Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220610095606-1.png]]
3
4
5 **Contents:**
6
7
8
9
10
11
12
13 = 1.  Introduction =
14
15 == 1.1 ​ What is LoRaWAN LiDAR ToF Distance Sensor ==
16
17 (((
18
19
20 The Dragino LLDS12 is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
21
22 The LLDS12 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
23
24 It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
25
26 The LoRa wireless technology used in LLDS12 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
27
28 LLDS12 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
29
30 Each LLDS12 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
31 )))
32
33
34 [[image:1654826306458-414.png]]
35
36
37
38 == ​1.2  Features ==
39
40 * LoRaWAN 1.0.3 Class A
41 * Ultra-low power consumption
42 * Laser technology for distance detection
43 * Operating Range - 0.1m~~12m①
44 * Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
45 * Monitor Battery Level
46 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
47 * AT Commands to change parameters
48 * Uplink on periodically
49 * Downlink to change configure
50 * 8500mAh Battery for long term use
51
52 == 1.3  Probe Specification ==
53
54 * Storage temperature :-20℃~~75℃
55 * Operating temperature - -20℃~~60℃
56 * Operating Range - 0.1m~~12m①
57 * Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
58 * Distance resolution - 5mm
59 * Ambient light immunity - 70klux
60 * Enclosure rating - IP65
61 * Light source - LED
62 * Central wavelength - 850nm
63 * FOV - 3.6°
64 * Material of enclosure - ABS+PC
65 * Wire length - 25cm
66
67 == 1.4  Probe Dimension ==
68
69
70 [[image:1654827224480-952.png]]
71
72
73
74 == 1.5 ​ Applications ==
75
76 * Horizontal distance measurement
77 * Parking management system
78 * Object proximity and presence detection
79 * Intelligent trash can management system
80 * Robot obstacle avoidance
81 * Automatic control
82 * Sewer
83
84 == 1.6 Pin mapping and power on ==
85
86
87 [[image:1654827332142-133.png]]
88
89
90
91 = 2. Configure LLDS12 to connect to LoRaWAN network =
92
93 == 2.1 How it works ==
94
95 (((
96 The LLDS12 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
97 )))
98
99 (((
100 In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.UseATCommand"]]to set the keys in the LLDS12.
101 )))
102
103
104 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
105
106 (((
107 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
108 )))
109
110 (((
111 [[image:1654827857527-556.png]]
112 )))
113
114 (((
115 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
116 )))
117
118 (((
119 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSPH01.
120 )))
121
122 (((
123 Each LSPH01 is shipped with a sticker with the default device EUI as below:
124 )))
125
126 [[image:image-20220607170145-1.jpeg]]
127
128
129
130 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
131
132
133 **Register the device**
134
135
136 [[image:1654592600093-601.png]]
137
138
139 **Add APP EUI and DEV EUI**
140
141 [[image:1654592619856-881.png]]
142
143
144 **Add APP EUI in the application**
145
146 [[image:1654592632656-512.png]]
147
148
149
150 **Add APP KEY**
151
152 [[image:1654592653453-934.png]]
153
154
155 (% style="color:blue" %)**Step 2**(%%): Power on LSPH01
156
157
158 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
159
160 [[image:image-20220607170442-2.png]]
161
162
163 (((
164 (% style="color:blue" %)**Step 3**(%%)**:** The LSPH01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
165 )))
166
167 [[image:1654592697690-910.png]]
168
169
170
171 == 2.3 ​Uplink Payload ==
172
173 (((
174 LSPH01 will uplink payload via LoRaWAN with below payload format: 
175 )))
