Show last authors
1 (% style="text-align:center" %)
2 [[image:1654846127817-788.png]]
3
4 **Contents:**
5
6
7
8
9
10
11
12
13 = 1.  Introduction =
14
15 == 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
16
17 (((
18
19
20 (((
21 The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
22
23
24 It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
25
26
27 The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
28
29
30 LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
31
32
33 Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
34
35
36 (% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors
37 )))
38 )))
39
40
41 [[image:1654847051249-359.png]]
42
43
44
45 == ​1.2  Features ==
46
47 * LoRaWAN 1.0.3 Class A
48 * Ultra low power consumption
49 * Distance Detection by Ultrasonic technology
50 * Flat object range 280mm - 7500mm
51 * Accuracy: ±(1cm+S*0.3%) (S: Distance)
52 * Cable Length : 25cm
53 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
54 * AT Commands to change parameters
55 * Uplink on periodically
56 * Downlink to change configure
57 * IP66 Waterproof Enclosure
58 * 4000mAh or 8500mAh Battery for long term use
59
60
61
62 == 1.3  Specification ==
63
64 === 1.3.1  Rated environmental conditions ===
65
66 [[image:image-20220610154839-1.png]]
67
68 **Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);**
69
70 **b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
71
72
73
74 === 1.3.2  Effective measurement range Reference beam pattern ===
75
76 **(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**
77
78
79
80 [[image:1654852253176-749.png]]
81
82
83 **(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.**
84
85
86 [[image:1654852175653-550.png]](% style="display:none" %) ** **
87
88
89
90 == 1.5 ​ Applications ==
91
92 * Horizontal distance measurement
93 * Liquid level measurement
94 * Parking management system
95 * Object proximity and presence detection
96 * Intelligent trash can management system
97 * Robot obstacle avoidance
98 * Automatic control
99 * Sewer
100 * Bottom water level monitoring
101
102
103
104 == 1.6  Pin mapping and power on ==
105
106
107 [[image:1654847583902-256.png]]
108
109
110
111 = 2.  Configure LDDS75 to connect to LoRaWAN network =
112
113 == 2.1  How it works ==
114
115 (((
116 The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
117 )))
118
119 (((
120 In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
121 )))
122
123
124
125 == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
126
127 (((
128 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
129 )))
130
131 (((
132 [[image:1654848616367-242.png]]
133 )))
134
135 (((
136 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
137 )))
138
139 (((
140 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
141 )))
142
143 (((
144 Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
145 )))
146
147 [[image:image-20220607170145-1.jpeg]]
148
149
150 For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
151
152 Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
153
154 **Add APP EUI in the application**
155
156 [[image:image-20220610161353-4.png]]
157
158 [[image:image-20220610161353-5.png]]
159
160 [[image:image-20220610161353-6.png]]
161
162
163 [[image:image-20220610161353-7.png]]
164
165
166 You can also choose to create the device manually.
167
168 [[image:image-20220610161538-8.png]]
169
170
171
172 **Add APP KEY and DEV EUI**
173
174 [[image:image-20220610161538-9.png]]
175
176
177
178 (% style="color:blue" %)**Step 2**(%%): Power on LDDS75
179
180
181 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
182
183 [[image:image-20220610161724-10.png]]
184
185
186 (((
187 (% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
188 )))
189
190 [[image:1654849068701-275.png]]
191
192
193
194 == 2.3  ​Uplink Payload ==
195
196 (((
197 LDDS75 will uplink payload via LoRaWAN with below payload format: 
198
199 Uplink payload includes in total 4 bytes.
200 Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
201 )))
202
203 (((
204
205 )))
206
207 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
208 |=(% style="width: 62.5px;" %)(((
209 **Size (bytes)**
210 )))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
211 |(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
212 [[Distance>>||anchor="H2.3.3A0Distance"]]
213
214 (unit: mm)
215 )))|[[Digital Interrupt (Optional)>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
216 [[Temperature (Optional )>>||anchor="H2.3.5A0InterruptPin"]]
217 )))|[[Sensor Flag>>path:#Sensor_Flag]]
218
219 [[image:1654850511545-399.png]]
220
221
222
223 === 2.3.1  Battery Info ===
224
225
226 Check the battery voltage for LDDS75.
227
228 Ex1: 0x0B45 = 2885mV
229
230 Ex2: 0x0B49 = 2889mV
231
232
233
234 === 2.3.2  Distance ===
235
236 Get the distance. Flat object range 280mm - 7500mm.
237
238 For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
239
240
241 * If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
242 * If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
243
244
245
246 === 2.3.3  Interrupt Pin ===
247
248 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
249
250 **Example:**
251
252 0x00: Normal uplink packet.
