Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220610095606-1.png]]
3
4
5 **Contents:**
6
7
8
9
10
11
12
13 = 1.  Introduction =
14
15 == 1.1 ​ What is LoRaWAN LiDAR ToF Distance Sensor ==
16
17 (((
18
19
20 The Dragino LLDS12 is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
21
22 The LLDS12 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
23
24 It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
25
26 The LoRa wireless technology used in LLDS12 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
27
28 LLDS12 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
29
30 Each LLDS12 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
31 )))
32
33
34 [[image:1654826306458-414.png]]
35
36
37
38 == ​1.2  Features ==
39
40 * LoRaWAN 1.0.3 Class A
41 * Ultra-low power consumption
42 * Laser technology for distance detection
43 * Operating Range - 0.1m~~12m①
44 * Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
45 * Monitor Battery Level
46 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
47 * AT Commands to change parameters
48 * Uplink on periodically
49 * Downlink to change configure
50 * 8500mAh Battery for long term use
51
52 == 1.3  Probe Specification ==
53
54 * Storage temperature :-20℃~~75℃
55 * Operating temperature - -20℃~~60℃
56 * Operating Range - 0.1m~~12m①
57 * Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
58 * Distance resolution - 5mm
59 * Ambient light immunity - 70klux
60 * Enclosure rating - IP65
61 * Light source - LED
62 * Central wavelength - 850nm
63 * FOV - 3.6°
64 * Material of enclosure - ABS+PC
65 * Wire length - 25cm
66
67 == 1.4  Probe Dimension ==
68
69
70 [[image:1654827224480-952.png]]
71
72
73
74 == 1.5 ​ Applications ==
75
76 * Horizontal distance measurement
77 * Parking management system
78 * Object proximity and presence detection
79 * Intelligent trash can management system
80 * Robot obstacle avoidance
81 * Automatic control
82 * Sewer
83
84 == 1.6 Pin mapping and power on ==
85
86
87 [[image:1654827332142-133.png]]
88
89
90
91 = 2. Configure LLDS12 to connect to LoRaWAN network =
92
93 == 2.1 How it works ==
94
95 (((
96 The LLDS12 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
97 )))
98
99 (((
100 In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.UseATCommand"]]to set the keys in the LLDS12.
101 )))
102
103
104 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
105
106 (((
107 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
108 )))
109
110 (((
111 [[image:1654827857527-556.png]]
112 )))
113
114 (((
115 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
116 )))
117
118 (((
119 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSPH01.
120 )))
121
122 (((
123 Each LSPH01 is shipped with a sticker with the default device EUI as below:
124 )))
125
126 [[image:image-20220607170145-1.jpeg]]
127
128
129
130 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
131
132
133 **Register the device**
134
135
136 [[image:1654592600093-601.png]]
137
138
139 **Add APP EUI and DEV EUI**
140
141 [[image:1654592619856-881.png]]
142
143
144 **Add APP EUI in the application**
145
146 [[image:1654592632656-512.png]]
147
148
149
150 **Add APP KEY**
151
152 [[image:1654592653453-934.png]]
153
154
155 (% style="color:blue" %)**Step 2**(%%): Power on LSPH01
156
157
158 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
159
160 [[image:image-20220607170442-2.png]]
161
162
163 (((
164 (% style="color:blue" %)**Step 3**(%%)**:** The LSPH01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
165 )))
166
167 [[image:1654592697690-910.png]]
168
169
170
171 == 2.3 ​Uplink Payload ==
172
173 (((
174 LSPH01 will uplink payload via LoRaWAN with below payload format: 
175 )))
