Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220610095606-1.png]]
3
4
5 **Contents:**
6
7 {{toc/}}
8
9
10
11
12
13
14
15 = 1.  Introduction =
16
17 == 1.1 ​ What is LoRaWAN LiDAR ToF Distance Sensor ==
18
19 (((
20
21
22 (((
23 The Dragino LLDS12 is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
24 )))
25
26 (((
27 The LLDS12 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
28 )))
29
30 (((
31 It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
32 )))
33
34 (((
35 The LoRa wireless technology used in LLDS12 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
36 )))
37
38 (((
39 LLDS12 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
40 )))
41
42 (((
43 Each LLDS12 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
44 )))
45 )))
46
47
48 [[image:1654826306458-414.png]]
49
50
51
52 == ​1.2  Features ==
53
54 * LoRaWAN 1.0.3 Class A
55 * Ultra-low power consumption
56 * Laser technology for distance detection
57 * Operating Range - 0.1m~~12m①
58 * Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
59 * Monitor Battery Level
60 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
61 * AT Commands to change parameters
62 * Uplink on periodically
63 * Downlink to change configure
64 * 8500mAh Battery for long term use
65
66
67 == 1.3  Probe Specification ==
68
69 * Storage temperature :-20℃~~75℃
70 * Operating temperature - -20℃~~60℃
71 * Operating Range - 0.1m~~12m①
72 * Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
73 * Distance resolution - 5mm
74 * Ambient light immunity - 70klux
75 * Enclosure rating - IP65
76 * Light source - LED
77 * Central wavelength - 850nm
78 * FOV - 3.6°
79 * Material of enclosure - ABS+PC
80 * Wire length - 25cm
81
82
83 == 1.4  Probe Dimension ==
84
85
86 [[image:1654827224480-952.png]]
87
88
89 == 1.5 ​ Applications ==
90
91 * Horizontal distance measurement
92 * Parking management system
93 * Object proximity and presence detection
94 * Intelligent trash can management system
95 * Robot obstacle avoidance
96 * Automatic control
97 * Sewer
98
99
100 == 1.6  Pin mapping and power on ==
101
102
103 [[image:1654827332142-133.png]]
104
105
106 = 2.  Configure LLDS12 to connect to LoRaWAN network =
107
108 == 2.1  How it works ==
109
110 (((
111 The LLDS12 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
112 )))
113
114 (((
115 In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.UseATCommand"]]to set the keys in the LLDS12.
116 )))
117
118
119 == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
120
121 (((
122 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
123 )))
124
125 (((
126 [[image:1654827857527-556.png]]
127 )))
128
129 (((
130 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
131 )))
132
133 (((
134 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSPH01.
135 )))
136
137 (((
138 Each LSPH01 is shipped with a sticker with the default device EUI as below:
139 )))
140
141 [[image:image-20220607170145-1.jpeg]]
142
143
144
145 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
146
147
148 **Register the device**
149
150
151 [[image:1654592600093-601.png]]
152
153
154
155 **Add APP EUI and DEV EUI**
156
157 [[image:1654592619856-881.png]]
158
159
160
161 **Add APP EUI in the application**
162
163 [[image:1654592632656-512.png]]
164
165
166
167 **Add APP KEY**
168
169 [[image:1654592653453-934.png]]
170
171
172 (% style="color:blue" %)**Step 2**(%%): Power on LLDS12
173
174
175 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
176
177 [[image:image-20220607170442-2.png]]
178
179
180 (((
181 (% style="color:blue" %)**Step 3**(%%)**:** The LLDS12 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
182 )))
183
184 [[image:1654833501679-968.png]]
185
186
187
188 == 2.3  ​Uplink Payload ==
189
190 (((
191 LLDS12 will uplink payload via LoRaWAN with below payload format: 
192 )))
