Version 111.15 by Xiaoling on 2022/06/10 14:22

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220610095606-1.png]]
3
4
5 **Contents:**
6
7 {{toc/}}
8
9
10
11
12
13
14
15 = 1.  Introduction =
16
17 == 1.1 ​ What is LoRaWAN LiDAR ToF Distance Sensor ==
18
19 (((
20
21
22 (((
23 The Dragino LLDS12 is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
24 )))
25
26 (((
27 The LLDS12 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
28 )))
29
30 (((
31 It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
32 )))
33
34 (((
35 The LoRa wireless technology used in LLDS12 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
36 )))
37
38 (((
39 LLDS12 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
40 )))
41
42 (((
43 Each LLDS12 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
44 )))
45 )))
46
47
48 [[image:1654826306458-414.png]]
49
50
51
52 == ​1.2  Features ==
53
54 * LoRaWAN 1.0.3 Class A
55 * Ultra-low power consumption
56 * Laser technology for distance detection
57 * Operating Range - 0.1m~~12m①
58 * Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
59 * Monitor Battery Level
60 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
61 * AT Commands to change parameters
62 * Uplink on periodically
63 * Downlink to change configure
64 * 8500mAh Battery for long term use
65
66 == 1.3  Probe Specification ==
67
68 * Storage temperature :-20℃~~75℃
69 * Operating temperature - -20℃~~60℃
70 * Operating Range - 0.1m~~12m①
71 * Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
72 * Distance resolution - 5mm
73 * Ambient light immunity - 70klux
74 * Enclosure rating - IP65
75 * Light source - LED
76 * Central wavelength - 850nm
77 * FOV - 3.6°
78 * Material of enclosure - ABS+PC
79 * Wire length - 25cm
80
81 == 1.4  Probe Dimension ==
82
83
84 [[image:1654827224480-952.png]]
85
86
87 == 1.5 ​ Applications ==
88
89 * Horizontal distance measurement
90 * Parking management system
91 * Object proximity and presence detection
92 * Intelligent trash can management system
93 * Robot obstacle avoidance
94 * Automatic control
95 * Sewer
96
97 == 1.6  Pin mapping and power on ==
98
99
100 [[image:1654827332142-133.png]]
101
102
103 = 2.  Configure LLDS12 to connect to LoRaWAN network =
104
105 == 2.1  How it works ==
106
107 (((
108 The LLDS12 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
109 )))
110
111 (((
112 In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.A0UseATCommand"]]to set the keys in the LLDS12.
113 )))
114
115
116 == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
117
118 (((
119 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
120 )))
121
122 (((
123 [[image:1654827857527-556.png]]
124 )))
125
126 (((
127 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
128 )))
129
130 (((
131 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSPH01.
132 )))
133
134 (((
135 Each LSPH01 is shipped with a sticker with the default device EUI as below:
136 )))
137
138 [[image:image-20220607170145-1.jpeg]]
139
140
141
142 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
143
144
145 **Register the device**
146
147
148 [[image:1654592600093-601.png]]
149
150
151
152 **Add APP EUI and DEV EUI**
153
154 [[image:1654592619856-881.png]]
155
156
157
158 **Add APP EUI in the application**
159
160 [[image:1654592632656-512.png]]
161
162
163
164 **Add APP KEY**
165
166 [[image:1654592653453-934.png]]
167
168
169 (% style="color:blue" %)**Step 2**(%%): Power on LLDS12
170
171
172 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
173
174 [[image:image-20220607170442-2.png]]
175
176
177 (((
178 (% style="color:blue" %)**Step 3**(%%)**:** The LLDS12 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
179 )))
180
181 [[image:1654833501679-968.png]]
182
183
184
185 == 2.3  ​Uplink Payload ==
186
187 (((
188 LLDS12 will uplink payload via LoRaWAN with below payload format: 
189 )))