176
177 (((
178 Uplink payload includes in total 11 bytes.
179 )))
180
181 (((
182 Normal uplink payload:
183 )))
184
185 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
186 |=(% style="width: 62.5px;" %)(((
187 **Size (bytes)**
188 )))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1**
189 |(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1BatteryInfo"]]|(% style="width:62.5px" %)(((
190 [[Temperature>>||anchor="H2.3.2DS18B20Temperaturesensor"]]
191
192 [[(Optional)>>||anchor="H2.3.2DS18B20Temperaturesensor"]]
193 )))|[[Soil pH>>||anchor="H2.3.3SoilpH"]]|[[Soil Temperature>>||anchor="H2.3.4SoilTemperature"]]|(((
194 [[Digital Interrupt (Optional)>>||anchor="H2.3.5InterruptPin"]]
195 )))|Reserve|(((
196 [[Message Type>>||anchor="H2.3.6MessageType"]]
197 )))
198
199 [[image:1654592721645-318.png]]
200
201
202
203 === 2.3.1 Battery Info ===
204
205
206 Check the battery voltage for LSPH01.
207
208 Ex1: 0x0B45 = 2885mV
209
210 Ex2: 0x0B49 = 2889mV
211
212
213
214 === 2.3.2 DS18B20 Temperature sensor ===
215
216 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
217
218
219 **Example**:
220
221 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
222
223 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
224
225
226
227 === 2.3.3 Soil pH ===
228
229 Range: 0 ~~ 14 pH
230
231 **Example:**
232
233 (% style="color:#037691" %)** 0x02B7(H) = 695(D) = 6.95pH**
234
235
236
237 === 2.3.4 Soil Temperature ===
238
239 Get Soil Temperature 
240
241
242 **Example**:
243
244 If payload is: **0105H**:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
245
246 If payload is: **FF3FH** :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
247
248
249
250 === 2.3.5 Interrupt Pin ===
251
252 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up.
253
254
255 **Example:**
256
257 0x00: Normal uplink packet.
258
259 0x01: Interrupt Uplink Packet.
260
261
262
263 === 2.3.6 Message Type ===
264
265 (((
266 For a normal uplink payload, the message type is always 0x01.
267 )))
268
269 (((
270 Valid Message Type:
271 )))
272
273
274 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %)
275 |=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload**
276 |(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]
277 |(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.4GetFirmwareVersionInfo"]]
278 |(% style="width:160px" %)0x03|(% style="width:163px" %)Reply Calibration Info|(% style="width:173px" %)[[Calibration Payload>>||anchor="H2.7Calibration"]]
279
280 === 2.3.7 Decode payload in The Things Network ===
281
282 While using TTN network, you can add the payload format to decode the payload.
283
284
285 [[image:1654592762713-715.png]]
286
287 (((
288 The payload decoder function for TTN is here:
289 )))
290
291 (((
292 LSPH01 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/LSPH01/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSNPK01/Decoder/]]
293 )))
294
295
296
297 == 2.4 Uplink Interval ==
298
299 The LSPH01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
300
301
302
303 == 2.5 ​Show Data in DataCake IoT Server ==
304
305 (((
306 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
307 )))
308
309 (((
310
311 )))
312
313 (((
314 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
315 )))
316
317 (((
318 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
319 )))
320
321
322 [[image:1654592790040-760.png]]
323
324
325 [[image:1654592800389-571.png]]
326
327
328 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
329
330 (% style="color:blue" %)**Step 4**(%%)**: Create LSPH01 product.**
331
332 [[image:1654592819047-535.png]]
333
334
335
336 [[image:1654592833877-762.png]]
337
338
339 [[image:1654592856403-259.png]]
340
341
342 (((
343 (% style="color:blue" %)**Step 5**(%%)**: add payload decode**
344 )))
345
346 (((
347 Download Datacake decoder from: [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/LSPH01/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSNPK01/Decoder/]]
348 )))
349
350
351 [[image:1654592878525-845.png]]
352
353 [[image:1654592892967-474.png]]
354
355
356 [[image:1654592905354-123.png]]
357
358
359 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
360
361
362 [[image:1654592917530-261.png]]
363
364
365
366 == 2.6 Installation and Maintain ==
367
368 === 2.6.1 Before measurement ===
369
370 (((
371 (((
372 If the LSPH01 has more than 7 days not use or just clean the pH probe. User should put the probe inside pure water for more than 24 hours for activation. If no put in water, user need to put inside soil for more than 24 hours to ensure the measurement accuracy. 
