Version 111.11 by Xiaoling on 2022/06/10 14:17

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220610095606-1.png]]
3
4
5 **Contents:**
6
7 {{toc/}}
8
9
10
11
12
13
14
15 = 1.  Introduction =
16
17 == 1.1 ​ What is LoRaWAN LiDAR ToF Distance Sensor ==
18
19 (((
20
21
22 (((
23 The Dragino LLDS12 is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
24 )))
25
26 (((
27 The LLDS12 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
28 )))
29
30 (((
31 It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
32 )))
33
34 (((
35 The LoRa wireless technology used in LLDS12 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
36 )))
37
38 (((
39 LLDS12 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
40 )))
41
42 (((
43 Each LLDS12 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
44 )))
45 )))
46
47
48 [[image:1654826306458-414.png]]
49
50
51
52 == ​1.2  Features ==
53
54 * LoRaWAN 1.0.3 Class A
55 * Ultra-low power consumption
56 * Laser technology for distance detection
57 * Operating Range - 0.1m~~12m①
58 * Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
59 * Monitor Battery Level
60 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
61 * AT Commands to change parameters
62 * Uplink on periodically
63 * Downlink to change configure
64 * 8500mAh Battery for long term use
65
66 == 1.3  Probe Specification ==
67
68 * Storage temperature :-20℃~~75℃
69 * Operating temperature - -20℃~~60℃
70 * Operating Range - 0.1m~~12m①
71 * Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
72 * Distance resolution - 5mm
73 * Ambient light immunity - 70klux
74 * Enclosure rating - IP65
75 * Light source - LED
76 * Central wavelength - 850nm
77 * FOV - 3.6°
78 * Material of enclosure - ABS+PC
79 * Wire length - 25cm
80
81 == 1.4  Probe Dimension ==
82
83
84 [[image:1654827224480-952.png]]
85
86
87 == 1.5 ​ Applications ==
88
89 * Horizontal distance measurement
90 * Parking management system
91 * Object proximity and presence detection
92 * Intelligent trash can management system
93 * Robot obstacle avoidance
94 * Automatic control
95 * Sewer
96
97 == 1.6  Pin mapping and power on ==
98
99
100 [[image:1654827332142-133.png]]
101
102
103 = 2.  Configure LLDS12 to connect to LoRaWAN network =
104
105 == 2.1  How it works ==
106
107 (((
108 The LLDS12 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
109 )))
110
111 (((
112 In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.A0UseATCommand"]]to set the keys in the LLDS12.
113 )))
114
115
116 == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
117
118 (((
119 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
120 )))
121
122 (((
123 [[image:1654827857527-556.png]]
124 )))
125
126 (((
127 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
128 )))
129
130 (((
131 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSPH01.
132 )))
133
134 (((
135 Each LSPH01 is shipped with a sticker with the default device EUI as below:
136 )))
137
138 [[image:image-20220607170145-1.jpeg]]
139
140
141
142 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
143
144
145 **Register the device**
146
147
148 [[image:1654592600093-601.png]]
149
150
151
152 **Add APP EUI and DEV EUI**
153
154 [[image:1654592619856-881.png]]
155
156
157
158 **Add APP EUI in the application**
159
160 [[image:1654592632656-512.png]]
161
162
163
164 **Add APP KEY**
165
166 [[image:1654592653453-934.png]]
167
168
169 (% style="color:blue" %)**Step 2**(%%): Power on LLDS12
170
171
172 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
173
174 [[image:image-20220607170442-2.png]]
175
176
177 (((
178 (% style="color:blue" %)**Step 3**(%%)**:** The LLDS12 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
179 )))
180
181 [[image:1654833501679-968.png]]
182
183
184
185 == 2.3  ​Uplink Payload ==
186
187 (((
188 LLDS12 will uplink payload via LoRaWAN with below payload format: 
189 )))
