Version 111.25 by Xiaoling on 2022/06/10 14:35

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220610095606-1.png]]
3
4
5 **Contents:**
6
7 {{toc/}}
8
9
10
11
12
13
14
15 = 1.  Introduction =
16
17 == 1.1 ​ What is LoRaWAN LiDAR ToF Distance Sensor ==
18
19 (((
20
21
22 (((
23 The Dragino LLDS12 is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
24 )))
25
26 (((
27 The LLDS12 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
28 )))
29
30 (((
31 It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
32 )))
33
34 (((
35 The LoRa wireless technology used in LLDS12 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
36 )))
37
38 (((
39 LLDS12 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
40 )))
41
42 (((
43 Each LLDS12 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
44 )))
45 )))
46
47
48 [[image:1654826306458-414.png]]
49
50
51
52 == ​1.2  Features ==
53
54 * LoRaWAN 1.0.3 Class A
55 * Ultra-low power consumption
56 * Laser technology for distance detection
57 * Operating Range - 0.1m~~12m①
58 * Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
59 * Monitor Battery Level
60 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
61 * AT Commands to change parameters
62 * Uplink on periodically
63 * Downlink to change configure
64 * 8500mAh Battery for long term use
65
66 == 1.3  Probe Specification ==
67
68 * Storage temperature :-20℃~~75℃
69 * Operating temperature - -20℃~~60℃
70 * Operating Range - 0.1m~~12m①
71 * Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
72 * Distance resolution - 5mm
73 * Ambient light immunity - 70klux
74 * Enclosure rating - IP65
75 * Light source - LED
76 * Central wavelength - 850nm
77 * FOV - 3.6°
78 * Material of enclosure - ABS+PC
79 * Wire length - 25cm
80
81 == 1.4  Probe Dimension ==
82
83
84 [[image:1654827224480-952.png]]
85
86
87 == 1.5 ​ Applications ==
88
89 * Horizontal distance measurement
90 * Parking management system
91 * Object proximity and presence detection
92 * Intelligent trash can management system
93 * Robot obstacle avoidance
94 * Automatic control
95 * Sewer
96
97 == 1.6  Pin mapping and power on ==
98
99
100 [[image:1654827332142-133.png]]
101
102
103 = 2.  Configure LLDS12 to connect to LoRaWAN network =
104
105 == 2.1  How it works ==
106
107 (((
108 The LLDS12 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
109 )))
110
111 (((
112 In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.A0UseATCommand"]]to set the keys in the LLDS12.
113 )))
114
115
116 == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
117
118 (((
119 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
120 )))
121
122 (((
123 [[image:1654827857527-556.png]]
124 )))
125
126 (((
127 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
128 )))
129
130 (((
131 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSPH01.
132 )))
133
134 (((
135 Each LSPH01 is shipped with a sticker with the default device EUI as below:
136 )))
137
138 [[image:image-20220607170145-1.jpeg]]
139
140
141
142 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
143
144
145 **Register the device**
146
147
148 [[image:1654592600093-601.png]]
149
150
151
152 **Add APP EUI and DEV EUI**
153
154 [[image:1654592619856-881.png]]
155
156
157
158 **Add APP EUI in the application**
159
160 [[image:1654592632656-512.png]]
161
162
163
164 **Add APP KEY**
165
166 [[image:1654592653453-934.png]]
167
168
169 (% style="color:blue" %)**Step 2**(%%): Power on LLDS12
170
171
172 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
173
174 [[image:image-20220607170442-2.png]]
175
176
177 (((
178 (% style="color:blue" %)**Step 3**(%%)**:** The LLDS12 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
179 )))
180
181 [[image:1654833501679-968.png]]
182
183
184
185 == 2.3  ​Uplink Payload ==
186
187 (((
188 LLDS12 will uplink payload via LoRaWAN with below payload format: 
189 )))