193
194 (((
195 Uplink payload includes in total 11 bytes.
196 )))
197
198 (((
199
200 )))
201
202 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
203 |=(% style="width: 62.5px;" %)(((
204 **Size (bytes)**
205 )))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1**
206 |(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1BatteryInfo"]]|(% style="width:62.5px" %)(((
207 [[Temperature>>||anchor="H2.3.2DS18B20Temperaturesensor"]]
208
209 [[DS18B20>>||anchor="H2.3.2DS18B20Temperaturesensor"]]
210 )))|[[Distance>>||anchor="H"]]|[[Distance signal strength>>||anchor="H2.3.4SoilTemperature"]]|(((
211 [[Interrupt flag>>||anchor="H2.3.5InterruptPin"]]
212 )))|[[LiDAR temp>>||anchor="H"]]|(((
213 [[Message Type>>||anchor="H2.3.6MessageType"]]
214 )))
215
216 [[image:1654833689380-972.png]]
217
218
219
220 === 2.3.1  Battery Info ===
221
222
223 Check the battery voltage for LLDS12.
224
225 Ex1: 0x0B45 = 2885mV
226
227 Ex2: 0x0B49 = 2889mV
228
229
230
231 === 2.3.2  DS18B20 Temperature sensor ===
232
233 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
234
235
236 **Example**:
237
238 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
239
240 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
241
242
243
244 === 2.3.3  Distance ===
245
246 Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
247
248
249 **Example**:
250
251 If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
252
253
254
255 === 2.3.4  Distance signal strength ===
256
257 Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
258
259
260 **Example**:
261
262 If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
263
264 Customers can judge whether they need to adjust the environment based on the signal strength.
265
266
267
268 === 2.3.5  Interrupt Pin ===
269
270 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up.
271
272 Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>path:#pins]].
273
274 **Example:**
275
276 0x00: Normal uplink packet.
277
278 0x01: Interrupt Uplink Packet.
279
280
281
282 === 2.3.6  LiDAR temp ===
283
284 Characterize the internal temperature value of the sensor.
285
286 **Example: **
287 If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
288 If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
289
290
291
292 === 2.3.7  Message Type ===
293
294 (((
295 For a normal uplink payload, the message type is always 0x01.
296 )))
297
298 (((
299 Valid Message Type:
300 )))
301
302
303 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %)
304 |=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload**
305 |(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]
306 |(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.4GetFirmwareVersionInfo"]]
307
308 === 2.3.8  Decode payload in The Things Network ===
309
310 While using TTN network, you can add the payload format to decode the payload.
311
312
313 [[image:1654592762713-715.png]]
314
315 (((
316 The payload decoder function for TTN is here:
317 )))
318
319 (((
320 LSPH01 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/LSPH01/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSNPK01/Decoder/]]
321 )))
322
323
324
325 == 2.4  Uplink Interval ==
326
327 The LLDS12 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
328
329
330
331 == 2.5  ​Show Data in DataCake IoT Server ==
332
333 (((
334 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
335 )))
336
337 (((
338
339 )))
340
341 (((