253
254 0x01: Interrupt Uplink Packet.
255
256
257
258 === 2.3.4  DS18B20 Temperature sensor ===
259
260 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
261
262 **Example**:
263
264 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
265
266 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
267
268 (% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021.
269
270
271
272 === 2.3.5  Sensor Flag ===
273
274 0x01: Detect Ultrasonic Sensor
275
276 0x00: No Ultrasonic Sensor
277
278
279 ===
280 (% style="color:inherit; font-family:inherit" %)2.3.6  Decode payload in The Things Network(%%) ===
281
282 While using TTN network, you can add the payload format to decode the payload.
283
284
285 [[image:1654850829385-439.png]]
286
287 The payload decoder function for TTN V3 is here:
288
289 LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
290
291
292
293 == 2.4  Uplink Interval ==
294
295 The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
296
297
298
299 == 2.5  ​Show Data in DataCake IoT Server ==
300
301 (((
302 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
303 )))
304
305 (((
306
307 )))
308
309 (((
310 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
311 )))
312
313 (((
314 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
315 )))
316
317
318 [[image:1654592790040-760.png]]
319
320
321 [[image:1654592800389-571.png]]
322
323
324 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
325
326 (% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.**
327
328 [[image:1654851029373-510.png]]
329
330
331 After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
332
333 [[image:image-20220610165129-11.png||height="595" width="1088"]]
334
335
336
337 == 2.6  Frequency Plans ==
338
339 (((
340 The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
341 )))
342
343
344
345 === 2.6.1  EU863-870 (EU868) ===
346
347 (((
348 (% style="color:blue" %)**Uplink:**
349 )))
350
351 (((
352 868.1 - SF7BW125 to SF12BW125
353 )))
354
355 (((
356 868.3 - SF7BW125 to SF12BW125 and SF7BW250
357 )))
358
359 (((
360 868.5 - SF7BW125 to SF12BW125
361 )))
362
363 (((
364 867.1 - SF7BW125 to SF12BW125
365 )))
366
367 (((
368 867.3 - SF7BW125 to SF12BW125
369 )))
370
371 (((
372 867.5 - SF7BW125 to SF12BW125
373 )))
374
375 (((
376 867.7 - SF7BW125 to SF12BW125
377 )))
378
379 (((
380 867.9 - SF7BW125 to SF12BW125
381 )))
382
383 (((
384 868.8 - FSK
385 )))
386
387 (((
388
389 )))
390
391 (((
392 (% style="color:blue" %)**Downlink:**
393 )))
394
395 (((
396 Uplink channels 1-9 (RX1)
397 )))
398
399 (((
400 869.525 - SF9BW125 (RX2 downlink only)
401 )))
402
403
404
405 === 2.6.2  US902-928(US915) ===
406
407 (((
408 Used in USA, Canada and South America. Default use CHE=2
409
410 (% style="color:blue" %)**Uplink:**
411
412 903.9 - SF7BW125 to SF10BW125
413
414 904.1 - SF7BW125 to SF10BW125
415
416 904.3 - SF7BW125 to SF10BW125
417
418 904.5 - SF7BW125 to SF10BW125
419
420 904.7 - SF7BW125 to SF10BW125
421
422 904.9 - SF7BW125 to SF10BW125
423
424 905.1 - SF7BW125 to SF10BW125
425
426 905.3 - SF7BW125 to SF10BW125
427
428
429 (% style="color:blue" %)**Downlink:**
430
431 923.3 - SF7BW500 to SF12BW500
432
433 923.9 - SF7BW500 to SF12BW500
434
435 924.5 - SF7BW500 to SF12BW500
436
437 925.1 - SF7BW500 to SF12BW500
438
439 925.7 - SF7BW500 to SF12BW500
440
441 926.3 - SF7BW500 to SF12BW500
442
443 926.9 - SF7BW500 to SF12BW500
444
445 927.5 - SF7BW500 to SF12BW500
446
447 923.3 - SF12BW500(RX2 downlink only)
448
449
450
451 )))
452
453 === 2.6.3  CN470-510 (CN470) ===
454
455 (((
456 Used in China, Default use CHE=1
457 )))
458
459 (((
460 (% style="color:blue" %)**Uplink:**
461 )))
462
463 (((
464 486.3 - SF7BW125 to SF12BW125
465 )))
466
467 (((
468 486.5 - SF7BW125 to SF12BW125
