Version 138.6 by Xiaoling on 2022/06/10 17:05

Show last authors
1 (% style="text-align:center" %)
2 [[image:1654846127817-788.png]]
3
4 **Contents:**
5
6
7
8
9
10
11
12
13 = 1.  Introduction =
14
15 == 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
16
17 (((
18
19
20 (((
21 The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
22
23
24 It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
25
26
27 The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
28
29
30 LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
31
32
33 Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
34
35
36 (% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors
37 )))
38 )))
39
40
41 [[image:1654847051249-359.png]]
42
43
44
45 == ​1.2  Features ==
46
47 * LoRaWAN 1.0.3 Class A
48 * Ultra low power consumption
49 * Distance Detection by Ultrasonic technology
50 * Flat object range 280mm - 7500mm
51 * Accuracy: ±(1cm+S*0.3%) (S: Distance)
52 * Cable Length : 25cm
53 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
54 * AT Commands to change parameters
55 * Uplink on periodically
56 * Downlink to change configure
57 * IP66 Waterproof Enclosure
58 * 4000mAh or 8500mAh Battery for long term use
59
60
61
62 == 1.3  Specification ==
63
64 === 1.3.1  Rated environmental conditions ===
65
66 [[image:image-20220610154839-1.png]]
67
68 **Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);**
69
70 **b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
71
72
73
74 === 1.3.2  Effective measurement range Reference beam pattern ===
75
76 **(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**[[image:image-20220610155021-2.png||height="440" width="1189"]]
77
78
79
80 **(2)** The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.[[image:image-20220610155021-3.png||height="437" width="1192"]]
81
82 (% style="display:none" %) (%%)
83
84
85
86 == 1.5 ​ Applications ==
87
88 * Horizontal distance measurement
89 * Liquid level measurement
90 * Parking management system
91 * Object proximity and presence detection
92 * Intelligent trash can management system
93 * Robot obstacle avoidance
94 * Automatic control
95 * Sewer
96 * Bottom water level monitoring
97
98
99
100 == 1.6  Pin mapping and power on ==
101
102
103 [[image:1654847583902-256.png]]
104
105
106
107 = 2.  Configure LDDS75 to connect to LoRaWAN network =
108
109 == 2.1  How it works ==
110
111 (((
112 The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
113 )))
114
115 (((
116 In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
117 )))
118
119
120
121 == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
122
123 (((
124 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
125 )))
126
127 (((
128 [[image:1654848616367-242.png]]
129 )))
130
131 (((
132 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
133 )))
134
135 (((
136 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
137 )))
138
139 (((
140 Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
141 )))
142
143 [[image:image-20220607170145-1.jpeg]]
144
145
146 For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
147
148 Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
149
150 **Add APP EUI in the application**
151
152 [[image:image-20220610161353-4.png]]
153
154 [[image:image-20220610161353-5.png]]
155
156 [[image:image-20220610161353-6.png]]
157
158
159 [[image:image-20220610161353-7.png]]
160
161
162 You can also choose to create the device manually.
163
164 [[image:image-20220610161538-8.png]]
165
166
167
168 **Add APP KEY and DEV EUI**
169
170 [[image:image-20220610161538-9.png]]
171
172
173
174 (% style="color:blue" %)**Step 2**(%%): Power on LDDS75
175
176
177 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
178
179 [[image:image-20220610161724-10.png]]
180
181
182 (((
183 (% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
184 )))
185
186 [[image:1654849068701-275.png]]
187
188
189
190 == 2.3  ​Uplink Payload ==
191
192 (((
193 LDDS75 will uplink payload via LoRaWAN with below payload format: 
194
195 Uplink payload includes in total 4 bytes.
196 Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
197 )))
198
199 (((
200
201 )))
202
203 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
204 |=(% style="width: 62.5px;" %)(((
205 **Size (bytes)**
206 )))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
207 |(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
208 [[Distance>>||anchor="H2.3.3A0Distance"]]
209
210 (unit: mm)
211 )))|[[Digital Interrupt (Optional)>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
212 [[Temperature (Optional )>>||anchor="H2.3.5A0InterruptPin"]]
213 )))|[[Sensor Flag>>path:#Sensor_Flag]]
214
215 [[image:1654850511545-399.png]]
216
217
218
219 === 2.3.1  Battery Info ===
220
221
222 Check the battery voltage for LDDS75.
223
224 Ex1: 0x0B45 = 2885mV
225
226 Ex2: 0x0B49 = 2889mV
227
228
229
230 === 2.3.2  Distance ===
231
232 Get the distance. Flat object range 280mm - 7500mm.
233
234 For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
235
236
237 * If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
238 * If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
239
240
241
242
243 === 2.3.3  Interrupt Pin ===
244
245 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
246
247 **Example:**
248
249 0x00: Normal uplink packet.