342 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
343 )))
344
345 (((
346 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
347 )))
348
349
350 [[image:1654592790040-760.png]]
351
352
353 [[image:1654592800389-571.png]]
354
355
356 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
357
358 (% style="color:blue" %)**Step 4**(%%)**: Create LLDS12 product.**
359
360 [[image:1654832691989-514.png]]
361
362
363 [[image:1654592833877-762.png]]
364
365
366 [[image:1654832740634-933.png]]
367
368
369
370 (((
371 (% style="color:blue" %)**Step 5**(%%)**: add payload decode**
372 )))
373
374 (((
375
376 )))
377
378 [[image:1654833065139-942.png]]
379
380
381
382 [[image:1654833092678-390.png]]
383
384
385
386 After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
387
388 [[image:1654833163048-332.png]]
389
390
391
392 == 2.6  Frequency Plans ==
393
394 (((
395 The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
396 )))
397
398
399 === 2.6.1  EU863-870 (EU868) ===
400
401 (((
402 (% style="color:blue" %)**Uplink:**
403 )))
404
405 (((
406 868.1 - SF7BW125 to SF12BW125
407 )))
408
409 (((
410 868.3 - SF7BW125 to SF12BW125 and SF7BW250
411 )))
412
413 (((
414 868.5 - SF7BW125 to SF12BW125
415 )))
416
417 (((
418 867.1 - SF7BW125 to SF12BW125
419 )))
420
421 (((
422 867.3 - SF7BW125 to SF12BW125
423 )))
424
425 (((
426 867.5 - SF7BW125 to SF12BW125
427 )))
428
429 (((
430 867.7 - SF7BW125 to SF12BW125
431 )))
432
433 (((
434 867.9 - SF7BW125 to SF12BW125
435 )))
436
437 (((
438 868.8 - FSK
439 )))
440
441 (((
442
443 )))
444
445 (((
446 (% style="color:blue" %)**Downlink:**
447 )))
448
449 (((
450 Uplink channels 1-9 (RX1)
451 )))
452
453 (((
454 869.525 - SF9BW125 (RX2 downlink only)
455 )))
456
457
458
459 === 2.6.2  US902-928(US915) ===
460
461 (((
462 Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
463 )))
464
465 (((
466 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
467 )))
468
469 (((
470 After Join success, the end node will switch to the correct sub band by:
471 )))
472
473 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
474 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
475
476 === 2.6.3  CN470-510 (CN470) ===
477
478 (((
479 Used in China, Default use CHE=1
480 )))
481
482 (((
483 (% style="color:blue" %)**Uplink:**
484 )))
485
486 (((
487 486.3 - SF7BW125 to SF12BW125
488 )))
489
490 (((
491 486.5 - SF7BW125 to SF12BW125
492 )))
493
494 (((
495 486.7 - SF7BW125 to SF12BW125
496 )))
497
498 (((
499 486.9 - SF7BW125 to SF12BW125
500 )))
501
502 (((
503 487.1 - SF7BW125 to SF12BW125
504 )))
505
506 (((
507 487.3 - SF7BW125 to SF12BW125
508 )))
509
510 (((
511 487.5 - SF7BW125 to SF12BW125
512 )))
513
514 (((
515 487.7 - SF7BW125 to SF12BW125
516 )))
517
518 (((
519
520 )))
521
522 (((
523 (% style="color:blue" %)**Downlink:**
524 )))
525
526 (((
527 506.7 - SF7BW125 to SF12BW125
528 )))
529
530 (((
531 506.9 - SF7BW125 to SF12BW125
532 )))
533
534 (((
535 507.1 - SF7BW125 to SF12BW125
536 )))
537
538 (((
539 507.3 - SF7BW125 to SF12BW125
540 )))
541
542 (((
543 507.5 - SF7BW125 to SF12BW125
544 )))
545
546 (((
547 507.7 - SF7BW125 to SF12BW125
548 )))
549
550 (((
551 507.9 - SF7BW125 to SF12BW125
552 )))
553
554 (((
555 508.1 - SF7BW125 to SF12BW125
556 )))
557
558 (((
559 505.3 - SF12BW125 (RX2 downlink only)
560 )))
561
562
563
564
565 === 2.6.4  AU915-928(AU915) ===
566
567 (((
568 Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
569 )))
570
571 (((
