Show last authors
1 (% style="text-align:center" %)
2 [[image:1654846127817-788.png]]
3
4 **Contents:**
5
6
7
8
9
10
11
12
13 = 1.  Introduction =
14
15 == 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
16
17 (((
18
19
20 (((
21 The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
22
23
24 It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
25
26
27 The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
28
29
30 LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
31
32
33 Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
34
35
36 (% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors
37 )))
38 )))
39
40
41 [[image:1654847051249-359.png]]
42
43
44
45 == ​1.2  Features ==
46
47 * LoRaWAN 1.0.3 Class A
48 * Ultra low power consumption
49 * Distance Detection by Ultrasonic technology
50 * Flat object range 280mm - 7500mm
51 * Accuracy: ±(1cm+S*0.3%) (S: Distance)
52 * Cable Length : 25cm
53 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
54 * AT Commands to change parameters
55 * Uplink on periodically
56 * Downlink to change configure
57 * IP66 Waterproof Enclosure
58 * 4000mAh or 8500mAh Battery for long term use
59
60
61 == 1.3  Specification ==
62
63 === 1.3.1  Rated environmental conditions ===
64
65 [[image:image-20220610154839-1.png]]
66
67 **Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);**
68
69 **b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
70
71
72
73 === 1.3.2  Effective measurement range Reference beam pattern ===
74
75 **(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**
76
77
78
79 [[image:1654852253176-749.png]]
80
81
82 **(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.**
83
84
85 [[image:1654852175653-550.png]]
86
87
88 (% style="display:none" %) ** **
89
90
91
92 == 1.5 ​ Applications ==
93
94 * Horizontal distance measurement
95 * Liquid level measurement
96 * Parking management system
97 * Object proximity and presence detection
98 * Intelligent trash can management system
99 * Robot obstacle avoidance
100 * Automatic control
101 * Sewer
102 * Bottom water level monitoring
103
104
105 == 1.6  Pin mapping and power on ==
106
107
108 [[image:1654847583902-256.png]]
109
110
111
112 = 2.  Configure LDDS75 to connect to LoRaWAN network =
113
114 == 2.1  How it works ==
115
116 (((
117 The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
118 )))
119
120 (((
121 In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
122 )))
123
124
125
126 == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
127
128 (((
129 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
130 )))
131
132 (((
133 [[image:1654848616367-242.png]]
134 )))
135
136 (((
137 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
138 )))
139
140 (((
141 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
142 )))
143
144 (((
145 Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
146 )))
147
148 [[image:image-20220607170145-1.jpeg]]
149
150
151 For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
152
153 Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
154
155 **Add APP EUI in the application**
156
157 [[image:image-20220610161353-4.png]]
158
159 [[image:image-20220610161353-5.png]]
160
161 [[image:image-20220610161353-6.png]]
162
163
164 [[image:image-20220610161353-7.png]]
165
166
167 You can also choose to create the device manually.
168
169 [[image:image-20220610161538-8.png]]
170
171
172
173 **Add APP KEY and DEV EUI**
174
175 [[image:image-20220610161538-9.png]]
176
177
178
179 (% style="color:blue" %)**Step 2**(%%): Power on LDDS75
180
181
182 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
183
184 [[image:image-20220610161724-10.png]]
185
186
187 (((
188 (% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
189 )))
190
191 [[image:1654849068701-275.png]]
192
193
194
195 == 2.3  ​Uplink Payload ==
196
197 (((
198 LDDS75 will uplink payload via LoRaWAN with below payload format: 
199
200 Uplink payload includes in total 4 bytes.
201 Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
202 )))
203
204 (((
205
206 )))
207
208 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
209 |=(% style="width: 62.5px;" %)(((
210 **Size (bytes)**
211 )))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
212 |(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
213 [[Distance>>||anchor="H2.3.3A0Distance"]]
214
215 (unit: mm)
216 )))|[[Digital Interrupt (Optional)>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
217 [[Temperature (Optional )>>||anchor="H2.3.5A0InterruptPin"]]
218 )))|[[Sensor Flag>>path:#Sensor_Flag]]
219
220 [[image:1654850511545-399.png]]
221
222
223
224 === 2.3.1  Battery Info ===
225
226
227 Check the battery voltage for LDDS75.
228
229 Ex1: 0x0B45 = 2885mV
230
231 Ex2: 0x0B49 = 2889mV
232
233
234
235 === 2.3.2  Distance ===
236
237 Get the distance. Flat object range 280mm - 7500mm.
238
239 For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
240
241
242 * If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
243 * If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
244
245
246
247 === 2.3.3  Interrupt Pin ===
248
249 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
250
251 **Example:**
252
253 0x00: Normal uplink packet.