250
251 0x01: Interrupt Uplink Packet.
252
253
254
255 === 2.3.4  DS18B20 Temperature sensor ===
256
257 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
258
259 **Example**:
260
261 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
262
263 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
264
265 (% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021.
266
267
268
269 === 2.3.5  Sensor Flag ===
270
271 0x01: Detect Ultrasonic Sensor
272
273 0x00: No Ultrasonic Sensor
274
275
276 ===
277 (% style="color:inherit; font-family:inherit" %)2.3.6  Decode payload in The Things Network(%%) ===
278
279 While using TTN network, you can add the payload format to decode the payload.
280
281
282 [[image:1654850829385-439.png]]
283
284 The payload decoder function for TTN V3 is here:
285
286 LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
287
288
289
290 == 2.4  Uplink Interval ==
291
292 The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
293
294
295
296 == 2.5  ​Show Data in DataCake IoT Server ==
297
298 (((
299 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
300 )))
301
302 (((
303
304 )))
305
306 (((
307 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
308 )))
309
310 (((
311 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
312 )))
313
314
315 [[image:1654592790040-760.png]]
316
317
318 [[image:1654592800389-571.png]]
319
320
321 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
322
323 (% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.**
324
325 [[image:1654851029373-510.png]]
326
327
328 After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
329
330 [[image:image-20220610165129-11.png||height="595" width="1088"]]
331
332
333
334 == 2.6  Frequency Plans ==
335
336 (((
337 The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
338 )))
339
340
341
342 === 2.6.1  EU863-870 (EU868) ===
343
344 (((
345 (% style="color:blue" %)**Uplink:**
346 )))
347
348 (((
349 868.1 - SF7BW125 to SF12BW125
350 )))
351
352 (((
353 868.3 - SF7BW125 to SF12BW125 and SF7BW250
354 )))
355
356 (((
357 868.5 - SF7BW125 to SF12BW125
358 )))
359
360 (((
361 867.1 - SF7BW125 to SF12BW125
362 )))
363
364 (((
365 867.3 - SF7BW125 to SF12BW125
366 )))
367
368 (((
369 867.5 - SF7BW125 to SF12BW125
370 )))
371
372 (((
373 867.7 - SF7BW125 to SF12BW125
374 )))
375
376 (((
377 867.9 - SF7BW125 to SF12BW125
378 )))
379
380 (((
381 868.8 - FSK
382 )))
383
384 (((
385
386 )))
387
388 (((
389 (% style="color:blue" %)**Downlink:**
390 )))
391
392 (((
393 Uplink channels 1-9 (RX1)
394 )))
395
396 (((
397 869.525 - SF9BW125 (RX2 downlink only)
398 )))
399
400
401
402 === 2.6.2  US902-928(US915) ===
403
404 (((
405 Used in USA, Canada and South America. Default use CHE=2
406
407 (% style="color:blue" %)**Uplink:**
408
409 903.9 - SF7BW125 to SF10BW125
410
411 904.1 - SF7BW125 to SF10BW125
412
413 904.3 - SF7BW125 to SF10BW125
414
415 904.5 - SF7BW125 to SF10BW125
416
417 904.7 - SF7BW125 to SF10BW125
418
419 904.9 - SF7BW125 to SF10BW125
420
421 905.1 - SF7BW125 to SF10BW125
422
423 905.3 - SF7BW125 to SF10BW125
424
425
426 (% style="color:blue" %)**Downlink:**
427
428 923.3 - SF7BW500 to SF12BW500
429
430 923.9 - SF7BW500 to SF12BW500
431
432 924.5 - SF7BW500 to SF12BW500
433
434 925.1 - SF7BW500 to SF12BW500
435
436 925.7 - SF7BW500 to SF12BW500
437
438 926.3 - SF7BW500 to SF12BW500
439
440 926.9 - SF7BW500 to SF12BW500
441
442 927.5 - SF7BW500 to SF12BW500
443
444 923.3 - SF12BW500(RX2 downlink only)
445
446
447
448 )))
449
450 === 2.6.3  CN470-510 (CN470) ===
451
452 (((
453 Used in China, Default use CHE=1
454 )))
455
456 (((
457 (% style="color:blue" %)**Uplink:**
458 )))
459
460 (((
