:1654593587246-335.png]]
1077
1078
1079 Minimum Working Voltage for the LLDS12:
1080
1081 LLDS12:  2.45v ~~ 3.6v
1082
1083
1084
1085 == 5.2  Replace Battery ==
1086
1087 (((
1088 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1089 )))
1090
1091 (((
1092 And make sure the positive and negative pins match.
1093 )))
1094
1095
1096
1097 == 5.3  Power Consumption Analyze ==
1098
1099 (((
1100 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1101 )))
1102
1103 (((
1104 Instruction to use as below:
1105 )))
1106
1107
1108 **Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1109
1110 [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1111
1112
1113 **Step 2**: Open it and choose
1114
1115 * Product Model
1116 * Uplink Interval
1117 * Working Mode
1118
1119 And the Life expectation in difference case will be shown on the right.
1120
1121 [[image:1654593605679-189.png]]
1122
1123
1124 The battery related documents as below:
1125
1126 * (((
1127 [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
1128 )))
1129 * (((
1130 [[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1131 )))
1132 * (((
1133 [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1134 )))
1135
1136 [[image:image-20220607172042-11.png]]
1137
1138
1139
1140 === 5.3.1  ​Battery Note ===
1141
1142 (((
1143 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1144 )))
1145
1146
1147
1148 === ​5.3.2  Replace the battery ===
1149
1150 (((
1151 You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1152 )))
1153
1154 (((
1155 The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1156 )))
1157
1158
1159
1160 = 6.  Use AT Command =
1161
1162 == 6.1  Access AT Commands ==
1163
1164 LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1165
1166 [[image:1654593668970-604.png]]
1167
1168 **Connection:**
1169
1170 (% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1171
1172 (% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1173
1174 (% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1175
1176
1177 (((
1178 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSPH01. LSPH01 will output system info once power on as below:
1179 )))
1180
1181
1182 [[image:1654593712276-618.png]]
1183
1184 Valid AT Command please check [[Configure Device>>||anchor="H3.ConfigureLSPH01viaATCommandorLoRaWANDownlink"]].
1185
1186
1187 = 7.  FAQ =
1188
1189 == 7.1  How to change the LoRa Frequency Bands/Region ==
1190
1191 You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
1192 When downloading the images, choose the required image file for download. ​
1193
1194
1195 = 8.  Trouble Shooting =
1196
1197 == 8.1  AT Commands input doesn’t work ==
1198
1199
1200 In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1201
1202
1203 == 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1204
1205
1206 (((
1207 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1208 )))
1209
1210 (((
1211 Troubleshooting: Please avoid use of this product under such circumstance in practice.
1212 )))
1213
1214 (((
1215
1216 )))
1217
1218 (((
1219 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1220 )))
1221
1222 (((
1223 Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1224 )))
1225
1226
1227
1228 = 9.  Order Info =
1229
1230
1231 Part Number: (% style="color:blue" %)**LLDS12-XX**
1232
1233
1234 (% style="color:blue" %)**XX**(%%): The default frequency band
1235
1236 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1237 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1238 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1239 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1240 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1241 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1242 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1243 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1244
1245 = 10. ​ Packing Info =
1246
1247
1248 **Package Includes**:
1249
1250 * LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1251
1252 **Dimension and weight**:
1253
1254 * Device Size: cm
1255 * Device Weight: g
1256 * Package Size / pcs : cm
1257 * Weight / pcs : g
1258
1259 = 11.  ​Support =
1260
1261 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1262 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0