190
191 (((
192 Uplink payload includes in total 11 bytes.
193 )))
194
195 (((
196
197 )))
198
199 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
200 |=(% style="width: 62.5px;" %)(((
201 **Size (bytes)**
202 )))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1**
203 |(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)(((
204 [[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]]
205 )))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
206 [[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]]
207 )))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|(((
208 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
209 )))
210
211 [[image:1654833689380-972.png]]
212
213
214
215 === 2.3.1  Battery Info ===
216
217
218 Check the battery voltage for LLDS12.
219
220 Ex1: 0x0B45 = 2885mV
221
222 Ex2: 0x0B49 = 2889mV
223
224
225
226 === 2.3.2  DS18B20 Temperature sensor ===
227
228 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
229
230
231 **Example**:
232
233 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
234
235 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
236
237
238
239 === 2.3.3  Distance ===
240
241 Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
242
243
244 **Example**:
245
246 If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
247
248
249
250 === 2.3.4  Distance signal strength ===
251
252 Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
253
254
255 **Example**:
256
257 If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
258
259 Customers can judge whether they need to adjust the environment based on the signal strength.
260
261
262
263 === 2.3.5  Interrupt Pin ===
264
265 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
266
267 Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]].
268
269 **Example:**
270
271 0x00: Normal uplink packet.
272
273 0x01: Interrupt Uplink Packet.
274
275
276
277 === 2.3.6  LiDAR temp ===
278
279 Characterize the internal temperature value of the sensor.
280
281 **Example: **
282 If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
283 If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
284
285
286
287 === 2.3.7  Message Type ===
288
289 (((
290 For a normal uplink payload, the message type is always 0x01.
291 )))
292
293 (((
294 Valid Message Type:
295 )))
296
297
298 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %)
299 |=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload**
300 |(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]]
301 |(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]]
302
303 === 2.3.8  Decode payload in The Things Network ===
304
305 While using TTN network, you can add the payload format to decode the payload.
306
307
308 [[image:1654592762713-715.png]]
309
310 (((
311 The payload decoder function for TTN is here:
312 )))
313
314 (((
315 LLDS12 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/]]
316 )))
317
318
319
320 == 2.4  Uplink Interval ==
321
322 The LLDS12 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
323
324
325
326 == 2.5  ​Show Data in DataCake IoT Server ==
327
328 (((
329 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
330 )))
331
332 (((
333
334 )))
335
336 (((
337 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
338 )))
339
340 (((
341 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
342 )))
343
344
345 [[image:1654592790040-760.png]]