469 )))
470
471 (((
472 486.7 - SF7BW125 to SF12BW125
473 )))
474
475 (((
476 486.9 - SF7BW125 to SF12BW125
477 )))
478
479 (((
480 487.1 - SF7BW125 to SF12BW125
481 )))
482
483 (((
484 487.3 - SF7BW125 to SF12BW125
485 )))
486
487 (((
488 487.5 - SF7BW125 to SF12BW125
489 )))
490
491 (((
492 487.7 - SF7BW125 to SF12BW125
493 )))
494
495 (((
496
497 )))
498
499 (((
500 (% style="color:blue" %)**Downlink:**
501 )))
502
503 (((
504 506.7 - SF7BW125 to SF12BW125
505 )))
506
507 (((
508 506.9 - SF7BW125 to SF12BW125
509 )))
510
511 (((
512 507.1 - SF7BW125 to SF12BW125
513 )))
514
515 (((
516 507.3 - SF7BW125 to SF12BW125
517 )))
518
519 (((
520 507.5 - SF7BW125 to SF12BW125
521 )))
522
523 (((
524 507.7 - SF7BW125 to SF12BW125
525 )))
526
527 (((
528 507.9 - SF7BW125 to SF12BW125
529 )))
530
531 (((
532 508.1 - SF7BW125 to SF12BW125
533 )))
534
535 (((
536 505.3 - SF12BW125 (RX2 downlink only)
537 )))
538
539
540
541 === 2.6.4  AU915-928(AU915) ===
542
543 (((
544 Default use CHE=2
545
546 (% style="color:blue" %)**Uplink:**
547
548 916.8 - SF7BW125 to SF12BW125
549
550 917.0 - SF7BW125 to SF12BW125
551
552 917.2 - SF7BW125 to SF12BW125
553
554 917.4 - SF7BW125 to SF12BW125
555
556 917.6 - SF7BW125 to SF12BW125
557
558 917.8 - SF7BW125 to SF12BW125
559
560 918.0 - SF7BW125 to SF12BW125
561
562 918.2 - SF7BW125 to SF12BW125
563
564
565 (% style="color:blue" %)**Downlink:**
566
567 923.3 - SF7BW500 to SF12BW500
568
569 923.9 - SF7BW500 to SF12BW500
570
571 924.5 - SF7BW500 to SF12BW500
572
573 925.1 - SF7BW500 to SF12BW500
574
575 925.7 - SF7BW500 to SF12BW500
576
577 926.3 - SF7BW500 to SF12BW500
578
579 926.9 - SF7BW500 to SF12BW500
580
581 927.5 - SF7BW500 to SF12BW500
582
583 923.3 - SF12BW500(RX2 downlink only)
584
585
586
587 )))
588
589 === 2.6.5  AS920-923 & AS923-925 (AS923) ===
590
591 (((
592 (% style="color:blue" %)**Default Uplink channel:**
593 )))
594
595 (((
596 923.2 - SF7BW125 to SF10BW125
597 )))
598
599 (((
600 923.4 - SF7BW125 to SF10BW125
601 )))
602
603 (((
604
605 )))
606
607 (((
608 (% style="color:blue" %)**Additional Uplink Channel**:
609 )))
610
611 (((
612 (OTAA mode, channel added by JoinAccept message)
613 )))
614
615 (((
616
617 )))
618
619 (((
620 (% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
621 )))
622
623 (((
624 922.2 - SF7BW125 to SF10BW125
625 )))
626
627 (((
628 922.4 - SF7BW125 to SF10BW125
629 )))
630
631 (((
632 922.6 - SF7BW125 to SF10BW125
633 )))
634
635 (((
636 922.8 - SF7BW125 to SF10BW125
637 )))
638
639 (((
640 923.0 - SF7BW125 to SF10BW125
641 )))
642
643 (((
644 922.0 - SF7BW125 to SF10BW125
645 )))
646
647 (((
648
649 )))
650
651 (((
652 (% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
653 )))
654
655 (((
656 923.6 - SF7BW125 to SF10BW125
657 )))
658
659 (((
660 923.8 - SF7BW125 to SF10BW125
661 )))
662
663 (((
664 924.0 - SF7BW125 to SF10BW125
665 )))
666
667 (((
668 924.2 - SF7BW125 to SF10BW125
669 )))
670
671 (((
672 924.4 - SF7BW125 to SF10BW125
673 )))
674
675 (((
676 924.6 - SF7BW125 to SF10BW125
677 )))
678
679 (((
680
681 )))
682
683 (((
684 (% style="color:blue" %)**Downlink:**
685 )))
686
687 (((
688 Uplink channels 1-8 (RX1)
689 )))
690
691 (((
692 923.2 - SF10BW125 (RX2)
693 )))
694
695
696
697 === 2.6.6  KR920-923 (KR920) ===
698
699 (((
700 (% style="color:blue" %)**Default channel:**
701 )))
702
703 (((
704 922.1 - SF7BW125 to SF12BW125
705 )))
706
707 (((
708 922.3 - SF7BW125 to SF12BW125
709 )))
710
711 (((
712 922.5 - SF7BW125 to SF12BW125
713 )))
714
715 (((
716
717 )))
718
719 (((
720 (% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
721 )))
722
723 (((
724 922.1 - SF7BW125 to SF12BW125
725 )))
726
727 (((
728 922.3 - SF7BW125 to SF12BW125
729 )))
730
731 (((