254
255 0x01: Interrupt Uplink Packet.
256
257
258
259 === 2.3.4  DS18B20 Temperature sensor ===
260
261 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
262
263 **Example**:
264
265 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
266
267 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
268
269 (% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021.
270
271
272
273 === 2.3.5  Sensor Flag ===
274
275 0x01: Detect Ultrasonic Sensor
276
277 0x00: No Ultrasonic Sensor
278
279
280 ===
281 (% style="color:inherit; font-family:inherit" %)2.3.6  Decode payload in The Things Network(%%) ===
282
283 While using TTN network, you can add the payload format to decode the payload.
284
285
286 [[image:1654850829385-439.png]]
287
288 The payload decoder function for TTN V3 is here:
289
290 LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
291
292
293
294 == 2.4  Uplink Interval ==
295
296 The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
297
298
299
300 == 2.5  ​Show Data in DataCake IoT Server ==
301
302 (((
303 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
304 )))
305
306 (((
307
308 )))
309
310 (((
311 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
312 )))
313
314 (((
315 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
316 )))
317
318
319 [[image:1654592790040-760.png]]
320
321
322 [[image:1654592800389-571.png]]
323
324
325 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
326
327 (% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.**
328
329 [[image:1654851029373-510.png]]
330
331
332 After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
333
334 [[image:image-20220610165129-11.png||height="595" width="1088"]]
335
336
337
338 == 2.6  Frequency Plans ==
339
340 (((
341 The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
342 )))
343
344
345
346 === 2.6.1  EU863-870 (EU868) ===
347
348 (((
349 (% style="color:blue" %)**Uplink:**
350 )))
351
352 (((
353 868.1 - SF7BW125 to SF12BW125
354 )))
355
356 (((
357 868.3 - SF7BW125 to SF12BW125 and SF7BW250
358 )))
359
360 (((
361 868.5 - SF7BW125 to SF12BW125
362 )))
363
364 (((
365 867.1 - SF7BW125 to SF12BW125
366 )))
367
368 (((
369 867.3 - SF7BW125 to SF12BW125
370 )))
371
372 (((
373 867.5 - SF7BW125 to SF12BW125
374 )))
375
376 (((
377 867.7 - SF7BW125 to SF12BW125
378 )))
379
380 (((
381 867.9 - SF7BW125 to SF12BW125
382 )))
383
384 (((
385 868.8 - FSK
386 )))
387
388 (((
389
390 )))
391
392 (((
393 (% style="color:blue" %)**Downlink:**
394 )))
395
396 (((
397 Uplink channels 1-9 (RX1)
398 )))
399
400 (((
401 869.525 - SF9BW125 (RX2 downlink only)
402 )))
403
404
405
406 === 2.6.2  US902-928(US915) ===
407
408 (((
409 Used in USA, Canada and South America. Default use CHE=2
410
411 (% style="color:blue" %)**Uplink:**
412
413 903.9 - SF7BW125 to SF10BW125
414
415 904.1 - SF7BW125 to SF10BW125
416
417 904.3 - SF7BW125 to SF10BW125
418