373 )))
374 )))
375
376
377
378 === 2.6.2 Measurement ===
379
380
381 (((
382 (% style="color:#4f81bd" %)**Measurement the soil surface:**
383 )))
384
385 (((
386 [[image:1654592946732-634.png]]
387 )))
388
389 (((
390 Choose the proper measuring position. Split the surface soil according to the measured deep.
391 )))
392
393 (((
394 Put pure water, or rainwater to make the soil of measurement point to moist mud. Remove rocks or hard things.
395 )))
396
397 (((
398 Slowly insert the probe to the measure point. Don’t use large force which will break the probe. Make sure not shake when inserting.
399 )))
400
401 (((
402 Put soil over the probe after insert. And start to measure.
403 )))
404
405 (((
406
407 )))
408
409 (((
410 (% style="color:#4f81bd" %)**Measurement inside soil:**
411 )))
412
413 (((
414 Dig a hole with diameter > 20CM.
415 )))
416
417 (((
418 Insert the probe inside, method like measure the surface.
419 )))
420
421
422
423 === 2.6.3 Maintain Probe ===
424
425 1. (((
426 pH probe electrode is fragile and no strong. User must avoid strong force or hitting it.
427 )))
428 1. (((
429 After long time use (3~~ 6  months). The probe electrode needs to be clean; user can use high grade sandpaper to polish it or put in 5% hydrochloric acid for several minutes. After the metal probe looks like new, user can use pure water to wash it.
430 )))
431 1. (((
432 Probe reference electrode is also no strong, need to avoid strong force or hitting.
433 )))
434 1. (((
435 User should keep reference electrode wet while not use.
436 )))
437 1. (((
438 Avoid the probes to touch oily matter. Which will cause issue in accuracy.
439 )))
440 1. (((
441 The probe is IP68 can be put in water.
442
443
444
445 )))
446
447 == 2.7 Calibration ==
448
449 (((
450 User can do calibration for the probe. It is limited to use below pH buffer solution to calibrate: 4.00, 6.86, 9.18. When calibration, user need to clean the electrode and put the probe in the pH buffer solution to wait the value stable ( a new clean electrode might need max 24 hours to be stable).
451 )))
452
453 (((
454 After stable, user can use below command to calibrate.
455 )))
456
457 [[image:image-20220607171149-4.png]]
458
459
460 (% style="color:#037691" %)**Calibration Payload**
461
462 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
463 |=(% style="width: 62.5px;" %)(((
464 **Size (bytes)**
465 )))|=(% style="width: 89px;" %)**1**|=(% style="width: 89px;" %)**1**|=(% style="width: 89px;" %)**1**|=(% style="width: 89px;" %)**7**|=(% style="width: 89px;" %)**1**
466 |**Value**|(((
467 PH4
468
469 Calibrate value
470 )))|PH6.86 Calibrate value|(((
471 PH9.18
472
473 Calibrate value
474 )))|Reserve|(((
475 [[Message Type>>||anchor="H2.3.6MessageType"]]
476
477 Always 0x03
478 )))