732 922.5 - SF7BW125 to SF12BW125
733 )))
734
735 (((
736 922.7 - SF7BW125 to SF12BW125
737 )))
738
739 (((
740 922.9 - SF7BW125 to SF12BW125
741 )))
742
743 (((
744 923.1 - SF7BW125 to SF12BW125
745 )))
746
747 (((
748 923.3 - SF7BW125 to SF12BW125
749 )))
750
751 (((
752
753 )))
754
755 (((
756 (% style="color:blue" %)**Downlink:**
757 )))
758
759 (((
760 Uplink channels 1-7(RX1)
761 )))
762
763 (((
764 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
765 )))
766
767
768
769 === 2.6.7  IN865-867 (IN865) ===
770
771 (((
772 (% style="color:blue" %)**Uplink:**
773 )))
774
775 (((
776 865.0625 - SF7BW125 to SF12BW125
777 )))
778
779 (((
780 865.4025 - SF7BW125 to SF12BW125
781 )))
782
783 (((
784 865.9850 - SF7BW125 to SF12BW125
785 )))
786
787 (((
788
789 )))
790
791 (((
792 (% style="color:blue" %)**Downlink:**
793 )))
794
795 (((
796 Uplink channels 1-3 (RX1)
797 )))
798
799 (((
800 866.550 - SF10BW125 (RX2)
801 )))
802
803
804
805 == 2.7  LED Indicator ==
806
807 The LDDS75 has an internal LED which is to show the status of different state.
808
809
810 * Blink once when device power on.
811 * The device detects the sensor and flashes 5 times.
812 * Solid ON for 5 seconds once device successful Join the network.
813 * Blink once when device transmit a packet.
814
815
816
817 == 2.8  ​Firmware Change Log ==
818
819
820 **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
821
822
823 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
824
825
826
827 == 2.9  Mechanical ==
828
829
830 [[image:image-20220610172003-1.png]]
831
832 [[image:image-20220610172003-2.png]]
833
834
835 == 2.10  Battery Analysis  ==
836
837 === 2.10.1  Battery Type ===
838
839 The LDDS75 battery is a combination of a 4000mAh or 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
840
841
842 The battery related documents as below:
843
844 * (((
845 [[ Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
846 )))
847 * (((
848 [[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
849 )))
850 * (((
851 [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
852 )))
853
854 [[image:image-20220610172400-3.png]]
855
856
857
858 === 2.10.2  Replace the battery ===
859
860 You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
861
862
863 The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
864
865
866
867 = 3.  LiDAR ToF Measurement =
868
869 == 3.1 Principle of Distance Measurement ==
870
871 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
872
873 [[image:1654831757579-263.png]]
874
875
876
877 == 3.2 Distance Measurement Characteristics ==
878
879 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
880
881 [[image:1654831774373-275.png]]
882
883
884 (((
885 (% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
886 )))
887
888 (((
889 (% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
890 )))
891
892 (((
893 (% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
894 )))
895
896
897 (((
898 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
899 )))
900
901
902 [[image:1654831797521-720.png]]
903
904
905 (((
906 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
907 )))
908
909 [[image:1654831810009-716.png]]
910
911
912 (((
913 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
914 )))
915
916
917
918 == 3.3 Notice of usage: ==
919
920 Possible invalid /wrong reading for LiDAR ToF tech:
921
922 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
923 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
924 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
925 * The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
926
927 = 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
928
929 (((
930 (((
931 Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
932 )))
933 )))