190
191 (((
192 Uplink payload includes in total 11 bytes.
193 )))
194
195 (((
196
197 )))
198
199 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
200 |=(% style="width: 62.5px;" %)(((
201 **Size (bytes)**
202 )))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1**
203 |(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)(((
204 [[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]]
205 )))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
206 [[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]]
207 )))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|(((
208 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
209 )))
210
211 [[image:1654833689380-972.png]]
212
213
214
215 === 2.3.1  Battery Info ===
216
217
218 Check the battery voltage for LLDS12.
219
220 Ex1: 0x0B45 = 2885mV
221
222 Ex2: 0x0B49 = 2889mV
223
224
225
226 === 2.3.2  DS18B20 Temperature sensor ===
227
228 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
229
230
231 **Example**:
232
233 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
234
235 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
236
237
238
239 === 2.3.3  Distance ===
240
241 Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
242
243
244 **Example**:
245
246 If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
247
248
249
250 === 2.3.4  Distance signal strength ===
251
252 Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
253
254
255 **Example**:
256
257 If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
258
259 Customers can judge whether they need to adjust the environment based on the signal strength.
260
261
262
263 === 2.3.5  Interrupt Pin ===
264
265 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
266
267 Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]].
268
269 **Example:**
270
271 0x00: Normal uplink packet.
272
273 0x01: Interrupt Uplink Packet.
274
275
276
277 === 2.3.6  LiDAR temp ===
278
279 Characterize the internal temperature value of the sensor.
280
281 **Example: **
282 If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
283 If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
284
285
286
287 === 2.3.7  Message Type ===
288
289 (((
290 For a normal uplink payload, the message type is always 0x01.
291 )))
292
293 (((
294 Valid Message Type:
295 )))
296
297
298 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %)
299 |=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload**
300 |(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]]
301 |(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]]
302
303
304
305 === 2.3.8  Decode payload in The Things Network ===
306
307 While using TTN network, you can add the payload format to decode the payload.
308
309
310 [[image:1654592762713-715.png]]
311
312 (((
313 The payload decoder function for TTN is here:
314 )))
315
316 (((
317 LLDS12 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/]]
318 )))
319
320
321
322 == 2.4  Uplink Interval ==
323
324 The LLDS12 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
325
326
327
328 == 2.5  ​Show Data in DataCake IoT Server ==
329
330 (((
331 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
332 )))
333
334 (((
335
336 )))
337
338 (((
339 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
340 )))
341
342 (((
343 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
344 )))
345
346
347 [[image:1654592790040-760.png]]
348
349
350 [[image:1654592800389-571.png]]
351
352
353 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
354
355 (% style="color:blue" %)**Step 4**(%%)**: Create LLDS12 product.**
356
357 [[image:1654832691989-514.png]]
358
359
360 [[image:1654592833877-762.png]]
361
362
363 [[image:1654832740634-933.png]]
364
365
366
367 (((
368 (% style="color:blue" %)**Step 5**(%%)**: add payload decode**
369 )))
370
371 (((
372
373 )))
374
375 [[image:1654833065139-942.png]]
376
377
378
379 [[image:1654833092678-390.png]]
380
381
382
383 After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
384
385 [[image:1654833163048-332.png]]