479
480 User can also send 0x14 downlink command to poll the current calibration payload.
481
482 [[image:image-20220607171416-7.jpeg]]
483
484
485 * Reply to the confirmation package: 14 01
486 * Reply to non-confirmed packet: 14 00
487
488 == 2.6  Frequency Plans ==
489
490 (((
491 The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
492 )))
493
494
495 === 2.6.1  EU863-870 (EU868) ===
496
497 (((
498 (% style="color:blue" %)**Uplink:**
499 )))
500
501 (((
502 868.1 - SF7BW125 to SF12BW125
503 )))
504
505 (((
506 868.3 - SF7BW125 to SF12BW125 and SF7BW250
507 )))
508
509 (((
510 868.5 - SF7BW125 to SF12BW125
511 )))
512
513 (((
514 867.1 - SF7BW125 to SF12BW125
515 )))
516
517 (((
518 867.3 - SF7BW125 to SF12BW125
519 )))
520
521 (((
522 867.5 - SF7BW125 to SF12BW125
523 )))
524
525 (((
526 867.7 - SF7BW125 to SF12BW125
527 )))
528
529 (((
530 867.9 - SF7BW125 to SF12BW125
531 )))
532
533 (((
534 868.8 - FSK
535 )))
536
537 (((
538
539 )))
540
541 (((
542 (% style="color:blue" %)**Downlink:**
543 )))
544
545 (((
546 Uplink channels 1-9 (RX1)
547 )))
548
549 (((
550 869.525 - SF9BW125 (RX2 downlink only)
551 )))
552
553
554
555 === 2.6.2  US902-928(US915) ===
556
557 (((
558 Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
559 )))
560
561 (((
562 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
563 )))
564
565 (((
566 After Join success, the end node will switch to the correct sub band by:
567 )))
568
569 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
570 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
571
572
573 === 2.6.3 CN470-510 (CN470) ===
574
575 (((
576 Used in China, Default use CHE=1
577 )))
578
579 (((
580 (% style="color:blue" %)**Uplink:**
581 )))
582
583 (((
584 486.3 - SF7BW125 to SF12BW125
585 )))
586
587 (((
588 486.5 - SF7BW125 to SF12BW125
589 )))
590
591 (((
592 486.7 - SF7BW125 to SF12BW125
593 )))
594
595 (((
596 486.9 - SF7BW125 to SF12BW125
597 )))
598
599 (((
600 487.1 - SF7BW125 to SF12BW125
601 )))
602
603 (((
604 487.3 - SF7BW125 to SF12BW125
605 )))
606
607 (((
608 487.5 - SF7BW125 to SF12BW125
609 )))
610
611 (((
612 487.7 - SF7BW125 to SF12BW125
613 )))
614
615 (((
616
617 )))
618
619 (((
620 (% style="color:blue" %)**Downlink:**
621 )))
622
623 (((
624 506.7 - SF7BW125 to SF12BW125
625 )))
626
627 (((
628 506.9 - SF7BW125 to SF12BW125
629 )))
630
631 (((
632 507.1 - SF7BW125 to SF12BW125
633 )))
634
635 (((
636 507.3 - SF7BW125 to SF12BW125
637 )))
638
639 (((
640 507.5 - SF7BW125 to SF12BW125
641 )))
642
643 (((
644 507.7 - SF7BW125 to SF12BW125
645 )))
646
647 (((
648 507.9 - SF7BW125 to SF12BW125
649 )))
650
651 (((
652 508.1 - SF7BW125 to SF12BW125
653 )))
654
655 (((
656 505.3 - SF12BW125 (RX2 downlink only)
657 )))
658
659
660
661
662 === 2.6.4 AU915-928(AU915) ===
663
664 (((
665 Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
666 )))
667
668 (((
669 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
670 )))
671
672 (((
673
674 )))
675
676 (((
677 After Join success, the end node will switch to the correct sub band by:
678 )))
679
680 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
681 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
682
683 === 2.6.5 AS920-923 & AS923-925 (AS923) ===
684
685 (((
686 (% style="color:blue" %)**Default Uplink channel:**
687 )))
688
689 (((
690 923.2 - SF7BW125 to SF10BW125
691 )))
692
693 (((
694 923.4 - SF7BW125 to SF10BW125
695 )))
696
697 (((
698
699 )))
700
701 (((
702 (% style="color:blue" %)**Additional Uplink Channel**:
703 )))
704
705 (((
706 (OTAA mode, channel added by JoinAccept message)
707 )))
708
709 (((
710
711 )))
712
713 (((
714 (% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
715 )))
716
717 (((
718 922.2 - SF7BW125 to SF10BW125
719 )))
720
721 (((
722 922.4 - SF7BW125 to SF10BW125
723 )))
724
725 (((
726 922.6 - SF7BW125 to SF10BW125
727 )))
728
729 (((
730 922.8 - SF7BW125 to SF10BW125
731 )))
732
733 (((
734 923.0 - SF7BW125 to SF10BW125
735 )))
736
737 (((
738 922.0 - SF7BW125 to SF10BW125
739 )))
740
741 (((
742
743 )))
744
745 (((
746 (% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
747 )))