346
347
348 [[image:1654592800389-571.png]]
349
350
351 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
352
353 (% style="color:blue" %)**Step 4**(%%)**: Create LLDS12 product.**
354
355 [[image:1654832691989-514.png]]
356
357
358 [[image:1654592833877-762.png]]
359
360
361 [[image:1654832740634-933.png]]
362
363
364
365 (((
366 (% style="color:blue" %)**Step 5**(%%)**: add payload decode**
367 )))
368
369 (((
370
371 )))
372
373 [[image:1654833065139-942.png]]
374
375
376
377 [[image:1654833092678-390.png]]
378
379
380
381 After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
382
383 [[image:1654833163048-332.png]]
384
385
386
387 == 2.6  Frequency Plans ==
388
389 (((
390 The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
391 )))
392
393
394 === 2.6.1  EU863-870 (EU868) ===
395
396 (((
397 (% style="color:blue" %)**Uplink:**
398 )))
399
400 (((
401 868.1 - SF7BW125 to SF12BW125
402 )))
403
404 (((
405 868.3 - SF7BW125 to SF12BW125 and SF7BW250
406 )))
407
408 (((
409 868.5 - SF7BW125 to SF12BW125
410 )))
411
412 (((
413 867.1 - SF7BW125 to SF12BW125
414 )))
415
416 (((
417 867.3 - SF7BW125 to SF12BW125
418 )))
419
420 (((
421 867.5 - SF7BW125 to SF12BW125
422 )))
423
424 (((
425 867.7 - SF7BW125 to SF12BW125
426 )))
427
428 (((
429 867.9 - SF7BW125 to SF12BW125
430 )))
431
432 (((
433 868.8 - FSK
434 )))
435
436 (((
437
438 )))
439
440 (((
441 (% style="color:blue" %)**Downlink:**
442 )))
443
444 (((
445 Uplink channels 1-9 (RX1)
446 )))
447
448 (((
449 869.525 - SF9BW125 (RX2 downlink only)
450 )))
451
452
453
454 === 2.6.2  US902-928(US915) ===
455
456 (((
457 Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
458 )))
459
460 (((
461 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
462 )))
463
464 (((
465 After Join success, the end node will switch to the correct sub band by:
466 )))
467
468 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
469 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
470
471
472 === 2.6.3  CN470-510 (CN470) ===
473
474 (((
475 Used in China, Default use CHE=1
476 )))
477
478 (((
479 (% style="color:blue" %)**Uplink:**
480 )))
481
482 (((
483 486.3 - SF7BW125 to SF12BW125
484 )))
485
486 (((
487 486.5 - SF7BW125 to SF12BW125
488 )))
489
490 (((
491 486.7 - SF7BW125 to SF12BW125
492 )))
493
494 (((
495 486.9 - SF7BW125 to SF12BW125
496 )))
497
498 (((
499 487.1 - SF7BW125 to SF12BW125
500 )))
501
502 (((
503 487.3 - SF7BW125 to SF12BW125
504 )))
505
506 (((
507 487.5 - SF7BW125 to SF12BW125
508 )))
509
510 (((
511 487.7 - SF7BW125 to SF12BW125
512 )))
513
514 (((
515
516 )))
517
518 (((
519 (% style="color:blue" %)**Downlink:**
520 )))
521
522 (((
523 506.7 - SF7BW125 to SF12BW125
524 )))
525
526 (((
527 506.9 - SF7BW125 to SF12BW125
528 )))
529
530 (((
531 507.1 - SF7BW125 to SF12BW125
532 )))
533
534 (((
535 507.3 - SF7BW125 to SF12BW125
536 )))
537
538 (((
539 507.5 - SF7BW125 to SF12BW125
540 )))
541
542 (((
543 507.7 - SF7BW125 to SF12BW125
544 )))
545
546 (((
547 507.9 - SF7BW125 to SF12BW125
548 )))
549
550 (((
551 508.1 - SF7BW125 to SF12BW125
552 )))
553
554 (((
555 505.3 - SF12BW125 (RX2 downlink only)
556 )))
557
558
559
560
561 === 2.6.4  AU915-928(AU915) ===
562
563 (((
564 Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
565 )))
566
567 (((
568 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
569 )))
570
571 (((
572