176
177 (((
178 Uplink payload includes in total 11 bytes.
179 )))
180
181 (((
182 Normal uplink payload:
183 )))
184
185 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
186 |=(% style="width: 62.5px;" %)(((
187 **Size (bytes)**
188 )))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1**
189 |(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1BatteryInfo"]]|(% style="width:62.5px" %)(((
190 [[Temperature>>||anchor="H2.3.2DS18B20Temperaturesensor"]]
191
192 [[(Optional)>>||anchor="H2.3.2DS18B20Temperaturesensor"]]
193 )))|[[Soil pH>>||anchor="H2.3.3SoilpH"]]|[[Soil Temperature>>||anchor="H2.3.4SoilTemperature"]]|(((
194 [[Digital Interrupt (Optional)>>||anchor="H2.3.5InterruptPin"]]
195 )))|Reserve|(((
196 [[Message Type>>||anchor="H2.3.6MessageType"]]
197 )))
198
199 [[image:1654592721645-318.png]]
200
201
202
203 === 2.3.1 Battery Info ===
204
205
206 Check the battery voltage for LSPH01.
207
208 Ex1: 0x0B45 = 2885mV
209
210 Ex2: 0x0B49 = 2889mV
211
212
213
214 === 2.3.2 DS18B20 Temperature sensor ===
215
216 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
217
218
219 **Example**:
220
221 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
222
223 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
224
225
226
227 === 2.3.3 Soil pH ===
228
229 Range: 0 ~~ 14 pH
230
231 **Example:**
232
233 (% style="color:#037691" %)** 0x02B7(H) = 695(D) = 6.95pH**
234
235
236
237 === 2.3.4 Soil Temperature ===
238
239 Get Soil Temperature 
240
241
242 **Example**:
243
244 If payload is: **0105H**:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
245
246 If payload is: **FF3FH** :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
247
248
249
250 === 2.3.5 Interrupt Pin ===
251
252 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up.
253
254
255 **Example:**
256
257 0x00: Normal uplink packet.
258
259 0x01: Interrupt Uplink Packet.
260
261
262
263 === 2.3.6 Message Type ===
264
265 (((
266 For a normal uplink payload, the message type is always 0x01.
267 )))
268
269 (((
270 Valid Message Type:
271 )))
272
273
274 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %)
275 |=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload**
276 |(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]
277 |(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.4GetFirmwareVersionInfo"]]
278 |(% style="width:160px" %)0x03|(% style="width:163px" %)Reply Calibration Info|(% style="width:173px" %)[[Calibration Payload>>||anchor="H2.7Calibration"]]
279
280 === 2.3.7 Decode payload in The Things Network ===
281
282 While using TTN network, you can add the payload format to decode the payload.
283
284
285 [[image:1654592762713-715.png]]
286
287 (((
288 The payload decoder function for TTN is here:
289 )))
290
291 (((
292 LSPH01 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/LSPH01/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSNPK01/Decoder/]]
293 )))
294
295
296
297 == 2.4 Uplink Interval ==
298
299 The LSPH01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
300
301
302
303 == 2.5 ​Show Data in DataCake IoT Server ==
304
305 (((
306 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
307 )))
308
309 (((
310
311 )))
312
313 (((
314 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
315 )))
316
317 (((
318 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
319 )))
320
321
322 [[image:1654592790040-760.png]]
323
324
325 [[image:1654592800389-571.png]]
326
327
328 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
329
330 (% style="color:blue" %)**Step 4**(%%)**: Create LSPH01 product.**
331
332 [[image:1654592819047-535.png]]
333
334
335
336 [[image:1654592833877-762.png]]
337
338
339 [[image:1654592856403-259.png]]
340
341
342 (((
343 (% style="color:blue" %)**Step 5**(%%)**: add payload decode**
344 )))
345
346 (((
347 Download Datacake decoder from: [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/LSPH01/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSNPK01/Decoder/]]
348 )))
349
350
351 [[image:1654592878525-845.png]]
352
353 [[image:1654592892967-474.png]]
354
355
356 [[image:1654592905354-123.png]]
357
358
359 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
360
361
362 [[image:1654592917530-261.png]]
363
364
365
366 == 2.6 Installation and Maintain ==
367
368 === 2.6.1 Before measurement ===
369
370 (((
371 (((
372 If the LSPH01 has more than 7 days not use or just clean the pH probe. User should put the probe inside pure water for more than 24 hours for activation. If no put in water, user need to put inside soil for more than 24 hours to ensure the measurement accuracy. 