934
935 * (((
936 (((
937 AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]].
938 )))
939 )))
940 * (((
941 (((
942 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
943 )))
944 )))
945
946 (((
947 (((
948
949 )))
950
951 (((
952 There are two kinds of commands to configure LLDS12, they are:
953 )))
954 )))
955
956 * (((
957 (((
958 (% style="color:#4f81bd" %)** General Commands**.
959 )))
960 )))
961
962 (((
963 (((
964 These commands are to configure:
965 )))
966 )))
967
968 * (((
969 (((
970 General system settings like: uplink interval.
971 )))
972 )))
973 * (((
974 (((
975 LoRaWAN protocol & radio related command.
976 )))
977 )))
978
979 (((
980 (((
981 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
982 )))
983 )))
984
985 (((
986 (((
987
988 )))
989 )))
990
991 * (((
992 (((
993 (% style="color:#4f81bd" %)** Commands special design for LLDS12**
994 )))
995 )))
996
997 (((
998 (((
999 These commands only valid for LLDS12, as below:
1000 )))
1001 )))
1002
1003
1004
1005 == 4.1  Set Transmit Interval Time ==
1006
1007 Feature: Change LoRaWAN End Node Transmit Interval.
1008
1009 (% style="color:#037691" %)**AT Command: AT+TDC**
1010
1011 [[image:image-20220607171554-8.png]]
1012
1013
1014 (((
1015 (% style="color:#037691" %)**Downlink Command: 0x01**
1016 )))
1017
1018 (((
1019 Format: Command Code (0x01) followed by 3 bytes time value.
1020 )))
1021
1022 (((
1023 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
1024 )))
1025
1026 * (((
1027 Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
1028 )))
1029 * (((
1030 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
1031 )))
1032
1033 == 4.2  Set Interrupt Mode ==
1034
1035 Feature, Set Interrupt mode for GPIO_EXIT.
1036
1037 (% style="color:#037691" %)**AT Command: AT+INTMOD**
1038
1039 [[image:image-20220610105806-2.png]]
1040
1041
1042 (((
1043 (% style="color:#037691" %)**Downlink Command: 0x06**
1044 )))
1045
1046 (((
1047 Format: Command Code (0x06) followed by 3 bytes.
1048 )))
1049
1050 (((
1051 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1052 )))
1053
1054 * (((
1055 Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1056 )))
1057 * (((
1058 Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1059 )))