748
749 (((
750 923.6 - SF7BW125 to SF10BW125
751 )))
752
753 (((
754 923.8 - SF7BW125 to SF10BW125
755 )))
756
757 (((
758 924.0 - SF7BW125 to SF10BW125
759 )))
760
761 (((
762 924.2 - SF7BW125 to SF10BW125
763 )))
764
765 (((
766 924.4 - SF7BW125 to SF10BW125
767 )))
768
769 (((
770 924.6 - SF7BW125 to SF10BW125
771 )))
772
773 (((
774
775 )))
776
777 (((
778 (% style="color:blue" %)**Downlink:**
779 )))
780
781 (((
782 Uplink channels 1-8 (RX1)
783 )))
784
785 (((
786 923.2 - SF10BW125 (RX2)
787 )))
788
789
790
791
792 === 2.6.6 KR920-923 (KR920) ===
793
794 (((
795 (% style="color:blue" %)**Default channel:**
796 )))
797
798 (((
799 922.1 - SF7BW125 to SF12BW125
800 )))
801
802 (((
803 922.3 - SF7BW125 to SF12BW125
804 )))
805
806 (((
807 922.5 - SF7BW125 to SF12BW125
808 )))
809
810 (((
811
812 )))
813
814 (((
815 (% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
816 )))
817
818 (((
819 922.1 - SF7BW125 to SF12BW125
820 )))
821
822 (((
823 922.3 - SF7BW125 to SF12BW125
824 )))
825
826 (((
827 922.5 - SF7BW125 to SF12BW125
828 )))
829
830 (((
831 922.7 - SF7BW125 to SF12BW125
832 )))
833
834 (((
835 922.9 - SF7BW125 to SF12BW125
836 )))
837
838 (((
839 923.1 - SF7BW125 to SF12BW125
840 )))
841
842 (((
843 923.3 - SF7BW125 to SF12BW125
844 )))
845
846 (((
847
848 )))
849
850 (((
851 (% style="color:blue" %)**Downlink:**
852 )))
853
854 (((
855 Uplink channels 1-7(RX1)
856 )))
857
858 (((
859 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
860 )))
861
862
863
864
865 === 2.6.7 IN865-867 (IN865) ===
866
867 (((
868 (% style="color:blue" %)**Uplink:**
869 )))
870
871 (((
872 865.0625 - SF7BW125 to SF12BW125
873 )))
874
875 (((
876 865.4025 - SF7BW125 to SF12BW125
877 )))
878
879 (((
880 865.9850 - SF7BW125 to SF12BW125
881 )))
882
883 (((
884
885 )))
886
887 (((
888 (% style="color:blue" %)**Downlink:**
889 )))
890
891 (((
892 Uplink channels 1-3 (RX1)
893 )))
894
895 (((
896 866.550 - SF10BW125 (RX2)
897 )))
898
899
900
901
902 == 2.7  LED Indicator ==
903
904 The LLDS12 has an internal LED which is to show the status of different state.
905
906 * The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
907 * Blink once when device transmit a packet.
908
909
910
911 == 2.8  ​Firmware Change Log ==
912
913
914 **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
915
916
917 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>path:/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/]]
918
919
920
921 = 3.  LiDAR ToF Measurement =
922
923 == 3.1 Principle of Distance Measurement ==
924
925 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
926
927 [[image:1654831757579-263.png]]
928
929
930
931 == 3.2 Distance Measurement Characteristics ==
932
933 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
934
935 [[image:1654831774373-275.png]]
936
937
938 ①Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
939
940 ②Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
941
942 ③Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
943
944
945 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
946
947
948 [[image:1654831797521-720.png]]
949
950
951 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
952
953 [[image:1654831810009-716.png]]
954
955
956 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
957
958
959
960 == 3.3 Notice of usage: ==
961
962 Possible invalid /wrong reading for LiDAR ToF tech:
963
964 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
965 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
966 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
967 * The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
968
969 = 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
970
971 (((
972 Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
973 )))
974
975 * (((
976 AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
977 )))
978 * (((
979 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>path:/xwiki/bin/view/Main/]]
980 )))
981
982 (((
983
984
985 There are two kinds of commands to configure LLDS12, they are:
986 )))
987
988 * (((
989 (% style="color:#4f81bd" %)** General Commands**.