373 )))
374 )))
375
376
377
378 === 2.6.2 Measurement ===
379
380
381 (((
382 (% style="color:#4f81bd" %)**Measurement the soil surface:**
383 )))
384
385 (((
386 [[image:1654592946732-634.png]]
387 )))
388
389 (((
390 Choose the proper measuring position. Split the surface soil according to the measured deep.
391 )))
392
393 (((
394 Put pure water, or rainwater to make the soil of measurement point to moist mud. Remove rocks or hard things.
395 )))
396
397 (((
398 Slowly insert the probe to the measure point. Don’t use large force which will break the probe. Make sure not shake when inserting.
399 )))
400
401 (((
402 Put soil over the probe after insert. And start to measure.
403 )))
404
405 (((
406
407 )))
408
409 (((
410 (% style="color:#4f81bd" %)**Measurement inside soil:**
411 )))
412
413 (((
414 Dig a hole with diameter > 20CM.
415 )))
416
417 (((
418 Insert the probe inside, method like measure the surface.
419 )))
420
421
422
423 === 2.6.3 Maintain Probe ===
424
425 1. (((
426 pH probe electrode is fragile and no strong. User must avoid strong force or hitting it.
427 )))
428 1. (((
429 After long time use (3~~ 6  months). The probe electrode needs to be clean; user can use high grade sandpaper to polish it or put in 5% hydrochloric acid for several minutes. After the metal probe looks like new, user can use pure water to wash it.
430 )))
431 1. (((
432 Probe reference electrode is also no strong, need to avoid strong force or hitting.
433 )))
434 1. (((
435 User should keep reference electrode wet while not use.
436 )))
437 1. (((
438 Avoid the probes to touch oily matter. Which will cause issue in accuracy.
439 )))
440 1. (((
441 The probe is IP68 can be put in water.
442
443
444
445 )))
446
447 == 2.7 Calibration ==
448
449 (((
450 User can do calibration for the probe. It is limited to use below pH buffer solution to calibrate: 4.00, 6.86, 9.18. When calibration, user need to clean the electrode and put the probe in the pH buffer solution to wait the value stable ( a new clean electrode might need max 24 hours to be stable).
451 )))
452
453 (((
454 After stable, user can use below command to calibrate.
455 )))
456
457 [[image:image-20220607171149-4.png]]
458
459
460 (% style="color:#037691" %)**Calibration Payload**
461
462 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
463 |=(% style="width: 62.5px;" %)(((
464 **Size (bytes)**
465 )))|=(% style="width: 89px;" %)**1**|=(% style="width: 89px;" %)**1**|=(% style="width: 89px;" %)**1**|=(% style="width: 89px;" %)**7**|=(% style="width: 89px;" %)**1**
466 |**Value**|(((
467 PH4
468
469 Calibrate value
470 )))|PH6.86 Calibrate value|(((
471 PH9.18
472
473 Calibrate value
474 )))|Reserve|(((
475 [[Message Type>>||anchor="H2.3.6MessageType"]]
476
477 Always 0x03
478 )))