572 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
573 )))
574
575 (((
576
577 )))
578
579 (((
580 After Join success, the end node will switch to the correct sub band by:
581 )))
582
583 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
584 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
585
586 === 2.6.5  AS920-923 & AS923-925 (AS923) ===
587
588 (((
589 (% style="color:blue" %)**Default Uplink channel:**
590 )))
591
592 (((
593 923.2 - SF7BW125 to SF10BW125
594 )))
595
596 (((
597 923.4 - SF7BW125 to SF10BW125
598 )))
599
600 (((
601
602 )))
603
604 (((
605 (% style="color:blue" %)**Additional Uplink Channel**:
606 )))
607
608 (((
609 (OTAA mode, channel added by JoinAccept message)
610 )))
611
612 (((
613
614 )))
615
616 (((
617 (% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
618 )))
619
620 (((
621 922.2 - SF7BW125 to SF10BW125
622 )))
623
624 (((
625 922.4 - SF7BW125 to SF10BW125
626 )))
627
628 (((
629 922.6 - SF7BW125 to SF10BW125
630 )))
631
632 (((
633 922.8 - SF7BW125 to SF10BW125
634 )))
635
636 (((
637 923.0 - SF7BW125 to SF10BW125
638 )))
639
640 (((
641 922.0 - SF7BW125 to SF10BW125
642 )))
643
644 (((
645
646 )))
647
648 (((
649 (% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
650 )))
651
652 (((
653 923.6 - SF7BW125 to SF10BW125
654 )))
655
656 (((
657 923.8 - SF7BW125 to SF10BW125
658 )))
659
660 (((
661 924.0 - SF7BW125 to SF10BW125
662 )))
663
664 (((
665 924.2 - SF7BW125 to SF10BW125
666 )))
667
668 (((
669 924.4 - SF7BW125 to SF10BW125
670 )))
671
672 (((
673 924.6 - SF7BW125 to SF10BW125
674 )))
675
676 (((
677
678 )))
679
680 (((
681 (% style="color:blue" %)**Downlink:**
682 )))
683
684 (((
685 Uplink channels 1-8 (RX1)
686 )))
687
688 (((
689 923.2 - SF10BW125 (RX2)
690 )))
691
692
693
694
695 === 2.6.6  KR920-923 (KR920) ===
696
697 (((
698 (% style="color:blue" %)**Default channel:**
699 )))
700
701 (((
702 922.1 - SF7BW125 to SF12BW125
703 )))
704
705 (((
706 922.3 - SF7BW125 to SF12BW125
707 )))
708
709 (((
710 922.5 - SF7BW125 to SF12BW125
711 )))
712
713 (((
714
715 )))
716
717 (((
718 (% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
719 )))
720
721 (((
722 922.1 - SF7BW125 to SF12BW125
723 )))
724
725 (((
726 922.3 - SF7BW125 to SF12BW125
727 )))
728
729 (((
730 922.5 - SF7BW125 to SF12BW125
731 )))
732
733 (((
734 922.7 - SF7BW125 to SF12BW125
735 )))
736
737 (((
738 922.9 - SF7BW125 to SF12BW125
739 )))
740
741 (((
742 923.1 - SF7BW125 to SF12BW125
743 )))
744
745 (((
746 923.3 - SF7BW125 to SF12BW125
747 )))
748
749 (((
750
751 )))
752
753 (((
754 (% style="color:blue" %)**Downlink:**
755 )))
756
757 (((
758 Uplink channels 1-7(RX1)
759 )))
760
761 (((
762 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
763 )))
764
765
766
767
768 === 2.6.7  IN865-867 (IN865) ===
769
770 (((
771 (% style="color:blue" %)**Uplink:**
772 )))
773
774 (((
775 865.0625 - SF7BW125 to SF12BW125
776 )))
777
778 (((
779 865.4025 - SF7BW125 to SF12BW125
780 )))
781
782 (((
783 865.9850 - SF7BW125 to SF12BW125
784 )))
785
786 (((
787
788 )))
789
790 (((
791 (% style="color:blue" %)**Downlink:**
792 )))
793
794 (((
795 Uplink channels 1-3 (RX1)
796 )))
797
798 (((
799 866.550 - SF10BW125 (RX2)
800 )))
801
802
803
804
805 == 2.7  LED Indicator ==
806
807 The LLDS12 has an internal LED which is to show the status of different state.
808
809 * The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
810 * Blink once when device transmit a packet.