990 )))
991
992 (((
993 These commands are to configure:
994 )))
995
996 * (((
997 General system settings like: uplink interval.
998 )))
999 * (((
1000 LoRaWAN protocol & radio related command.
1001 )))
1002
1003 (((
1004 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>path:/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
1005 )))
1006
1007 (((
1008
1009 )))
1010
1011 * (((
1012 (% style="color:#4f81bd" %)** Commands special design for LLDS12**
1013 )))
1014
1015 (((
1016 These commands only valid for LLDS12, as below:
1017 )))
1018
1019
1020
1021 == 4.1  Set Transmit Interval Time ==
1022
1023 Feature: Change LoRaWAN End Node Transmit Interval.
1024
1025 (% style="color:#037691" %)**AT Command: AT+TDC**
1026
1027 [[image:image-20220607171554-8.png]]
1028
1029
1030
1031 (((
1032 (% style="color:#037691" %)**Downlink Command: 0x01**
1033 )))
1034
1035 (((
1036 Format: Command Code (0x01) followed by 3 bytes time value.
1037 )))
1038
1039 (((
1040 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
1041 )))
1042
1043 * (((
1044 Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
1045 )))
1046 * (((
1047 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
1048
1049
1050
1051 )))
1052
1053 == 4.2  Set Interrupt Mode ==
1054
1055 Feature, Set Interrupt mode for GPIO_EXIT.
1056
1057 (% style="color:#037691" %)**AT Command: AT+INTMOD**
1058
1059 [[image:image-20220610105806-2.png]]
1060
1061
1062
1063
1064 (((
1065 (% style="color:#037691" %)**Downlink Command: 0x06**
1066 )))
1067
1068 (((
1069 Format: Command Code (0x06) followed by 3 bytes.
1070 )))
1071
1072 (((
1073 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1074 )))
1075
1076 * (((
1077 Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1078 )))
1079 * (((
1080 Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1081 )))
1082
1083 == 4.3  Get Firmware Version Info ==
1084
1085 Feature: use downlink to get firmware version.
1086
1087 (% style="color:#037691" %)**Downlink Command: 0x26**
1088
1089 [[image:image-20220607171917-10.png]]
1090
1091 * Reply to the confirmation package: 26 01
1092 * Reply to non-confirmed packet: 26 00
1093
1094 Device will send an uplink after got this downlink command. With below payload:
1095
1096 Configures info payload:
1097
1098 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1099 |=(((
1100 **Size(bytes)**
1101 )))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1102 |**Value**|Software Type|(((
1103 Frequency
1104
1105 Band
1106 )))|Sub-band|(((
1107 Firmware
1108
1109 Version
1110 )))|Sensor Type|Reserve|(((
1111 [[Message Type>>||anchor="H2.3.6MessageType"]]
1112 Always 0x02
1113 )))
1114
1115 **Software Type**: Always 0x03 for LLDS12
1116
1117
1118 **Frequency Band**:
1119
1120 *0x01: EU868
1121
1122 *0x02: US915
1123
1124 *0x03: IN865
1125
1126 *0x04: AU915
1127
1128 *0x05: KZ865
1129
1130 *0x06: RU864
1131
1132 *0x07: AS923
1133
1134 *0x08: AS923-1
1135
1136 *0x09: AS923-2
1137
1138 *0xa0: AS923-3
1139
1140
1141 **Sub-Band**: value 0x00 ~~ 0x08
1142
1143
1144 **Firmware Version**: 0x0100, Means: v1.0.0 version
1145
1146
1147 **Sensor Type**:
1148
1149 0x01: LSE01
1150
1151 0x02: LDDS75
1152
1153 0x03: LDDS20
1154
1155 0x04: LLMS01
1156
1157 0x05: LSPH01
1158
1159 0x06: LSNPK01
1160
1161 0x07: LLDS12
1162
1163
1164
1165 = 5.  Battery & How to replace =
1166
1167 == 5.1  Battery Type ==
1168
1169 (((
1170 LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1171 )))
1172
1173 (((
1174 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1175 )))
1176
1177 [[image:1654593587246-335.png]]
1178
1179
1180 Minimum Working Voltage for the LLDS12:
1181
1182 LLDS12:  2.45v ~~ 3.6v
1183
1184
1185
1186 == 5.2  Replace Battery ==
1187
1188 (((
1189 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1190 )))