479
480 User can also send 0x14 downlink command to poll the current calibration payload.
481
482 [[image:image-20220607171416-7.jpeg]]
483
484
485 * Reply to the confirmation package: 14 01
486 * Reply to non-confirmed packet: 14 00
487
488 == 2.6  Frequency Plans ==
489
490 (((
491 The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
492 )))
493
494
495 === 2.6.1  EU863-870 (EU868) ===
496
497 (((
498 (% style="color:blue" %)**Uplink:**
499 )))
500
501 (((
502 868.1 - SF7BW125 to SF12BW125
503 )))
504
505 (((
506 868.3 - SF7BW125 to SF12BW125 and SF7BW250
507 )))
508
509 (((
510 868.5 - SF7BW125 to SF12BW125
511 )))
512
513 (((
514 867.1 - SF7BW125 to SF12BW125
515 )))
516
517 (((
518 867.3 - SF7BW125 to SF12BW125
519 )))
520
521 (((
522 867.5 - SF7BW125 to SF12BW125
523 )))
524
525 (((
526 867.7 - SF7BW125 to SF12BW125
527 )))
528
529 (((
530 867.9 - SF7BW125 to SF12BW125
531 )))
532
533 (((
534 868.8 - FSK
535 )))
536
537 (((
538
539 )))
540
541 (((
542 (% style="color:blue" %)**Downlink:**
543 )))
544
545 (((
546 Uplink channels 1-9 (RX1)
547 )))
548
549 (((
550 869.525 - SF9BW125 (RX2 downlink only)
551 )))
552
553
554
555 === 2.6.2  US902-928(US915) ===
556
557 (((
558 Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
559 )))
560
561 (((
562 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
563 )))
564
565 (((
566 After Join success, the end node will switch to the correct sub band by:
567 )))
568
569 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
570 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
571
572
573
574 === 2.6.3 CN470-510 (CN470) ===
575
576 (((
577 Used in China, Default use CHE=1
578 )))
579
580 (((
581 (% style="color:blue" %)**Uplink:**
582 )))
583
584 (((
585 486.3 - SF7BW125 to SF12BW125
586 )))
587
588 (((
589 486.5 - SF7BW125 to SF12BW125
590 )))
591
592 (((
593 486.7 - SF7BW125 to SF12BW125
594 )))
595
596 (((
597 486.9 - SF7BW125 to SF12BW125
598 )))
599
600 (((
601 487.1 - SF7BW125 to SF12BW125
602 )))
603
604 (((
605 487.3 - SF7BW125 to SF12BW125
606 )))
607
608 (((
609 487.5 - SF7BW125 to SF12BW125
610 )))
611
612 (((
613 487.7 - SF7BW125 to SF12BW125
614 )))
615
616 (((
617
618 )))
619
620 (((
621 (% style="color:blue" %)**Downlink:**
622 )))
623
624 (((
625 506.7 - SF7BW125 to SF12BW125
626 )))
627
628 (((
629 506.9 - SF7BW125 to SF12BW125
630 )))
631
632 (((
633 507.1 - SF7BW125 to SF12BW125
634 )))
635
636 (((
637 507.3 - SF7BW125 to SF12BW125
638 )))
639
640 (((
641 507.5 - SF7BW125 to SF12BW125
642 )))
643
644 (((
645 507.7 - SF7BW125 to SF12BW125
646 )))
647
648 (((
649 507.9 - SF7BW125 to SF12BW125
650 )))
651
652 (((
653 508.1 - SF7BW125 to SF12BW125
654 )))
655
656 (((
657 505.3 - SF12BW125 (RX2 downlink only)
658 )))
659
660
661
662
663 === 2.6.4 AU915-928(AU915) ===
664
665 (((
666 Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
667 )))
668
669 (((
670 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
671 )))
672
673 (((
674
675 )))
676
677 (((
678 After Join success, the end node will switch to the correct sub band by:
679 )))
680
681 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
682 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
683
684
685 === 2.6.5 AS920-923 & AS923-925 (AS923) ===
686
687 (((
688 (% style="color:blue" %)**Default Uplink channel:**
689 )))
690
691 (((
692 923.2 - SF7BW125 to SF10BW125
693 )))
694
695 (((
696 923.4 - SF7BW125 to SF10BW125
697 )))
698
699 (((
700
701 )))
702
703 (((
704 (% style="color:blue" %)**Additional Uplink Channel**:
705 )))
706
707 (((
708 (OTAA mode, channel added by JoinAccept message)
709 )))
710
711 (((
712
713 )))
714
715 (((
716 (% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
717 )))
718
719 (((
720 922.2 - SF7BW125 to SF10BW125
721 )))
722
723 (((
724 922.4 - SF7BW125 to SF10BW125
725 )))
726
727 (((
728 922.6 - SF7BW125 to SF10BW125
729 )))
730
731 (((
732 922.8 - SF7BW125 to SF10BW125
733 )))
734
735 (((
736 923.0 - SF7BW125 to SF10BW125
737 )))
738
739 (((
740 922.0 - SF7BW125 to SF10BW125
741 )))
742
743 (((
744
745 )))
746
747 (((
748 (% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
749 )))