386
387
388
389 == 2.6  Frequency Plans ==
390
391 (((
392 The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
393 )))
394
395
396 === 2.6.1  EU863-870 (EU868) ===
397
398 (((
399 (% style="color:blue" %)**Uplink:**
400 )))
401
402 (((
403 868.1 - SF7BW125 to SF12BW125
404 )))
405
406 (((
407 868.3 - SF7BW125 to SF12BW125 and SF7BW250
408 )))
409
410 (((
411 868.5 - SF7BW125 to SF12BW125
412 )))
413
414 (((
415 867.1 - SF7BW125 to SF12BW125
416 )))
417
418 (((
419 867.3 - SF7BW125 to SF12BW125
420 )))
421
422 (((
423 867.5 - SF7BW125 to SF12BW125
424 )))
425
426 (((
427 867.7 - SF7BW125 to SF12BW125
428 )))
429
430 (((
431 867.9 - SF7BW125 to SF12BW125
432 )))
433
434 (((
435 868.8 - FSK
436 )))
437
438 (((
439
440 )))
441
442 (((
443 (% style="color:blue" %)**Downlink:**
444 )))
445
446 (((
447 Uplink channels 1-9 (RX1)
448 )))
449
450 (((
451 869.525 - SF9BW125 (RX2 downlink only)
452 )))
453
454
455
456 === 2.6.2  US902-928(US915) ===
457
458 (((
459 Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
460 )))
461
462 (((
463 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
464 )))
465
466 (((
467 After Join success, the end node will switch to the correct sub band by:
468 )))
469
470 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
471 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
472
473
474
475
476 === 2.6.3  CN470-510 (CN470) ===
477
478 (((
479 Used in China, Default use CHE=1
480 )))
481
482 (((
483 (% style="color:blue" %)**Uplink:**
484 )))
485
486 (((
487 486.3 - SF7BW125 to SF12BW125
488 )))
489
490 (((
491 486.5 - SF7BW125 to SF12BW125
492 )))
493
494 (((
495 486.7 - SF7BW125 to SF12BW125
496 )))
497
498 (((
499 486.9 - SF7BW125 to SF12BW125
500 )))
501
502 (((
503 487.1 - SF7BW125 to SF12BW125
504 )))
505
506 (((
507 487.3 - SF7BW125 to SF12BW125
508 )))
509
510 (((
511 487.5 - SF7BW125 to SF12BW125
512 )))
513
514 (((
515 487.7 - SF7BW125 to SF12BW125
516 )))
517
518 (((
519
520 )))
521
522 (((
523 (% style="color:blue" %)**Downlink:**
524 )))
525
526 (((
527 506.7 - SF7BW125 to SF12BW125
528 )))
529
530 (((
531 506.9 - SF7BW125 to SF12BW125
532 )))
533
534 (((
535 507.1 - SF7BW125 to SF12BW125
536 )))
537
538 (((
539 507.3 - SF7BW125 to SF12BW125
540 )))
541
542 (((
543 507.5 - SF7BW125 to SF12BW125
544 )))
545
546 (((
547 507.7 - SF7BW125 to SF12BW125
548 )))
549
550 (((
551 507.9 - SF7BW125 to SF12BW125
552 )))
553
554 (((
555 508.1 - SF7BW125 to SF12BW125
556 )))
557
558 (((
559 505.3 - SF12BW125 (RX2 downlink only)
560 )))
561
562
563
564
565 === 2.6.4  AU915-928(AU915) ===
566
567 (((
568 Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
569 )))
570
571 (((
572 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
573 )))
574
575 (((
576
577 )))
578
579 (((
580 After Join success, the end node will switch to the correct sub band by:
581 )))
582
583 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
584 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
585
586
587
588
589 === 2.6.5  AS920-923 & AS923-925 (AS923) ===
590
591 (((
592 (% style="color:blue" %)**Default Uplink channel:**
593 )))
594
595 (((
596 923.2 - SF7BW125 to SF10BW125
597 )))
598
599 (((
600 923.4 - SF7BW125 to SF10BW125
601 )))
602
603 (((
604
605 )))
606
607 (((
608 (% style="color:blue" %)**Additional Uplink Channel**:
609 )))
610
611 (((
612 (OTAA mode, channel added by JoinAccept message)
613 )))
614
615 (((
616
617 )))
618
619 (((
620 (% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
621 )))
622
623 (((
624 922.2 - SF7BW125 to SF10BW125
625 )))
626
627 (((
628 922.4 - SF7BW125 to SF10BW125
629 )))
630
631 (((
632 922.6 - SF7BW125 to SF10BW125
633 )))
634
635 (((
636 922.8 - SF7BW125 to SF10BW125
637 )))
638
639 (((
640 923.0 - SF7BW125 to SF10BW125
641 )))
642
643 (((
644 922.0 - SF7BW125 to SF10BW125
645 )))
646
647 (((
648
649 )))
650
651 (((
652 (% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
653 )))
654
655 (((
656 923.6 - SF7BW125 to SF10BW125
657 )))
658
659 (((
660 923.8 - SF7BW125 to SF10BW125