1060
1061 == 4.3  Get Firmware Version Info ==
1062
1063 Feature: use downlink to get firmware version.
1064
1065 (% style="color:#037691" %)**Downlink Command: 0x26**
1066
1067 [[image:image-20220607171917-10.png]]
1068
1069 * Reply to the confirmation package: 26 01
1070 * Reply to non-confirmed packet: 26 00
1071
1072 Device will send an uplink after got this downlink command. With below payload:
1073
1074 Configures info payload:
1075
1076 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1077 |=(((
1078 **Size(bytes)**
1079 )))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1080 |**Value**|Software Type|(((
1081 Frequency
1082
1083 Band
1084 )))|Sub-band|(((
1085 Firmware
1086
1087 Version
1088 )))|Sensor Type|Reserve|(((
1089 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
1090 Always 0x02
1091 )))
1092
1093 **Software Type**: Always 0x03 for LLDS12
1094
1095
1096 **Frequency Band**:
1097
1098 *0x01: EU868
1099
1100 *0x02: US915
1101
1102 *0x03: IN865
1103
1104 *0x04: AU915
1105
1106 *0x05: KZ865
1107
1108 *0x06: RU864
1109
1110 *0x07: AS923
1111
1112 *0x08: AS923-1
1113
1114 *0x09: AS923-2
1115
1116 *0xa0: AS923-3
1117
1118
1119 **Sub-Band**: value 0x00 ~~ 0x08
1120
1121
1122 **Firmware Version**: 0x0100, Means: v1.0.0 version
1123
1124
1125 **Sensor Type**:
1126
1127 0x01: LSE01
1128
1129 0x02: LDDS75
1130
1131 0x03: LDDS20
1132
1133 0x04: LLMS01
1134
1135 0x05: LSPH01
1136
1137 0x06: LSNPK01
1138
1139 0x07: LLDS12
1140
1141
1142
1143 = 5.  Battery & How to replace =
1144
1145 == 5.1  Battery Type ==
1146
1147 (((
1148 LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1149 )))
1150
1151 (((
1152 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1153 )))
1154
1155 [[image:1654593587246-335.png]]
1156
1157
1158 Minimum Working Voltage for the LLDS12:
1159
1160 LLDS12:  2.45v ~~ 3.6v
1161
1162
1163
1164 == 5.2  Replace Battery ==
1165
1166 (((
1167 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1168 )))
1169
1170 (((
1171 And make sure the positive and negative pins match.
1172 )))
1173
1174
1175
1176 == 5.3  Power Consumption Analyze ==
1177
1178 (((
1179 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1180 )))
1181
1182 (((
1183 Instruction to use as below:
1184 )))
1185
1186
1187 **Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1188
1189 [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1190
1191
1192 **Step 2**: Open it and choose
1193
1194 * Product Model
1195 * Uplink Interval
1196 * Working Mode
1197
1198 And the Life expectation in difference case will be shown on the right.
1199
1200 [[image:1654593605679-189.png]]
1201
1202
1203 The battery related documents as below:
1204
1205 * (((
1206 [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
1207 )))
1208 * (((
1209 [[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1210 )))
1211 * (((
1212 [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1213 )))
1214
1215 [[image:image-20220607172042-11.png]]
1216
1217
1218
1219 === 5.3.1  ​Battery Note ===
1220
1221 (((
1222 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1223 )))
1224
1225
1226
1227 === ​5.3.2  Replace the battery ===
1228
1229 (((
1230 You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1231 )))
1232
1233 (((
1234 The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1235 )))
1236
1237
1238
1239 = 6.  Use AT Command =
1240
1241 == 6.1  Access AT Commands ==
1242
1243 LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1244
1245 [[image:1654593668970-604.png]]
1246
1247 **Connection:**
1248
1249 (% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1250
1251 (% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1252
1253 (% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1254
1255
1256 (((
1257 (((
1258 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1259 )))
1260
1261 (((
1262 LLDS12 will output system info once power on as below:
1263 )))
1264 )))
1265
1266
1267 [[image:1654593712276-618.png]]
1268
1269 Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
1270
1271
1272 = 7.  FAQ =
1273
1274 == 7.1  How to change the LoRa Frequency Bands/Region ==
1275
1276 You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1277 When downloading the images, choose the required image file for download. ​
1278
1279
1280 = 8.  Trouble Shooting =
1281
1282 == 8.1  AT Commands input doesn’t work ==
1283
1284
1285 (((
1286 In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1287 )))
1288
1289
1290 == 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1291
1292
1293 (((
1294 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1295 )))
1296
1297 (((
1298 Troubleshooting: Please avoid use of this product under such circumstance in practice.
1299 )))
1300
1301 (((
1302
1303 )))
1304
1305 (((
1306 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1307 )))
1308
1309 (((
1310 Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1311 )))
1312
1313
1314
1315 = 9.  Order Info =
1316
1317
1318 Part Number: (% style="color:blue" %)**LLDS12-XX**
1319
1320
1321 (% style="color:blue" %)**XX**(%%): The default frequency band
1322
1323 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1324 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1325 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1326 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1327 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1328 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1329 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1330 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1331
1332 = 10. ​ Packing Info =
1333
1334
1335 **Package Includes**:
1336
1337 * LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1338
1339 **Dimension and weight**:
1340
1341 * Device Size: cm
1342 * Device Weight: g
1343 * Package Size / pcs : cm
1344 * Weight / pcs : g
1345
1346 = 11.  ​Support =
1347
1348 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1349 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0