750
751 (((
752 923.6 - SF7BW125 to SF10BW125
753 )))
754
755 (((
756 923.8 - SF7BW125 to SF10BW125
757 )))
758
759 (((
760 924.0 - SF7BW125 to SF10BW125
761 )))
762
763 (((
764 924.2 - SF7BW125 to SF10BW125
765 )))
766
767 (((
768 924.4 - SF7BW125 to SF10BW125
769 )))
770
771 (((
772 924.6 - SF7BW125 to SF10BW125
773 )))
774
775 (((
776
777 )))
778
779 (((
780 (% style="color:blue" %)**Downlink:**
781 )))
782
783 (((
784 Uplink channels 1-8 (RX1)
785 )))
786
787 (((
788 923.2 - SF10BW125 (RX2)
789 )))
790
791
792
793
794 === 2.6.6 KR920-923 (KR920) ===
795
796 (((
797 (% style="color:blue" %)**Default channel:**
798 )))
799
800 (((
801 922.1 - SF7BW125 to SF12BW125
802 )))
803
804 (((
805 922.3 - SF7BW125 to SF12BW125
806 )))
807
808 (((
809 922.5 - SF7BW125 to SF12BW125
810 )))
811
812 (((
813
814 )))
815
816 (((
817 (% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
818 )))
819
820 (((
821 922.1 - SF7BW125 to SF12BW125
822 )))
823
824 (((
825 922.3 - SF7BW125 to SF12BW125
826 )))
827
828 (((
829 922.5 - SF7BW125 to SF12BW125
830 )))
831
832 (((
833 922.7 - SF7BW125 to SF12BW125
834 )))
835
836 (((
837 922.9 - SF7BW125 to SF12BW125
838 )))
839
840 (((
841 923.1 - SF7BW125 to SF12BW125
842 )))
843
844 (((
845 923.3 - SF7BW125 to SF12BW125
846 )))
847
848 (((
849
850 )))
851
852 (((
853 (% style="color:blue" %)**Downlink:**
854 )))
855
856 (((
857 Uplink channels 1-7(RX1)
858 )))
859
860 (((
861 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
862 )))
863
864
865
866
867 === 2.6.7 IN865-867 (IN865) ===
868
869 (((
870 (% style="color:blue" %)**Uplink:**
871 )))
872
873 (((
874 865.0625 - SF7BW125 to SF12BW125
875 )))
876
877 (((
878 865.4025 - SF7BW125 to SF12BW125
879 )))
880
881 (((
882 865.9850 - SF7BW125 to SF12BW125
883 )))
884
885 (((
886
887 )))
888
889 (((
890 (% style="color:blue" %)**Downlink:**
891 )))
892
893 (((
894 Uplink channels 1-3 (RX1)
895 )))
896
897 (((
898 866.550 - SF10BW125 (RX2)
899 )))
900
901
902
903
904 == 2.7  LED Indicator ==
905
906 The LLDS12 has an internal LED which is to show the status of different state.
907
908 * The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
909 * Blink once when device transmit a packet.
910
911
912
913
914 == 2.8  ​Firmware Change Log ==
915
916
917 **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
918
919
920 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>path:/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/]]
921
922
923
924 = 3.  LiDAR ToF Measurement =
925
926 == 3.1 Principle of Distance Measurement ==
927
928 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
929
930 [[image:1654831757579-263.png]]
931
932
933
934 == 3.2 Distance Measurement Characteristics ==
935
936 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
937
938 [[image:1654831774373-275.png]]
939
940
941 ①Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
942
943 ②Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
944
945 ③Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
946
947
948 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
949
950
951 [[image:1654831797521-720.png]]
952
953
954 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
955
956 [[image:1654831810009-716.png]]
957
958
959 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
960
961
962
963 == 3.3 Notice of usage: ==
964
965 Possible invalid /wrong reading for LiDAR ToF tech:
966
967 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
968 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
969 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
970 * The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
971
972 = 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
973
974 (((
975 Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
976 )))
977
978 * (((
979 AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
980 )))
981 * (((
982 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>path:/xwiki/bin/view/Main/]]
983 )))
984
985 (((
986
987
988 There are two kinds of commands to configure LLDS12, they are:
989 )))
990
991 * (((
992 (% style="color:#4f81bd" %)** General Commands**.