573 )))
574
575 (((
576 After Join success, the end node will switch to the correct sub band by:
577 )))
578
579 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
580 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
581
582
583 === 2.6.5  AS920-923 & AS923-925 (AS923) ===
584
585 (((
586 (% style="color:blue" %)**Default Uplink channel:**
587 )))
588
589 (((
590 923.2 - SF7BW125 to SF10BW125
591 )))
592
593 (((
594 923.4 - SF7BW125 to SF10BW125
595 )))
596
597 (((
598
599 )))
600
601 (((
602 (% style="color:blue" %)**Additional Uplink Channel**:
603 )))
604
605 (((
606 (OTAA mode, channel added by JoinAccept message)
607 )))
608
609 (((
610
611 )))
612
613 (((
614 (% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
615 )))
616
617 (((
618 922.2 - SF7BW125 to SF10BW125
619 )))
620
621 (((
622 922.4 - SF7BW125 to SF10BW125
623 )))
624
625 (((
626 922.6 - SF7BW125 to SF10BW125
627 )))
628
629 (((
630 922.8 - SF7BW125 to SF10BW125
631 )))
632
633 (((
634 923.0 - SF7BW125 to SF10BW125
635 )))
636
637 (((
638 922.0 - SF7BW125 to SF10BW125
639 )))
640
641 (((
642
643 )))
644
645 (((
646 (% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
647 )))
648
649 (((
650 923.6 - SF7BW125 to SF10BW125
651 )))
652
653 (((
654 923.8 - SF7BW125 to SF10BW125
655 )))
656
657 (((
658 924.0 - SF7BW125 to SF10BW125
659 )))
660
661 (((
662 924.2 - SF7BW125 to SF10BW125
663 )))
664
665 (((
666 924.4 - SF7BW125 to SF10BW125
667 )))
668
669 (((
670 924.6 - SF7BW125 to SF10BW125
671 )))
672
673 (((
674
675 )))
676
677 (((
678 (% style="color:blue" %)**Downlink:**
679 )))
680
681 (((
682 Uplink channels 1-8 (RX1)
683 )))
684
685 (((
686 923.2 - SF10BW125 (RX2)
687 )))
688
689
690
691
692 === 2.6.6  KR920-923 (KR920) ===
693
694 (((
695 (% style="color:blue" %)**Default channel:**
696 )))
697
698 (((
699 922.1 - SF7BW125 to SF12BW125
700 )))
701
702 (((
703 922.3 - SF7BW125 to SF12BW125
704 )))
705
706 (((
707 922.5 - SF7BW125 to SF12BW125
708 )))
709
710 (((
711
712 )))
713
714 (((
715 (% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
716 )))
717
718 (((
719 922.1 - SF7BW125 to SF12BW125
720 )))
721
722 (((
723 922.3 - SF7BW125 to SF12BW125
724 )))
725
726 (((
727 922.5 - SF7BW125 to SF12BW125
728 )))
729
730 (((
731 922.7 - SF7BW125 to SF12BW125
732 )))
733
734 (((
735 922.9 - SF7BW125 to SF12BW125
736 )))
737
738 (((
739 923.1 - SF7BW125 to SF12BW125
740 )))
741
742 (((
743 923.3 - SF7BW125 to SF12BW125
744 )))
745
746 (((
747
748 )))
749
750 (((
751 (% style="color:blue" %)**Downlink:**
752 )))
753
754 (((
755 Uplink channels 1-7(RX1)
756 )))
757
758 (((
759 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
760 )))
761
762
763
764
765 === 2.6.7  IN865-867 (IN865) ===
766
767 (((
768 (% style="color:blue" %)**Uplink:**
769 )))
770
771 (((
772 865.0625 - SF7BW125 to SF12BW125
773 )))
774
775 (((
776 865.4025 - SF7BW125 to SF12BW125
777 )))
778
779 (((
780 865.9850 - SF7BW125 to SF12BW125
781 )))
782
783 (((
784
785 )))
786
787 (((
788 (% style="color:blue" %)**Downlink:**
789 )))
790
791 (((
792 Uplink channels 1-3 (RX1)
793 )))
794
795 (((
796 866.550 - SF10BW125 (RX2)
797 )))
798
799
800
801
802 == 2.7  LED Indicator ==
803
804 The LLDS12 has an internal LED which is to show the status of different state.
805
806 * The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
807 * Blink once when device transmit a packet.