190
191 (((
192 Uplink payload includes in total 11 bytes.
193 )))
194
195 (((
196
197 )))
198
199 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
200 |=(% style="width: 62.5px;" %)(((
201 **Size (bytes)**
202 )))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1**
203 |(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)(((
204 [[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]]
205 )))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
206 [[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]]
207 )))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|(((
208 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
209 )))
210
211 [[image:1654833689380-972.png]]
212
213
214
215 === 2.3.1  Battery Info ===
216
217
218 Check the battery voltage for LLDS12.
219
220 Ex1: 0x0B45 = 2885mV
221
222 Ex2: 0x0B49 = 2889mV
223
224
225
226 === 2.3.2  DS18B20 Temperature sensor ===
227
228 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
229
230
231 **Example**:
232
233 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
234
235 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
236
237
238
239 === 2.3.3  Distance ===
240
241 Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
242
243
244 **Example**:
245
246 If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
247
248
249
250 === 2.3.4  Distance signal strength ===
251
252 Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
253
254
255 **Example**:
256
257 If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
258
259 Customers can judge whether they need to adjust the environment based on the signal strength.
260
261
262
263 === 2.3.5  Interrupt Pin ===
264
265 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
266
267 Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]].
268
269 **Example:**
270
271 0x00: Normal uplink packet.
272
273 0x01: Interrupt Uplink Packet.
274
275
276
277 === 2.3.6  LiDAR temp ===
278
279 Characterize the internal temperature value of the sensor.
280
281 **Example: **
282 If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
283 If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
284
285
286
287 === 2.3.7  Message Type ===
288
289 (((
290 For a normal uplink payload, the message type is always 0x01.
291 )))
292
293 (((
294 Valid Message Type:
295 )))
296
297
298 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %)
299 |=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload**
300 |(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]]
301 |(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]]
302
303
304
305 === 2.3.8  Decode payload in The Things Network ===
306
307 While using TTN network, you can add the payload format to decode the payload.
308
309
310 [[image:1654592762713-715.png]]
311
312 (((
313 The payload decoder function for TTN is here:
314 )))
315
316 (((
317 LLDS12 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/]]
318 )))
319
320
321
322 == 2.4  Uplink Interval ==
323
324 The LLDS12 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
325
326
327
328 == 2.5  ​Show Data in DataCake IoT Server ==
329
330 (((
331 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
332 )))
333
334 (((
335
336 )))
337
338 (((
339 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
340 )))
341
342 (((
343 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
344 )))
345
346
347 [[image:1654592790040-760.png]]
348
349
350 [[image:1654592800389-571.png]]
351
352
353 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
354
355 (% style="color:blue" %)**Step 4**(%%)**: Create LLDS12 product.**
356
357 [[image:1654832691989-514.png]]
358
359
360 [[image:1654592833877-762.png]]
361
362
363 [[image:1654832740634-933.png]]
364
365
366
367 (((
368 (% style="color:blue" %)**Step 5**(%%)**: add payload decode**
369 )))
370
371 (((
372
373 )))
374
375 [[image:1654833065139-942.png]]
376
377
378
379 [[image:1654833092678-390.png]]
380
381
382
383 After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
384