993 )))
994
995 (((
996 These commands are to configure:
997 )))
998
999 * (((
1000 General system settings like: uplink interval.
1001 )))
1002 * (((
1003 LoRaWAN protocol & radio related command.
1004 )))
1005
1006 (((
1007 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>path:/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
1008 )))
1009
1010 (((
1011
1012 )))
1013
1014 * (((
1015 (% style="color:#4f81bd" %)** Commands special design for LLDS12**
1016 )))
1017
1018 (((
1019 These commands only valid for LLDS12, as below:
1020 )))
1021
1022
1023
1024 == 4.1  Set Transmit Interval Time ==
1025
1026 Feature: Change LoRaWAN End Node Transmit Interval.
1027
1028 (% style="color:#037691" %)**AT Command: AT+TDC**
1029
1030 [[image:image-20220607171554-8.png]]
1031
1032
1033
1034 (((
1035 (% style="color:#037691" %)**Downlink Command: 0x01**
1036 )))
1037
1038 (((
1039 Format: Command Code (0x01) followed by 3 bytes time value.
1040 )))
1041
1042 (((
1043 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
1044 )))
1045
1046 * (((
1047 Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
1048 )))
1049 * (((
1050 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
1051
1052
1053
1054 )))
1055
1056 == 4.2  Set Interrupt Mode ==
1057
1058 Feature, Set Interrupt mode for GPIO_EXIT.
1059
1060 (% style="color:#037691" %)**AT Command: AT+INTMOD**
1061
1062 [[image:image-20220610105806-2.png]]
1063
1064
1065
1066
1067 (((
1068 (% style="color:#037691" %)**Downlink Command: 0x06**
1069 )))
1070
1071 (((
1072 Format: Command Code (0x06) followed by 3 bytes.
1073 )))
1074
1075 (((
1076 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1077 )))
1078
1079 * (((
1080 Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1081 )))
1082 * (((
1083 Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1084 )))
1085
1086 == 4.3  Get Firmware Version Info ==
1087
1088 Feature: use downlink to get firmware version.
1089
1090 (% style="color:#037691" %)**Downlink Command: 0x26**
1091
1092 [[image:image-20220607171917-10.png]]
1093
1094 * Reply to the confirmation package: 26 01
1095 * Reply to non-confirmed packet: 26 00
1096
1097 Device will send an uplink after got this downlink command. With below payload:
1098
1099 Configures info payload:
1100
1101 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1102 |=(((
1103 **Size(bytes)**
1104 )))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1105 |**Value**|Software Type|(((
1106 Frequency
1107
1108 Band
1109 )))|Sub-band|(((
1110 Firmware
1111
1112 Version
1113 )))|Sensor Type|Reserve|(((
1114 [[Message Type>>||anchor="H2.3.6MessageType"]]
1115 Always 0x02
1116 )))
1117
1118 **Software Type**: Always 0x03 for LLDS12
1119
1120
1121 **Frequency Band**:
1122
1123 *0x01: EU868
1124
1125 *0x02: US915
1126
1127 *0x03: IN865
1128
1129 *0x04: AU915
1130
1131 *0x05: KZ865
1132
1133 *0x06: RU864
1134
1135 *0x07: AS923
1136
1137 *0x08: AS923-1
1138
1139 *0x09: AS923-2
1140
1141 *0xa0: AS923-3
1142
1143
1144 **Sub-Band**: value 0x00 ~~ 0x08
1145
1146
1147 **Firmware Version**: 0x0100, Means: v1.0.0 version
1148
1149
1150 **Sensor Type**:
1151
1152 0x01: LSE01
1153
1154 0x02: LDDS75
1155
1156 0x03: LDDS20
1157
1158 0x04: LLMS01
1159
1160 0x05: LSPH01
1161
1162 0x06: LSNPK01
1163
1164 0x07: LLDS12
1165
1166
1167
1168 = 5.  Battery & How to replace =
1169
1170 == 5.1  Battery Type ==
1171
1172 (((
1173 LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1174 )))
1175
1176 (((
1177 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1178 )))
1179
1180 [[image:1654593587246-335.png]]
1181
1182
1183 Minimum Working Voltage for the LLDS12:
1184
1185 LLDS12:  2.45v ~~ 3.6v
1186
1187
1188
1189 == 5.2  Replace Battery ==
1190
1191 (((
1192 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1193 )))