419 904.5 - SF7BW125 to SF10BW125
420
421 904.7 - SF7BW125 to SF10BW125
422
423 904.9 - SF7BW125 to SF10BW125
424
425 905.1 - SF7BW125 to SF10BW125
426
427 905.3 - SF7BW125 to SF10BW125
428
429
430 (% style="color:blue" %)**Downlink:**
431
432 923.3 - SF7BW500 to SF12BW500
433
434 923.9 - SF7BW500 to SF12BW500
435
436 924.5 - SF7BW500 to SF12BW500
437
438 925.1 - SF7BW500 to SF12BW500
439
440 925.7 - SF7BW500 to SF12BW500
441
442 926.3 - SF7BW500 to SF12BW500
443
444 926.9 - SF7BW500 to SF12BW500
445
446 927.5 - SF7BW500 to SF12BW500
447
448 923.3 - SF12BW500(RX2 downlink only)
449
450
451
452 )))
453
454 === 2.6.3  CN470-510 (CN470) ===
455
456 (((
457 Used in China, Default use CHE=1
458 )))
459
460 (((
461 (% style="color:blue" %)**Uplink:**
462 )))
463
464 (((
465 486.3 - SF7BW125 to SF12BW125
466 )))
467
468 (((
469 486.5 - SF7BW125 to SF12BW125
470 )))
471
472 (((
473 486.7 - SF7BW125 to SF12BW125
474 )))
475
476 (((
477 486.9 - SF7BW125 to SF12BW125
478 )))
479
480 (((
481 487.1 - SF7BW125 to SF12BW125
482 )))
483
484 (((
485 487.3 - SF7BW125 to SF12BW125
486 )))
487
488 (((
489 487.5 - SF7BW125 to SF12BW125
490 )))
491
492 (((
493 487.7 - SF7BW125 to SF12BW125
494 )))
495
496 (((
497
498 )))
499
500 (((
501 (% style="color:blue" %)**Downlink:**
502 )))
503
504 (((
505 506.7 - SF7BW125 to SF12BW125
506 )))
507
508 (((
509 506.9 - SF7BW125 to SF12BW125
510 )))
511
512 (((
513 507.1 - SF7BW125 to SF12BW125
514 )))
515
516 (((
517 507.3 - SF7BW125 to SF12BW125
518 )))
519
520 (((
521 507.5 - SF7BW125 to SF12BW125
522 )))
523
524 (((
525 507.7 - SF7BW125 to SF12BW125
526 )))
527
528 (((
529 507.9 - SF7BW125 to SF12BW125
530 )))
531
532 (((
533 508.1 - SF7BW125 to SF12BW125
534 )))
535
536 (((
537 505.3 - SF12BW125 (RX2 downlink only)
538 )))
539
540
541
542
543 === 2.6.4  AU915-928(AU915) ===
544
545 (((
546 Default use CHE=2
547
548 (% style="color:blue" %)**Uplink:**
549
550 916.8 - SF7BW125 to SF12BW125
551
552 917.0 - SF7BW125 to SF12BW125
553
554 917.2 - SF7BW125 to SF12BW125
555
556 917.4 - SF7BW125 to SF12BW125
557
558 917.6 - SF7BW125 to SF12BW125
559
560 917.8 - SF7BW125 to SF12BW125
561
562 918.0 - SF7BW125 to SF12BW125
563
564 918.2 - SF7BW125 to SF12BW125
565
566
567 (% style="color:blue" %)**Downlink:**
568
569 923.3 - SF7BW500 to SF12BW500
570
571 923.9 - SF7BW500 to SF12BW500
572
573 924.5 - SF7BW500 to SF12BW500
574
575 925.1 - SF7BW500 to SF12BW500
576
577 925.7 - SF7BW500 to SF12BW500
578
579 926.3 - SF7BW500 to SF12BW500
580
581 926.9 - SF7BW500 to SF12BW500
582
583 927.5 - SF7BW500 to SF12BW500
584
585 923.3 - SF12BW500(RX2 downlink only)
586
587
588
589 )))
590
591 === 2.6.5  AS920-923 & AS923-925 (AS923) ===
592
593 (((
594 (% style="color:blue" %)**Default Uplink channel:**
595 )))
596
597 (((
598 923.2 - SF7BW125 to SF10BW125
599 )))
600
601 (((
602 923.4 - SF7BW125 to SF10BW125
603 )))
604
605 (((
606
607 )))