385 [[image:1654833163048-332.png]]
386
387
388
389 == 2.6  Frequency Plans ==
390
391 (((
392 The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
393 )))
394
395
396 === 2.6.1  EU863-870 (EU868) ===
397
398 (((
399 (% style="color:blue" %)**Uplink:**
400 )))
401
402 (((
403 868.1 - SF7BW125 to SF12BW125
404 )))
405
406 (((
407 868.3 - SF7BW125 to SF12BW125 and SF7BW250
408 )))
409
410 (((
411 868.5 - SF7BW125 to SF12BW125
412 )))
413
414 (((
415 867.1 - SF7BW125 to SF12BW125
416 )))
417
418 (((
419 867.3 - SF7BW125 to SF12BW125
420 )))
421
422 (((
423 867.5 - SF7BW125 to SF12BW125
424 )))
425
426 (((
427 867.7 - SF7BW125 to SF12BW125
428 )))
429
430 (((
431 867.9 - SF7BW125 to SF12BW125
432 )))
433
434 (((
435 868.8 - FSK
436 )))
437
438 (((
439
440 )))
441
442 (((
443 (% style="color:blue" %)**Downlink:**
444 )))
445
446 (((
447 Uplink channels 1-9 (RX1)
448 )))
449
450 (((
451 869.525 - SF9BW125 (RX2 downlink only)
452 )))
453
454
455
456 === 2.6.2  US902-928(US915) ===
457
458 (((
459 Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
460 )))
461
462 (((
463 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
464 )))
465
466 (((
467 After Join success, the end node will switch to the correct sub band by:
468 )))
469
470 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
471 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
472
473 === 2.6.3  CN470-510 (CN470) ===
474
475 (((
476 Used in China, Default use CHE=1
477 )))
478
479 (((
480 (% style="color:blue" %)**Uplink:**
481 )))
482
483 (((
484 486.3 - SF7BW125 to SF12BW125
485 )))
486
487 (((
488 486.5 - SF7BW125 to SF12BW125
489 )))
490
491 (((
492 486.7 - SF7BW125 to SF12BW125
493 )))
494
495 (((
496 486.9 - SF7BW125 to SF12BW125
497 )))
498
499 (((
500 487.1 - SF7BW125 to SF12BW125
501 )))
502
503 (((
504 487.3 - SF7BW125 to SF12BW125
505 )))
506
507 (((
508 487.5 - SF7BW125 to SF12BW125
509 )))
510
511 (((
512 487.7 - SF7BW125 to SF12BW125
513 )))
514
515 (((
516
517 )))
518
519 (((
520 (% style="color:blue" %)**Downlink:**
521 )))
522
523 (((
524 506.7 - SF7BW125 to SF12BW125
525 )))
526
527 (((
528 506.9 - SF7BW125 to SF12BW125
529 )))
530
531 (((
532 507.1 - SF7BW125 to SF12BW125
533 )))
534
535 (((
536 507.3 - SF7BW125 to SF12BW125
537 )))
538
539 (((
540 507.5 - SF7BW125 to SF12BW125
541 )))
542
543 (((
544 507.7 - SF7BW125 to SF12BW125
545 )))
546
547 (((
548 507.9 - SF7BW125 to SF12BW125
549 )))
550
551 (((
552 508.1 - SF7BW125 to SF12BW125
553 )))
554
555 (((
556 505.3 - SF12BW125 (RX2 downlink only)
557 )))
558
559
560
561
562 === 2.6.4  AU915-928(AU915) ===
563
564 (((
565 Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
566 )))
567
568 (((
569 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
570 )))
571
572 (((
573
574 )))
575
576 (((
577 After Join success, the end node will switch to the correct sub band by:
578 )))
579
580 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
581 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
582
583 === 2.6.5  AS920-923 & AS923-925 (AS923) ===
584
585 (((
586 (% style="color:blue" %)**Default Uplink channel:**
587 )))
588
589 (((
590 923.2 - SF7BW125 to SF10BW125
591 )))
592
593 (((
594 923.4 - SF7BW125 to SF10BW125
595 )))
596
597 (((
598
599 )))
600
601 (((
602 (% style="color:blue" %)**Additional Uplink Channel**:
603 )))
604
605 (((
606 (OTAA mode, channel added by JoinAccept message)
607 )))
608
609 (((
610
611 )))
612
613 (((
614 (% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
615 )))
616
617 (((
618 922.2 - SF7BW125 to SF10BW125
619 )))
620
621 (((
622 922.4 - SF7BW125 to SF10BW125
623 )))
624
625 (((
626 922.6 - SF7BW125 to SF10BW125
627 )))
628
629 (((
630 922.8 - SF7BW125 to SF10BW125
631 )))
632
633 (((
634 923.0 - SF7BW125 to SF10BW125
635 )))
636
637 (((
638 922.0 - SF7BW125 to SF10BW125
639 )))
640
641 (((
642
643 )))
644
645 (((
646 (% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
647 )))
648
649 (((
650 923.6 - SF7BW125 to SF10BW125
651 )))
652
653 (((
654 923.8 - SF7BW125 to SF10BW125