808
809 == 2.8  ​Firmware Change Log ==
810
811
812 **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
813
814
815 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
816
817
818
819 = 3.  LiDAR ToF Measurement =
820
821 == 3.1 Principle of Distance Measurement ==
822
823 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
824
825 [[image:1654831757579-263.png]]
826
827
828
829 == 3.2 Distance Measurement Characteristics ==
830
831 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
832
833 [[image:1654831774373-275.png]]
834
835
836 ①Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
837
838 ②Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
839
840 ③Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
841
842
843 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
844
845
846 [[image:1654831797521-720.png]]
847
848
849 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
850
851 [[image:1654831810009-716.png]]
852
853
854 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
855
856
857
858 == 3.3 Notice of usage: ==
859
860 Possible invalid /wrong reading for LiDAR ToF tech:
861
862 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
863 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
864 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
865 * The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
866
867
868 = 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
869
870 (((
871 Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
872 )))
873
874 * (((
875 AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]].
876 )))
877 * (((
878 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
879 )))
880
881 (((
882
883
884 There are two kinds of commands to configure LLDS12, they are:
885 )))
886
887 * (((
888 (% style="color:#4f81bd" %)** General Commands**.
889 )))
890
891 (((
892 These commands are to configure:
893 )))
894
895 * (((
896 General system settings like: uplink interval.
897 )))
898 * (((
899 LoRaWAN protocol & radio related command.
900 )))
901
902 (((
903 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
904 )))
905
906 (((
907
908 )))
909
910 * (((
911 (% style="color:#4f81bd" %)** Commands special design for LLDS12**
912 )))
913
914 (((
915 These commands only valid for LLDS12, as below:
916 )))
917
918
919
920 == 4.1  Set Transmit Interval Time ==
921
922 Feature: Change LoRaWAN End Node Transmit Interval.
923
924 (% style="color:#037691" %)**AT Command: AT+TDC**
925
926 [[image:image-20220607171554-8.png]]
927
928
929
930 (((
931 (% style="color:#037691" %)**Downlink Command: 0x01**
932 )))
933
934 (((
935 Format: Command Code (0x01) followed by 3 bytes time value.
936 )))
937
938 (((
939 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
940 )))
941
942 * (((
943 Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
944 )))
945 * (((
946 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
947
948
949
950 )))
951
952 == 4.2  Set Interrupt Mode ==
953
954 Feature, Set Interrupt mode for GPIO_EXIT.
955
956 (% style="color:#037691" %)**AT Command: AT+INTMOD**
957
958 [[image:image-20220610105806-2.png]]
959
960
961 (((
962 (% style="color:#037691" %)**Downlink Command: 0x06**
963 )))
964
965 (((
966 Format: Command Code (0x06) followed by 3 bytes.
967 )))
968
969 (((
970 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
971 )))
972
973 * (((
974 Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
975 )))
976 * (((
977 Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
978 )))
979
980
981
982 == 4.3  Get Firmware Version Info ==
983
984 Feature: use downlink to get firmware version.
985
986 (% style="color:#037691" %)**Downlink Command: 0x26**
987
988 [[image:image-20220607171917-10.png]]
989
990 * Reply to the confirmation package: 26 01
991 * Reply to non-confirmed packet: 26 00
992
993 Device will send an uplink after got this downlink command. With below payload:
994
995 Configures info payload:
996
997 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
998 |=(((
999 **Size(bytes)**
1000 )))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1001 |**Value**|Software Type|(((
1002 Frequency
1003
1004 Band
1005 )))|Sub-band|(((
1006 Firmware
1007
1008 Version
1009 )))|Sensor Type|Reserve|(((
1010 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
1011 Always 0x02
1012 )))
1013
1014 **Software Type**: Always 0x03 for LLDS12
1015
1016
1017 **Frequency Band**:
1018
1019 *0x01: EU868
1020
1021 *0x02: US915
1022
1023 *0x03: IN865
1024
1025 *0x04: AU915
1026
1027 *0x05: KZ865
1028
1029 *0x06: RU864
1030
1031 *0x07: AS923
1032
1033 *0x08: AS923-1
1034
1035 *0x09: AS923-2
1036
1037 *0xa0: AS923-3
1038
1039
1040 **Sub-Band**: value 0x00 ~~ 0x08
1041
1042
1043 **Firmware Version**: 0x0100, Means: v1.0.0 version
1044
1045
1046 **Sensor Type**:
1047
1048 0x01: LSE01
1049
1050 0x02: LDDS75
1051
1052 0x03: LDDS20
1053
1054 0x04: LLMS01
1055
1056 0x05: LSPH01
1057
1058 0x06: LSNPK01
1059
1060 0x07: LLDS12
1061
1062
1063
1064 = 5.  Battery & How to replace =
1065
1066 == 5.1  Battery Type ==
1067
1068 (((
1069 LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1070 )))
1071
1072 (((
1073 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1074 )))
1075
1076 [[image:1654593587246-335.png]]
1077
1078
1079 Minimum Working Voltage for the LLDS12:
1080
1081 LLDS12:  2.45v ~~ 3.6v
1082
1083
1084
1085 == 5.2  Replace Battery ==
1086
1087 (((
1088 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1089 )))