811
812 == 2.8  ​Firmware Change Log ==
813
814
815 **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
816
817
818 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>path:/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/]]
819
820
821
822 = 3.  LiDAR ToF Measurement =
823
824 == 3.1 Principle of Distance Measurement ==
825
826 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
827
828 [[image:1654831757579-263.png]]
829
830
831
832 == 3.2 Distance Measurement Characteristics ==
833
834 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
835
836 [[image:1654831774373-275.png]]
837
838
839 ①Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
840
841 ②Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
842
843 ③Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
844
845
846 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
847
848
849 [[image:1654831797521-720.png]]
850
851
852 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
853
854 [[image:1654831810009-716.png]]
855
856
857 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
858
859
860
861 == 3.3 Notice of usage: ==
862
863 Possible invalid /wrong reading for LiDAR ToF tech:
864
865 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
866 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
867 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
868 * The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
869
870 = 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
871
872 (((
873 Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
874 )))
875
876 * (((
877 AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
878 )))
879 * (((
880 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>path:/xwiki/bin/view/Main/]]
881 )))
882
883 (((
884
885
886 There are two kinds of commands to configure LLDS12, they are:
887 )))
888
889 * (((
890 (% style="color:#4f81bd" %)** General Commands**.
891 )))
892
893 (((
894 These commands are to configure:
895 )))
896
897 * (((
898 General system settings like: uplink interval.
899 )))
900 * (((
901 LoRaWAN protocol & radio related command.
902 )))
903
904 (((
905 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>path:/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
906 )))
907
908 (((
909
910 )))
911
912 * (((
913 (% style="color:#4f81bd" %)** Commands special design for LLDS12**
914 )))
915
916 (((
917 These commands only valid for LLDS12, as below:
918 )))
919
920
921
922 == 4.1  Set Transmit Interval Time ==
923
924 Feature: Change LoRaWAN End Node Transmit Interval.
925
926 (% style="color:#037691" %)**AT Command: AT+TDC**
927
928 [[image:image-20220607171554-8.png]]
929
930
931
932 (((
933 (% style="color:#037691" %)**Downlink Command: 0x01**
934 )))
935
936 (((
937 Format: Command Code (0x01) followed by 3 bytes time value.
938 )))
939
940 (((
941 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
942 )))
943
944 * (((
945 Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
946 )))
947 * (((
948 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
949
950
951
952 )))
953
954 == 4.2  Set Interrupt Mode ==
955
956 Feature, Set Interrupt mode for GPIO_EXIT.
957
958 (% style="color:#037691" %)**AT Command: AT+INTMOD**
959
960 [[image:image-20220610105806-2.png]]
961
962
963
964
965 (((
966 (% style="color:#037691" %)**Downlink Command: 0x06**
967 )))
968
969 (((
970 Format: Command Code (0x06) followed by 3 bytes.
971 )))
972
973 (((
974 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
975 )))
976
977 * (((
978 Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
979 )))
980 * (((
981 Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
982 )))
983
984 == 4.3  Get Firmware Version Info ==
985
986 Feature: use downlink to get firmware version.
987
988 (% style="color:#037691" %)**Downlink Command: 0x26**
989
990 [[image:image-20220607171917-10.png]]
991
992 * Reply to the confirmation package: 26 01
993 * Reply to non-confirmed packet: 26 00
994
995 Device will send an uplink after got this downlink command. With below payload:
996
997 Configures info payload:
998
999 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1000 |=(((
1001 **Size(bytes)**
1002 )))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1003 |**Value**|Software Type|(((
1004 Frequency
1005
1006 Band
1007 )))|Sub-band|(((
1008 Firmware
1009
1010 Version
1011 )))|Sensor Type|Reserve|(((
1012 [[Message Type>>||anchor="H2.3.6MessageType"]]
1013 Always 0x02
1014 )))
1015
1016 **Software Type**: Always 0x03 for LLDS12
1017
1018
1019 **Frequency Band**:
1020
1021 *0x01: EU868
1022
1023 *0x02: US915
1024
1025 *0x03: IN865
1026
1027 *0x04: AU915
1028
1029 *0x05: KZ865
1030
1031 *0x06: RU864
1032
1033 *0x07: AS923
1034
1035 *0x08: AS923-1
1036
1037 *0x09: AS923-2
1038
1039 *0xa0: AS923-3
1040
1041
1042 **Sub-Band**: value 0x00 ~~ 0x08
1043
1044
1045 **Firmware Version**: 0x0100, Means: v1.0.0 version
1046
1047
1048 **Sensor Type**:
1049
1050 0x01: LSE01
1051
1052 0x02: LDDS75
1053
1054 0x03: LDDS20
1055
1056 0x04: LLMS01
1057
1058 0x05: LSPH01
1059
1060 0x06: LSNPK01
1061
1062 0x07: LLDS12
1063
1064
1065
1066 = 5.  Battery & How to replace =
1067
1068 == 5.1  Battery Type ==
1069
1070 (((
1071 LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1072 )))
1073
1074 (((
1075 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1076 )))
1077
1078 [[image:1654593587246-335.png]]
1079
1080
1081 Minimum Working Voltage for the LLDS12:
1082
1083 LLDS12:  2.45v ~~ 3.6v
1084
1085
1086
1087 == 5.2  Replace Battery ==
1088
1089 (((
1090 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1091 )))