655 )))
656
657 (((
658 924.0 - SF7BW125 to SF10BW125
659 )))
660
661 (((
662 924.2 - SF7BW125 to SF10BW125
663 )))
664
665 (((
666 924.4 - SF7BW125 to SF10BW125
667 )))
668
669 (((
670 924.6 - SF7BW125 to SF10BW125
671 )))
672
673 (((
674
675 )))
676
677 (((
678 (% style="color:blue" %)**Downlink:**
679 )))
680
681 (((
682 Uplink channels 1-8 (RX1)
683 )))
684
685 (((
686 923.2 - SF10BW125 (RX2)
687 )))
688
689
690
691
692 === 2.6.6  KR920-923 (KR920) ===
693
694 (((
695 (% style="color:blue" %)**Default channel:**
696 )))
697
698 (((
699 922.1 - SF7BW125 to SF12BW125
700 )))
701
702 (((
703 922.3 - SF7BW125 to SF12BW125
704 )))
705
706 (((
707 922.5 - SF7BW125 to SF12BW125
708 )))
709
710 (((
711
712 )))
713
714 (((
715 (% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
716 )))
717
718 (((
719 922.1 - SF7BW125 to SF12BW125
720 )))
721
722 (((
723 922.3 - SF7BW125 to SF12BW125
724 )))
725
726 (((
727 922.5 - SF7BW125 to SF12BW125
728 )))
729
730 (((
731 922.7 - SF7BW125 to SF12BW125
732 )))
733
734 (((
735 922.9 - SF7BW125 to SF12BW125
736 )))
737
738 (((
739 923.1 - SF7BW125 to SF12BW125
740 )))
741
742 (((
743 923.3 - SF7BW125 to SF12BW125
744 )))
745
746 (((
747
748 )))
749
750 (((
751 (% style="color:blue" %)**Downlink:**
752 )))
753
754 (((
755 Uplink channels 1-7(RX1)
756 )))
757
758 (((
759 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
760 )))
761
762
763
764
765 === 2.6.7  IN865-867 (IN865) ===
766
767 (((
768 (% style="color:blue" %)**Uplink:**
769 )))
770
771 (((
772 865.0625 - SF7BW125 to SF12BW125
773 )))
774
775 (((
776 865.4025 - SF7BW125 to SF12BW125
777 )))
778
779 (((
780 865.9850 - SF7BW125 to SF12BW125
781 )))
782
783 (((
784
785 )))
786
787 (((
788 (% style="color:blue" %)**Downlink:**
789 )))
790
791 (((
792 Uplink channels 1-3 (RX1)
793 )))
794
795 (((
796 866.550 - SF10BW125 (RX2)
797 )))
798
799
800
801
802 == 2.7  LED Indicator ==
803
804 The LLDS12 has an internal LED which is to show the status of different state.
805
806 * The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
807 * Blink once when device transmit a packet.
808
809 == 2.8  ​Firmware Change Log ==
810
811
812 **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
813
814
815 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>path:/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/]]
816
817
818
819 = 3.  LiDAR ToF Measurement =
820
821 == 3.1 Principle of Distance Measurement ==
822
823 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
824
825 [[image:1654831757579-263.png]]
826
827
828
829 == 3.2 Distance Measurement Characteristics ==
830
831 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
832
833 [[image:1654831774373-275.png]]
834
835
836 ①Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
837
838 ②Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
839
840 ③Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
841
842
843 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
844
845
846 [[image:1654831797521-720.png]]
847
848
849 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
850
851 [[image:1654831810009-716.png]]
852
853
854 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
855
856
857
858 == 3.3 Notice of usage: ==
859
860 Possible invalid /wrong reading for LiDAR ToF tech:
861
862 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
863 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
864 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
865 * The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
866
867 = 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
868
869 (((
870 Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
871 )))
872
873 * (((
874 AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
875 )))
876 * (((
877 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>path:/xwiki/bin/view/Main/]]
878 )))
879
880 (((
881
882
883 There are two kinds of commands to configure LLDS12, they are:
884 )))
885
886 * (((
887 (% style="color:#4f81bd" %)** General Commands**.