608
609 (((
610 (% style="color:blue" %)**Additional Uplink Channel**:
611 )))
612
613 (((
614 (OTAA mode, channel added by JoinAccept message)
615 )))
616
617 (((
618
619 )))
620
621 (((
622 (% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
623 )))
624
625 (((
626 922.2 - SF7BW125 to SF10BW125
627 )))
628
629 (((
630 922.4 - SF7BW125 to SF10BW125
631 )))
632
633 (((
634 922.6 - SF7BW125 to SF10BW125
635 )))
636
637 (((
638 922.8 - SF7BW125 to SF10BW125
639 )))
640
641 (((
642 923.0 - SF7BW125 to SF10BW125
643 )))
644
645 (((
646 922.0 - SF7BW125 to SF10BW125
647 )))
648
649 (((
650
651 )))
652
653 (((
654 (% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
655 )))
656
657 (((
658 923.6 - SF7BW125 to SF10BW125
659 )))
660
661 (((
662 923.8 - SF7BW125 to SF10BW125
663 )))
664
665 (((
666 924.0 - SF7BW125 to SF10BW125
667 )))
668
669 (((
670 924.2 - SF7BW125 to SF10BW125
671 )))
672
673 (((
674 924.4 - SF7BW125 to SF10BW125
675 )))
676
677 (((
678 924.6 - SF7BW125 to SF10BW125
679 )))
680
681 (((
682
683 )))
684
685 (((
686 (% style="color:blue" %)**Downlink:**
687 )))
688
689 (((
690 Uplink channels 1-8 (RX1)
691 )))
692
693 (((
694 923.2 - SF10BW125 (RX2)
695 )))
696
697
698
699
700 === 2.6.6  KR920-923 (KR920) ===
701
702 (((
703 (% style="color:blue" %)**Default channel:**
704 )))
705
706 (((
707 922.1 - SF7BW125 to SF12BW125
708 )))
709
710 (((
711 922.3 - SF7BW125 to SF12BW125
712 )))
713
714 (((
715 922.5 - SF7BW125 to SF12BW125
716 )))
717
718 (((
719
720 )))
721
722 (((
723 (% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
724 )))
725
726 (((
727 922.1 - SF7BW125 to SF12BW125
728 )))
729
730 (((
731 922.3 - SF7BW125 to SF12BW125
732 )))
733
734 (((
735 922.5 - SF7BW125 to SF12BW125
736 )))
737
738 (((
739 922.7 - SF7BW125 to SF12BW125
740 )))
741
742 (((
743 922.9 - SF7BW125 to SF12BW125
744 )))
745
746 (((
747 923.1 - SF7BW125 to SF12BW125
748 )))
749
750 (((
751 923.3 - SF7BW125 to SF12BW125
752 )))
753
754 (((
755
756 )))
757
758 (((
759 (% style="color:blue" %)**Downlink:**
760 )))
761
762 (((
763 Uplink channels 1-7(RX1)
764 )))
765
766 (((
767 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
768 )))
769
770
771
772
773 === 2.6.7  IN865-867 (IN865) ===
774
775 (((
776 (% style="color:blue" %)**Uplink:**
777 )))
778
779 (((
780 865.0625 - SF7BW125 to SF12BW125
781 )))
782
783 (((
784 865.4025 - SF7BW125 to SF12BW125
785 )))
786
787 (((
788 865.9850 - SF7BW125 to SF12BW125
789 )))
790
791 (((
792
793 )))
794
795 (((
796 (% style="color:blue" %)**Downlink:**
797 )))
798
799 (((
800 Uplink channels 1-3 (RX1)
801 )))
802
803 (((
804 866.550 - SF10BW125 (RX2)
805 )))
806
807
808
809
810 == 2.7  LED Indicator ==
811
812 The LLDS12 has an internal LED which is to show the status of different state.
813
814 * The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
815 * Blink once when device transmit a packet.