661 )))
662
663 (((
664 924.0 - SF7BW125 to SF10BW125
665 )))
666
667 (((
668 924.2 - SF7BW125 to SF10BW125
669 )))
670
671 (((
672 924.4 - SF7BW125 to SF10BW125
673 )))
674
675 (((
676 924.6 - SF7BW125 to SF10BW125
677 )))
678
679 (((
680
681 )))
682
683 (((
684 (% style="color:blue" %)**Downlink:**
685 )))
686
687 (((
688 Uplink channels 1-8 (RX1)
689 )))
690
691 (((
692 923.2 - SF10BW125 (RX2)
693 )))
694
695
696
697
698 === 2.6.6  KR920-923 (KR920) ===
699
700 (((
701 (% style="color:blue" %)**Default channel:**
702 )))
703
704 (((
705 922.1 - SF7BW125 to SF12BW125
706 )))
707
708 (((
709 922.3 - SF7BW125 to SF12BW125
710 )))
711
712 (((
713 922.5 - SF7BW125 to SF12BW125
714 )))
715
716 (((
717
718 )))
719
720 (((
721 (% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
722 )))
723
724 (((
725 922.1 - SF7BW125 to SF12BW125
726 )))
727
728 (((
729 922.3 - SF7BW125 to SF12BW125
730 )))
731
732 (((
733 922.5 - SF7BW125 to SF12BW125
734 )))
735
736 (((
737 922.7 - SF7BW125 to SF12BW125
738 )))
739
740 (((
741 922.9 - SF7BW125 to SF12BW125
742 )))
743
744 (((
745 923.1 - SF7BW125 to SF12BW125
746 )))
747
748 (((
749 923.3 - SF7BW125 to SF12BW125
750 )))
751
752 (((
753
754 )))
755
756 (((
757 (% style="color:blue" %)**Downlink:**
758 )))
759
760 (((
761 Uplink channels 1-7(RX1)
762 )))
763
764 (((
765 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
766 )))
767
768
769
770
771 === 2.6.7  IN865-867 (IN865) ===
772
773 (((
774 (% style="color:blue" %)**Uplink:**
775 )))
776
777 (((
778 865.0625 - SF7BW125 to SF12BW125
779 )))
780
781 (((
782 865.4025 - SF7BW125 to SF12BW125
783 )))
784
785 (((
786 865.9850 - SF7BW125 to SF12BW125
787 )))
788
789 (((
790
791 )))
792
793 (((
794 (% style="color:blue" %)**Downlink:**
795 )))
796
797 (((
798 Uplink channels 1-3 (RX1)
799 )))
800
801 (((
802 866.550 - SF10BW125 (RX2)
803 )))
804
805
806
807
808 == 2.7  LED Indicator ==
809
810 The LLDS12 has an internal LED which is to show the status of different state.
811
812 * The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
813 * Blink once when device transmit a packet.
814
815
816
817 == 2.8  ​Firmware Change Log ==
818
819
820 **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
821
822
823 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>path:/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/]]
824
825
826
827 = 3.  LiDAR ToF Measurement =
828
829 == 3.1 Principle of Distance Measurement ==
830
831 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
832
833 [[image:1654831757579-263.png]]
834
835
836
837 == 3.2 Distance Measurement Characteristics ==
838
839 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
840
841 [[image:1654831774373-275.png]]
842
843
844 ①Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
845
846 ②Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
847
848 ③Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
849
850
851 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
852
853
854 [[image:1654831797521-720.png]]
855
856
857 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
858
859 [[image:1654831810009-716.png]]
860
861
862 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
863
864
865
866 == 3.3 Notice of usage: ==
867
868 Possible invalid /wrong reading for LiDAR ToF tech:
869
870 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
871 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
872 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
873 * The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
874
875
876
877 = 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
878
879 (((
880 Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
881 )))
882
883 * (((
884 AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
885 )))
886 * (((
887 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>path:/xwiki/bin/view/Main/]]
888 )))
889
890 (((
891
892
893 There are two kinds of commands to configure LLDS12, they are:
894 )))
895
896 * (((
897 (% style="color:#4f81bd" %)** General Commands**.