888 )))
889
890 (((
891 These commands are to configure:
892 )))
893
894 * (((
895 General system settings like: uplink interval.
896 )))
897 * (((
898 LoRaWAN protocol & radio related command.
899 )))
900
901 (((
902 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>path:/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
903 )))
904
905 (((
906
907 )))
908
909 * (((
910 (% style="color:#4f81bd" %)** Commands special design for LLDS12**
911 )))
912
913 (((
914 These commands only valid for LLDS12, as below:
915 )))
916
917
918
919 == 4.1  Set Transmit Interval Time ==
920
921 Feature: Change LoRaWAN End Node Transmit Interval.
922
923 (% style="color:#037691" %)**AT Command: AT+TDC**
924
925 [[image:image-20220607171554-8.png]]
926
927
928
929 (((
930 (% style="color:#037691" %)**Downlink Command: 0x01**
931 )))
932
933 (((
934 Format: Command Code (0x01) followed by 3 bytes time value.
935 )))
936
937 (((
938 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
939 )))
940
941 * (((
942 Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
943 )))
944 * (((
945 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
946
947
948
949 )))
950
951 == 4.2  Set Interrupt Mode ==
952
953 Feature, Set Interrupt mode for GPIO_EXIT.
954
955 (% style="color:#037691" %)**AT Command: AT+INTMOD**
956
957 [[image:image-20220610105806-2.png]]
958
959
960
961
962 (((
963 (% style="color:#037691" %)**Downlink Command: 0x06**
964 )))
965
966 (((
967 Format: Command Code (0x06) followed by 3 bytes.
968 )))
969
970 (((
971 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
972 )))
973
974 * (((
975 Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
976 )))
977 * (((
978 Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
979 )))
980
981 == 4.3  Get Firmware Version Info ==
982
983 Feature: use downlink to get firmware version.
984
985 (% style="color:#037691" %)**Downlink Command: 0x26**
986
987 [[image:image-20220607171917-10.png]]
988
989 * Reply to the confirmation package: 26 01
990 * Reply to non-confirmed packet: 26 00
991
992 Device will send an uplink after got this downlink command. With below payload:
993
994 Configures info payload:
995
996 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
997 |=(((
998 **Size(bytes)**
999 )))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1000 |**Value**|Software Type|(((
1001 Frequency
1002
1003 Band
1004 )))|Sub-band|(((
1005 Firmware
1006
1007 Version
1008 )))|Sensor Type|Reserve|(((
1009 [[Message Type>>||anchor="H2.3.6MessageType"]]
1010 Always 0x02
1011 )))
1012
1013 **Software Type**: Always 0x03 for LLDS12
1014
1015
1016 **Frequency Band**:
1017
1018 *0x01: EU868
1019
1020 *0x02: US915
1021
1022 *0x03: IN865
1023
1024 *0x04: AU915
1025
1026 *0x05: KZ865
1027
1028 *0x06: RU864
1029
1030 *0x07: AS923
1031
1032 *0x08: AS923-1
1033
1034 *0x09: AS923-2
1035
1036 *0xa0: AS923-3
1037
1038
1039 **Sub-Band**: value 0x00 ~~ 0x08
1040
1041
1042 **Firmware Version**: 0x0100, Means: v1.0.0 version
1043
1044
1045 **Sensor Type**:
1046
1047 0x01: LSE01
1048
1049 0x02: LDDS75
1050
1051 0x03: LDDS20
1052
1053 0x04: LLMS01
1054
1055 0x05: LSPH01
1056
1057 0x06: LSNPK01
1058
1059 0x07: LLDS12
1060
1061
1062
1063 = 5.  Battery & How to replace =
1064
1065 == 5.1  Battery Type ==
1066
1067 (((
1068 LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1069 )))
1070
1071 (((
1072 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1073 )))
1074
1075 [[image:1654593587246-335.png]]
1076
1077
1078 Minimum Working Voltage for the LLDS12:
1079
1080 LLDS12:  2.45v ~~ 3.6v
1081
1082
1083
1084 == 5.2  Replace Battery ==
1085
1086 (((
1087 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1088 )))