816
817 == 2.8  ​Firmware Change Log ==
818
819
820 **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
821
822
823 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
824
825
826
827 = 3.  LiDAR ToF Measurement =
828
829 == 3.1 Principle of Distance Measurement ==
830
831 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
832
833 [[image:1654831757579-263.png]]
834
835
836
837 == 3.2 Distance Measurement Characteristics ==
838
839 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
840
841 [[image:1654831774373-275.png]]
842
843
844 (((
845 (% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
846 )))
847
848 (((
849 (% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
850 )))
851
852 (((
853 (% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
854 )))
855
856
857 (((
858 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
859 )))
860
861
862 [[image:1654831797521-720.png]]
863
864
865 (((
866 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
867 )))
868
869 [[image:1654831810009-716.png]]
870
871
872 (((
873 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
874 )))
875
876
877
878 == 3.3 Notice of usage: ==
879
880 Possible invalid /wrong reading for LiDAR ToF tech:
881
882 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
883 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
884 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
885 * The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
886
887 = 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
888
889 (((
890 (((
891 Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
892 )))
893 )))
894
895 * (((
896 (((
897 AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]].
898 )))
899 )))
900 * (((
901 (((
902 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
903 )))
904 )))
905
906 (((
907 (((
908
909 )))
910
911 (((
912 There are two kinds of commands to configure LLDS12, they are:
913 )))
914 )))
915
916 * (((
917 (((
918 (% style="color:#4f81bd" %)** General Commands**.
919 )))
920 )))
921
922 (((
923 (((
924 These commands are to configure:
925 )))
926 )))
927
928 * (((
929 (((
930 General system settings like: uplink interval.
931 )))
932 )))
933 * (((
934 (((
935 LoRaWAN protocol & radio related command.
936 )))
937 )))
938
939 (((
940 (((
941 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
942 )))
943 )))
944
945 (((
946 (((
947
948 )))
949 )))
950
951 * (((
952 (((
953 (% style="color:#4f81bd" %)** Commands special design for LLDS12**
954 )))
955 )))
956
957 (((
958 (((
959 These commands only valid for LLDS12, as below:
960 )))
961 )))
962
963
964
965 == 4.1  Set Transmit Interval Time ==
966
967 Feature: Change LoRaWAN End Node Transmit Interval.
968
969 (% style="color:#037691" %)**AT Command: AT+TDC**
970
971 [[image:image-20220607171554-8.png]]
972
973
974 (((
975 (% style="color:#037691" %)**Downlink Command: 0x01**
976 )))
977
978 (((
979 Format: Command Code (0x01) followed by 3 bytes time value.
980 )))
981
982 (((
983 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
984 )))
985
986 * (((
987 Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
988 )))
989 * (((
990 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
991 )))
992
993 == 4.2  Set Interrupt Mode ==
994
995 Feature, Set Interrupt mode for GPIO_EXIT.
996
997 (% style="color:#037691" %)**AT Command: AT+INTMOD**
998
999 [[image:image-20220610105806-2.png]]
1000
1001
1002 (((
1003 (% style="color:#037691" %)**Downlink Command: 0x06**
1004 )))
1005
1006 (((
1007 Format: Command Code (0x06) followed by 3 bytes.
1008 )))
1009
1010 (((
1011 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1012 )))
1013
1014 * (((
1015 Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1016 )))
1017 * (((
1018 Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1019 )))
1020
1021 == 4.3  Get Firmware Version Info ==
1022
1023 Feature: use downlink to get firmware version.
1024
1025 (% style="color:#037691" %)**Downlink Command: 0x26**
1026
1027 [[image:image-20220607171917-10.png]]
1028
1029 * Reply to the confirmation package: 26 01
1030 * Reply to non-confirmed packet: 26 00
1031
1032 Device will send an uplink after got this downlink command. With below payload:
1033
1034 Configures info payload:
1035
1036 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1037 |=(((
1038 **Size(bytes)**
1039 )))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1040 |**Value**|Software Type|(((
1041 Frequency
1042
1043 Band
1044 )))|Sub-band|(((
1045 Firmware
1046
1047 Version
1048 )))|Sensor Type|Reserve|(((
1049 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
1050 Always 0x02
1051 )))
1052
1053 **Software Type**: Always 0x03 for LLDS12
1054
1055
1056 **Frequency Band**:
1057
1058 *0x01: EU868
1059
1060 *0x02: US915
1061
1062 *0x03: IN865
1063
1064 *0x04: AU915
1065
1066 *0x05: KZ865
1067
1068 *0x06: RU864
1069
1070 *0x07: AS923
1071
1072 *0x08: AS923-1
1073
1074 *0x09: AS923-2
1075
1076 *0xa0: AS923-3
1077
1078
1079 **Sub-Band**: value 0x00 ~~ 0x08
1080
1081
1082 **Firmware Version**: 0x0100, Means: v1.0.0 version
1083
1084
1085 **Sensor Type**:
1086
1087 0x01: LSE01
1088
1089 0x02: LDDS75
1090
1091 0x03: LDDS20
1092
1093 0x04: LLMS01
1094
1095 0x05: LSPH01
1096
1097 0x06: LSNPK01
1098
1099 0x07: LLDS12
1100
1101
1102
1103 = 5.  Battery & How to replace =
1104
1105 == 5.1  Battery Type ==
1106
1107 (((
1108 LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1109 )))
1110
1111 (((
1112 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1113 )))
1114
1115 [[image:1654593587246-335.png]]
1116
1117
1118 Minimum Working Voltage for the LLDS12:
1119
1120 LLDS12:  2.45v ~~ 3.6v
1121
1122
1123
1124 == 5.2  Replace Battery ==
1125
1126 (((
1127 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1128 )))