1191
1192 (((
1193 And make sure the positive and negative pins match.
1194 )))
1195
1196
1197
1198 == 5.3  Power Consumption Analyze ==
1199
1200 (((
1201 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1202 )))
1203
1204 (((
1205 Instruction to use as below:
1206 )))
1207
1208
1209 **Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1210
1211 [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1212
1213
1214 **Step 2**: Open it and choose
1215
1216 * Product Model
1217 * Uplink Interval
1218 * Working Mode
1219
1220 And the Life expectation in difference case will be shown on the right.
1221
1222 [[image:1654593605679-189.png]]
1223
1224
1225 The battery related documents as below:
1226
1227 * (((
1228 [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
1229 )))
1230 * (((
1231 [[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1232 )))
1233 * (((
1234 [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1235 )))
1236
1237 [[image:image-20220607172042-11.png]]
1238
1239
1240
1241 === 5.3.1  ​Battery Note ===
1242
1243 (((
1244 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1245 )))
1246
1247
1248
1249 === ​5.3.2  Replace the battery ===
1250
1251 (((
1252 You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1253 )))
1254
1255 (((
1256 The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1257 )))
1258
1259
1260
1261 = 6.  Use AT Command =
1262
1263 == 6.1  Access AT Commands ==
1264
1265 LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1266
1267 [[image:1654593668970-604.png]]
1268
1269 **Connection:**
1270
1271 (% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1272
1273 (% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1274
1275 (% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1276
1277
1278 (((
1279 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSPH01. LSPH01 will output system info once power on as below:
1280 )))
1281
1282
1283 [[image:1654593712276-618.png]]
1284
1285 Valid AT Command please check [[Configure Device>>||anchor="H3.ConfigureLSPH01viaATCommandorLoRaWANDownlink"]].
1286
1287
1288 = 7.  FAQ =
1289
1290 == 7.1  How to change the LoRa Frequency Bands/Region ==
1291
1292 You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
1293 When downloading the images, choose the required image file for download. ​
1294
1295
1296 = 8.  Trouble Shooting =
1297
1298 == 8.1  AT Commands input doesn’t work ==
1299
1300
1301 In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1302
1303
1304 == 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1305
1306
1307 (((
1308 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1309 )))
1310
1311 (((
1312 Troubleshooting: Please avoid use of this product under such circumstance in practice.
1313 )))
1314
1315 (((
1316
1317 )))
1318
1319 (((
1320 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1321 )))
1322
1323 (((
1324 Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1325 )))
1326
1327
1328
1329 = 9.  Order Info =
1330
1331
1332 Part Number: (% style="color:blue" %)**LLDS12-XX**
1333
1334
1335 (% style="color:blue" %)**XX**(%%): The default frequency band
1336
1337 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1338 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1339 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1340 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1341 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1342 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1343 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1344 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1345
1346 = 10. ​ Packing Info =
1347
1348
1349 **Package Includes**:
1350
1351 * LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1352
1353 **Dimension and weight**:
1354
1355 * Device Size: cm
1356 * Device Weight: g
1357 * Package Size / pcs : cm
1358 * Weight / pcs : g
1359
1360 = 11.  ​Support =
1361
1362 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1363 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
1364
1365
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0