1194
1195 (((
1196 And make sure the positive and negative pins match.
1197 )))
1198
1199
1200
1201 == 5.3  Power Consumption Analyze ==
1202
1203 (((
1204 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1205 )))
1206
1207 (((
1208 Instruction to use as below:
1209 )))
1210
1211
1212 **Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1213
1214 [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1215
1216
1217 **Step 2**: Open it and choose
1218
1219 * Product Model
1220 * Uplink Interval
1221 * Working Mode
1222
1223 And the Life expectation in difference case will be shown on the right.
1224
1225 [[image:1654593605679-189.png]]
1226
1227
1228 The battery related documents as below:
1229
1230 * (((
1231 [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
1232 )))
1233 * (((
1234 [[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1235 )))
1236 * (((
1237 [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1238 )))
1239
1240 [[image:image-20220607172042-11.png]]
1241
1242
1243
1244 === 5.3.1  ​Battery Note ===
1245
1246 (((
1247 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1248 )))
1249
1250
1251
1252 === ​5.3.2  Replace the battery ===
1253
1254 (((
1255 You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1256 )))
1257
1258 (((
1259 The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1260 )))
1261
1262
1263
1264 = 6.  Use AT Command =
1265
1266 == 6.1  Access AT Commands ==
1267
1268 LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1269
1270 [[image:1654593668970-604.png]]
1271
1272 **Connection:**
1273
1274 (% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1275
1276 (% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1277
1278 (% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1279
1280
1281 (((
1282 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSPH01. LSPH01 will output system info once power on as below:
1283 )))
1284
1285
1286 [[image:1654593712276-618.png]]
1287
1288 Valid AT Command please check [[Configure Device>>||anchor="H3.ConfigureLSPH01viaATCommandorLoRaWANDownlink"]].
1289
1290
1291 = 7.  FAQ =
1292
1293 == 7.1  How to change the LoRa Frequency Bands/Region ==
1294
1295 You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
1296 When downloading the images, choose the required image file for download. ​
1297
1298
1299 = 8.  Trouble Shooting =
1300
1301 == 8.1  AT Commands input doesn’t work ==
1302
1303
1304 In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1305
1306
1307 == 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1308
1309
1310 (((
1311 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1312 )))
1313
1314 (((
1315 Troubleshooting: Please avoid use of this product under such circumstance in practice.
1316 )))
1317
1318 (((
1319
1320 )))
1321
1322 (((
1323 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1324 )))
1325
1326 (((
1327 Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1328 )))
1329
1330
1331
1332 = 9.  Order Info =
1333
1334
1335 Part Number: (% style="color:blue" %)**LLDS12-XX**
1336
1337
1338 (% style="color:blue" %)**XX**(%%): The default frequency band
1339
1340 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1341 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1342 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1343 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1344 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1345 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1346 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1347 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1348
1349 = 10. ​ Packing Info =
1350
1351
1352 **Package Includes**:
1353
1354 * LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1355
1356 **Dimension and weight**:
1357
1358 * Device Size: cm
1359 * Device Weight: g
1360 * Package Size / pcs : cm
1361 * Weight / pcs : g
1362
1363 = 11.  ​Support =
1364
1365 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1366 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
1367
1368
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0