1129
1130 (((
1131 And make sure the positive and negative pins match.
1132 )))
1133
1134
1135
1136 == 5.3  Power Consumption Analyze ==
1137
1138 (((
1139 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1140 )))
1141
1142 (((
1143 Instruction to use as below:
1144 )))
1145
1146
1147 **Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1148
1149 [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1150
1151
1152 **Step 2**: Open it and choose
1153
1154 * Product Model
1155 * Uplink Interval
1156 * Working Mode
1157
1158 And the Life expectation in difference case will be shown on the right.
1159
1160 [[image:1654593605679-189.png]]
1161
1162
1163 The battery related documents as below:
1164
1165 * (((
1166 [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
1167 )))
1168 * (((
1169 [[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1170 )))
1171 * (((
1172 [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1173 )))
1174
1175 [[image:image-20220607172042-11.png]]
1176
1177
1178
1179 === 5.3.1  ​Battery Note ===
1180
1181 (((
1182 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1183 )))
1184
1185
1186
1187 === ​5.3.2  Replace the battery ===
1188
1189 (((
1190 You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1191 )))
1192
1193 (((
1194 The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1195 )))
1196
1197
1198
1199 = 6.  Use AT Command =
1200
1201 == 6.1  Access AT Commands ==
1202
1203 LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1204
1205 [[image:1654593668970-604.png]]
1206
1207 **Connection:**
1208
1209 (% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1210
1211 (% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1212
1213 (% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1214
1215
1216 (((
1217 (((
1218 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1219 )))
1220
1221 (((
1222 LLDS12 will output system info once power on as below:
1223 )))
1224 )))
1225
1226
1227 [[image:1654593712276-618.png]]
1228
1229 Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
1230
1231
1232 = 7.  FAQ =
1233
1234 == 7.1  How to change the LoRa Frequency Bands/Region ==
1235
1236 You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1237 When downloading the images, choose the required image file for download. ​
1238
1239
1240 = 8.  Trouble Shooting =
1241
1242 == 8.1  AT Commands input doesn’t work ==
1243
1244
1245 (((
1246 In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1247 )))
1248
1249
1250 == 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1251
1252
1253 (((
1254 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1255 )))
1256
1257 (((
1258 Troubleshooting: Please avoid use of this product under such circumstance in practice.
1259 )))
1260
1261 (((
1262
1263 )))
1264
1265 (((
1266 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1267 )))
1268
1269 (((
1270 Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1271 )))
1272
1273
1274
1275 = 9.  Order Info =
1276
1277
1278 Part Number: (% style="color:blue" %)**LLDS12-XX**
1279
1280
1281 (% style="color:blue" %)**XX**(%%): The default frequency band
1282
1283 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1284 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1285 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1286 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1287 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1288 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1289 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1290 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1291
1292 = 10. ​ Packing Info =
1293
1294
1295 **Package Includes**:
1296
1297 * LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1298
1299 **Dimension and weight**:
1300
1301 * Device Size: cm
1302 * Device Weight: g
1303 * Package Size / pcs : cm
1304 * Weight / pcs : g
1305
1306 = 11.  ​Support =
1307
1308 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1309 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0