898 )))
899
900 (((
901 These commands are to configure:
902 )))
903
904 * (((
905 General system settings like: uplink interval.
906 )))
907 * (((
908 LoRaWAN protocol & radio related command.
909 )))
910
911 (((
912 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>path:/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
913 )))
914
915 (((
916
917 )))
918
919 * (((
920 (% style="color:#4f81bd" %)** Commands special design for LLDS12**
921 )))
922
923 (((
924 These commands only valid for LLDS12, as below:
925 )))
926
927
928
929 == 4.1  Set Transmit Interval Time ==
930
931 Feature: Change LoRaWAN End Node Transmit Interval.
932
933 (% style="color:#037691" %)**AT Command: AT+TDC**
934
935 [[image:image-20220607171554-8.png]]
936
937
938
939 (((
940 (% style="color:#037691" %)**Downlink Command: 0x01**
941 )))
942
943 (((
944 Format: Command Code (0x01) followed by 3 bytes time value.
945 )))
946
947 (((
948 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
949 )))
950
951 * (((
952 Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
953 )))
954 * (((
955 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
956
957
958
959 )))
960
961 == 4.2  Set Interrupt Mode ==
962
963 Feature, Set Interrupt mode for GPIO_EXIT.
964
965 (% style="color:#037691" %)**AT Command: AT+INTMOD**
966
967 [[image:image-20220610105806-2.png]]
968
969
970
971
972 (((
973 (% style="color:#037691" %)**Downlink Command: 0x06**
974 )))
975
976 (((
977 Format: Command Code (0x06) followed by 3 bytes.
978 )))
979
980 (((
981 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
982 )))
983
984 * (((
985 Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
986 )))
987 * (((
988 Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
989 )))
990
991 == 4.3  Get Firmware Version Info ==
992
993 Feature: use downlink to get firmware version.
994
995 (% style="color:#037691" %)**Downlink Command: 0x26**
996
997 [[image:image-20220607171917-10.png]]
998
999 * Reply to the confirmation package: 26 01
1000 * Reply to non-confirmed packet: 26 00
1001
1002 Device will send an uplink after got this downlink command. With below payload:
1003
1004 Configures info payload:
1005
1006 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1007 |=(((
1008 **Size(bytes)**
1009 )))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1010 |**Value**|Software Type|(((
1011 Frequency
1012
1013 Band
1014 )))|Sub-band|(((
1015 Firmware
1016
1017 Version
1018 )))|Sensor Type|Reserve|(((
1019 [[Message Type>>||anchor="H2.3.6MessageType"]]
1020 Always 0x02
1021 )))
1022
1023 **Software Type**: Always 0x03 for LLDS12
1024
1025
1026 **Frequency Band**:
1027
1028 *0x01: EU868
1029
1030 *0x02: US915
1031
1032 *0x03: IN865
1033
1034 *0x04: AU915
1035
1036 *0x05: KZ865
1037
1038 *0x06: RU864
1039
1040 *0x07: AS923
1041
1042 *0x08: AS923-1
1043
1044 *0x09: AS923-2
1045
1046 *0xa0: AS923-3
1047
1048
1049 **Sub-Band**: value 0x00 ~~ 0x08
1050
1051
1052 **Firmware Version**: 0x0100, Means: v1.0.0 version
1053
1054
1055 **Sensor Type**:
1056
1057 0x01: LSE01
1058
1059 0x02: LDDS75
1060
1061 0x03: LDDS20
1062
1063 0x04: LLMS01
1064
1065 0x05: LSPH01
1066
1067 0x06: LSNPK01
1068
1069 0x07: LLDS12
1070
1071
1072
1073 = 5.  Battery & How to replace =
1074
1075 == 5.1  Battery Type ==
1076
1077 (((
1078 LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1079 )))
1080
1081 (((
1082 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1083 )))
1084
1085 [[image:1654593587246-335.png]]
1086
1087
1088 Minimum Working Voltage for the LLDS12:
1089
1090 LLDS12:  2.45v ~~ 3.6v
1091
1092
1093
1094 == 5.2  Replace Battery ==
1095
1096 (((
1097 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1098 )))