1089
1090 (((
1091 And make sure the positive and negative pins match.
1092 )))
1093
1094
1095
1096 == 5.3  Power Consumption Analyze ==
1097
1098 (((
1099 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1100 )))
1101
1102 (((
1103 Instruction to use as below:
1104 )))
1105
1106
1107 **Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1108
1109 [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1110
1111
1112 **Step 2**: Open it and choose
1113
1114 * Product Model
1115 * Uplink Interval
1116 * Working Mode
1117
1118 And the Life expectation in difference case will be shown on the right.
1119
1120 [[image:1654593605679-189.png]]
1121
1122
1123 The battery related documents as below:
1124
1125 * (((
1126 [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
1127 )))
1128 * (((
1129 [[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1130 )))
1131 * (((
1132 [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1133 )))
1134
1135 [[image:image-20220607172042-11.png]]
1136
1137
1138
1139 === 5.3.1  ​Battery Note ===
1140
1141 (((
1142 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1143 )))
1144
1145
1146
1147 === ​5.3.2  Replace the battery ===
1148
1149 (((
1150 You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1151 )))
1152
1153 (((
1154 The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1155 )))
1156
1157
1158
1159 = 6.  Use AT Command =
1160
1161 == 6.1  Access AT Commands ==
1162
1163 LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1164
1165 [[image:1654593668970-604.png]]
1166
1167 **Connection:**
1168
1169 (% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1170
1171 (% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1172
1173 (% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1174
1175
1176 (((
1177 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSPH01. LSPH01 will output system info once power on as below:
1178 )))
1179
1180
1181 [[image:1654593712276-618.png]]
1182
1183 Valid AT Command please check [[Configure Device>>||anchor="H3.ConfigureLSPH01viaATCommandorLoRaWANDownlink"]].
1184
1185
1186 = 7.  FAQ =
1187
1188 == 7.1  How to change the LoRa Frequency Bands/Region ==
1189
1190 You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
1191 When downloading the images, choose the required image file for download. ​
1192
1193
1194 = 8.  Trouble Shooting =
1195
1196 == 8.1  AT Commands input doesn’t work ==
1197
1198
1199 In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1200
1201
1202 == 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1203
1204
1205 (((
1206 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1207 )))
1208
1209 (((
1210 Troubleshooting: Please avoid use of this product under such circumstance in practice.
1211 )))
1212
1213 (((
1214
1215 )))
1216
1217 (((
1218 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1219 )))
1220
1221 (((
1222 Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1223 )))
1224
1225
1226
1227 = 9.  Order Info =
1228
1229
1230 Part Number: (% style="color:blue" %)**LLDS12-XX**
1231
1232
1233 (% style="color:blue" %)**XX**(%%): The default frequency band
1234
1235 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1236 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1237 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1238 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1239 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1240 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1241 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1242 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1243
1244 = 10. ​ Packing Info =
1245
1246
1247 **Package Includes**:
1248
1249 * LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1250
1251 **Dimension and weight**:
1252
1253 * Device Size: cm
1254 * Device Weight: g
1255 * Package Size / pcs : cm
1256 * Weight / pcs : g
1257
1258 = 11.  ​Support =
1259
1260 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1261 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0