1092
1093 (((
1094 And make sure the positive and negative pins match.
1095 )))
1096
1097
1098
1099 == 5.3  Power Consumption Analyze ==
1100
1101 (((
1102 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1103 )))
1104
1105 (((
1106 Instruction to use as below:
1107 )))
1108
1109
1110 **Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1111
1112 [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1113
1114
1115 **Step 2**: Open it and choose
1116
1117 * Product Model
1118 * Uplink Interval
1119 * Working Mode
1120
1121 And the Life expectation in difference case will be shown on the right.
1122
1123 [[image:1654593605679-189.png]]
1124
1125
1126 The battery related documents as below:
1127
1128 * (((
1129 [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
1130 )))
1131 * (((
1132 [[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1133 )))
1134 * (((
1135 [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1136 )))
1137
1138 [[image:image-20220607172042-11.png]]
1139
1140
1141
1142 === 5.3.1  ​Battery Note ===
1143
1144 (((
1145 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1146 )))
1147
1148
1149
1150 === ​5.3.2  Replace the battery ===
1151
1152 (((
1153 You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1154 )))
1155
1156 (((
1157 The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1158 )))
1159
1160
1161
1162 = 6.  Use AT Command =
1163
1164 == 6.1  Access AT Commands ==
1165
1166 LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1167
1168 [[image:1654593668970-604.png]]
1169
1170 **Connection:**
1171
1172 (% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1173
1174 (% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1175
1176 (% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1177
1178
1179 (((
1180 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSPH01. LSPH01 will output system info once power on as below:
1181 )))
1182
1183
1184 [[image:1654593712276-618.png]]
1185
1186 Valid AT Command please check [[Configure Device>>||anchor="H3.ConfigureLSPH01viaATCommandorLoRaWANDownlink"]].
1187
1188
1189 = 7.  FAQ =
1190
1191 == 7.1  How to change the LoRa Frequency Bands/Region ==
1192
1193 You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
1194 When downloading the images, choose the required image file for download. ​
1195
1196
1197 = 8.  Trouble Shooting =
1198
1199 == 8.1  AT Commands input doesn’t work ==
1200
1201
1202 In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1203
1204
1205 == 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1206
1207
1208 (((
1209 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1210 )))
1211
1212 (((
1213 Troubleshooting: Please avoid use of this product under such circumstance in practice.
1214 )))
1215
1216 (((
1217
1218 )))
1219
1220 (((
1221 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1222 )))
1223
1224 (((
1225 Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1226 )))
1227
1228
1229
1230 = 9.  Order Info =
1231
1232
1233 Part Number: (% style="color:blue" %)**LLDS12-XX**
1234
1235
1236 (% style="color:blue" %)**XX**(%%): The default frequency band
1237
1238 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1239 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1240 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1241 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1242 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1243 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1244 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1245 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1246
1247 = 10. ​ Packing Info =
1248
1249
1250 **Package Includes**:
1251
1252 * LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1253
1254 **Dimension and weight**:
1255
1256 * Device Size: cm
1257 * Device Weight: g
1258 * Package Size / pcs : cm
1259 * Weight / pcs : g
1260
1261 = 11.  ​Support =
1262
1263 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1264 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0