1090
1091 (((
1092 And make sure the positive and negative pins match.
1093 )))
1094
1095
1096
1097 == 5.3  Power Consumption Analyze ==
1098
1099 (((
1100 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1101 )))
1102
1103 (((
1104 Instruction to use as below:
1105 )))
1106
1107
1108 **Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1109
1110 [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1111
1112
1113 **Step 2**: Open it and choose
1114
1115 * Product Model
1116 * Uplink Interval
1117 * Working Mode
1118
1119 And the Life expectation in difference case will be shown on the right.
1120
1121 [[image:1654593605679-189.png]]
1122
1123
1124 The battery related documents as below:
1125
1126 * (((
1127 [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
1128 )))
1129 * (((
1130 [[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1131 )))
1132 * (((
1133 [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1134 )))
1135
1136 [[image:image-20220607172042-11.png]]
1137
1138
1139
1140 === 5.3.1  ​Battery Note ===
1141
1142 (((
1143 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1144 )))
1145
1146
1147
1148 === ​5.3.2  Replace the battery ===
1149
1150 (((
1151 You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1152 )))
1153
1154 (((
1155 The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1156 )))
1157
1158
1159
1160 = 6.  Use AT Command =
1161
1162 == 6.1  Access AT Commands ==
1163
1164 LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1165
1166 [[image:1654593668970-604.png]]
1167
1168 **Connection:**
1169
1170 (% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1171
1172 (% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1173
1174 (% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1175
1176
1177 (((
1178 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1179
1180 LLDS12 will output system info once power on as below:
1181 )))
1182
1183
1184 [[image:1654593712276-618.png]]
1185
1186 Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
1187
1188
1189 = 7.  FAQ =
1190
1191 == 7.1  How to change the LoRa Frequency Bands/Region ==
1192
1193 You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
1194 When downloading the images, choose the required image file for download. ​
1195
1196
1197 = 8.  Trouble Shooting =
1198
1199 == 8.1  AT Commands input doesn’t work ==
1200
1201
1202 In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1203
1204
1205 == 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1206
1207
1208 (((
1209 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1210 )))
1211
1212 (((
1213 Troubleshooting: Please avoid use of this product under such circumstance in practice.
1214 )))
1215
1216 (((
1217
1218 )))
1219
1220 (((
1221 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1222 )))
1223
1224 (((
1225 Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1226 )))
1227
1228
1229
1230 = 9.  Order Info =
1231
1232
1233 Part Number: (% style="color:blue" %)**LLDS12-XX**
1234
1235
1236 (% style="color:blue" %)**XX**(%%): The default frequency band
1237
1238 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1239 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1240 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1241 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1242 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1243 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1244 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1245 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1246
1247 = 10. ​ Packing Info =
1248
1249
1250 **Package Includes**:
1251
1252 * LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1253
1254 **Dimension and weight**:
1255
1256 * Device Size: cm
1257 * Device Weight: g
1258 * Package Size / pcs : cm
1259 * Weight / pcs : g
1260
1261 = 11.  ​Support =
1262
1263 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1264 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0