1099
1100 (((
1101 And make sure the positive and negative pins match.
1102 )))
1103
1104
1105
1106 == 5.3  Power Consumption Analyze ==
1107
1108 (((
1109 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1110 )))
1111
1112 (((
1113 Instruction to use as below:
1114 )))
1115
1116
1117 **Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1118
1119 [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1120
1121
1122 **Step 2**: Open it and choose
1123
1124 * Product Model
1125 * Uplink Interval
1126 * Working Mode
1127
1128 And the Life expectation in difference case will be shown on the right.
1129
1130 [[image:1654593605679-189.png]]
1131
1132
1133 The battery related documents as below:
1134
1135 * (((
1136 [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
1137 )))
1138 * (((
1139 [[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1140 )))
1141 * (((
1142 [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1143 )))
1144
1145 [[image:image-20220607172042-11.png]]
1146
1147
1148
1149 === 5.3.1  ​Battery Note ===
1150
1151 (((
1152 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1153 )))
1154
1155
1156
1157 === ​5.3.2  Replace the battery ===
1158
1159 (((
1160 You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1161 )))
1162
1163 (((
1164 The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1165 )))
1166
1167
1168
1169 = 6.  Use AT Command =
1170
1171 == 6.1  Access AT Commands ==
1172
1173 LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1174
1175 [[image:1654593668970-604.png]]
1176
1177 **Connection:**
1178
1179 (% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1180
1181 (% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1182
1183 (% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1184
1185
1186 (((
1187 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSPH01. LSPH01 will output system info once power on as below:
1188 )))
1189
1190
1191 [[image:1654593712276-618.png]]
1192
1193 Valid AT Command please check [[Configure Device>>||anchor="H3.ConfigureLSPH01viaATCommandorLoRaWANDownlink"]].
1194
1195
1196 = 7.  FAQ =
1197
1198 == 7.1  How to change the LoRa Frequency Bands/Region ==
1199
1200 You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
1201 When downloading the images, choose the required image file for download. ​
1202
1203
1204 = 8.  Trouble Shooting =
1205
1206 == 8.1  AT Commands input doesn’t work ==
1207
1208
1209 In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1210
1211
1212 == 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1213
1214
1215 (((
1216 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1217 )))
1218
1219 (((
1220 Troubleshooting: Please avoid use of this product under such circumstance in practice.
1221 )))
1222
1223 (((
1224
1225 )))
1226
1227 (((
1228 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1229 )))
1230
1231 (((
1232 Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1233 )))
1234
1235
1236
1237 = 9.  Order Info =
1238
1239
1240 Part Number: (% style="color:blue" %)**LLDS12-XX**
1241
1242
1243 (% style="color:blue" %)**XX**(%%): The default frequency band
1244
1245 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1246 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1247 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1248 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1249 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1250 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1251 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1252 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1253
1254 = 10. ​ Packing Info =
1255
1256
1257 **Package Includes**:
1258
1259 * LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1260
1261 **Dimension and weight**:
1262
1263 * Device Size: cm
1264 * Device Weight: g
1265 * Package Size / pcs : cm
1266 * Weight / pcs : g
1267
1268 = 11.  ​Support =
1269
1270 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1271 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0