461 486.3 - SF7BW125 to SF12BW125
462 )))
463
464 (((
465 486.5 - SF7BW125 to SF12BW125
466 )))
467
468 (((
469 486.7 - SF7BW125 to SF12BW125
470 )))
471
472 (((
473 486.9 - SF7BW125 to SF12BW125
474 )))
475
476 (((
477 487.1 - SF7BW125 to SF12BW125
478 )))
479
480 (((
481 487.3 - SF7BW125 to SF12BW125
482 )))
483
484 (((
485 487.5 - SF7BW125 to SF12BW125
486 )))
487
488 (((
489 487.7 - SF7BW125 to SF12BW125
490 )))
491
492 (((
493
494 )))
495
496 (((
497 (% style="color:blue" %)**Downlink:**
498 )))
499
500 (((
501 506.7 - SF7BW125 to SF12BW125
502 )))
503
504 (((
505 506.9 - SF7BW125 to SF12BW125
506 )))
507
508 (((
509 507.1 - SF7BW125 to SF12BW125
510 )))
511
512 (((
513 507.3 - SF7BW125 to SF12BW125
514 )))
515
516 (((
517 507.5 - SF7BW125 to SF12BW125
518 )))
519
520 (((
521 507.7 - SF7BW125 to SF12BW125
522 )))
523
524 (((
525 507.9 - SF7BW125 to SF12BW125
526 )))
527
528 (((
529 508.1 - SF7BW125 to SF12BW125
530 )))
531
532 (((
533 505.3 - SF12BW125 (RX2 downlink only)
534 )))
535
536
537
538
539 === 2.6.4  AU915-928(AU915) ===
540
541 (((
542 Default use CHE=2
543
544 (% style="color:blue" %)**Uplink:**
545
546 916.8 - SF7BW125 to SF12BW125
547
548 917.0 - SF7BW125 to SF12BW125
549
550 917.2 - SF7BW125 to SF12BW125
551
552 917.4 - SF7BW125 to SF12BW125
553
554 917.6 - SF7BW125 to SF12BW125
555
556 917.8 - SF7BW125 to SF12BW125
557
558 918.0 - SF7BW125 to SF12BW125
559
560 918.2 - SF7BW125 to SF12BW125
561
562
563 (% style="color:blue" %)**Downlink:**
564
565 923.3 - SF7BW500 to SF12BW500
566
567 923.9 - SF7BW500 to SF12BW500
568
569 924.5 - SF7BW500 to SF12BW500
570
571 925.1 - SF7BW500 to SF12BW500
572
573 925.7 - SF7BW500 to SF12BW500
574
575 926.3 - SF7BW500 to SF12BW500
576
577 926.9 - SF7BW500 to SF12BW500
578
579 927.5 - SF7BW500 to SF12BW500
580
581 923.3 - SF12BW500(RX2 downlink only)
582
583
584
585 )))
586
587 === 2.6.5  AS920-923 & AS923-925 (AS923) ===
588
589 (((
590 (% style="color:blue" %)**Default Uplink channel:**
591 )))
592
593 (((
594 923.2 - SF7BW125 to SF10BW125
595 )))
596
597 (((
598 923.4 - SF7BW125 to SF10BW125
599 )))
600
601 (((
602
603 )))
604
605 (((
606 (% style="color:blue" %)**Additional Uplink Channel**:
607 )))
608
609 (((
610 (OTAA mode, channel added by JoinAccept message)
611 )))
612
613 (((
614
615 )))
616
617 (((
618 (% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
619 )))
620
621 (((
622 922.2 - SF7BW125 to SF10BW125
623 )))
624
625 (((
626 922.4 - SF7BW125 to SF10BW125
627 )))
628
629 (((
630 922.6 - SF7BW125 to SF10BW125
631 )))
632
633 (((
634 922.8 - SF7BW125 to SF10BW125
635 )))
636
637 (((
638 923.0 - SF7BW125 to SF10BW125
639 )))
640
641 (((
642 922.0 - SF7BW125 to SF10BW125
643 )))
644
645 (((
646
647 )))
648
649 (((
650 (% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
651 )))
652
653 (((
654 923.6 - SF7BW125 to SF10BW125
655 )))
656
657 (((
658 923.8 - SF7BW125 to SF10BW125
659 )))
660
661 (((
662 924.0 - SF7BW125 to SF10BW125
663 )))
664
665 (((
666 924.2 - SF7BW125 to SF10BW125
667 )))
668
669 (((
670 924.4 - SF7BW125 to SF10BW125
671 )))
672
673 (((
674 924.6 - SF7BW125 to SF10BW125
675 )))
676
677 (((
678
679 )))
680
681 (((
682 (% style="color:blue" %)**Downlink:**
683 )))
684
685 (((
686 Uplink channels 1-8 (RX1)
687 )))
688
689 (((
690 923.2 - SF10BW125 (RX2)
691 )))
692
693
694
695
696 === 2.6.6  KR920-923 (KR920) ===
697
698 (((
699 (% style="color:blue" %)**Default channel:**
700 )))
701
702 (((
703 922.1 - SF7BW125 to SF12BW125
704 )))
705
706 (((
707 922.3 - SF7BW125 to SF12BW125
708 )))
709
710 (((
711 922.5 - SF7BW125 to SF12BW125
712 )))
713
714 (((
715
716 )))
717
718 (((
719 (% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
720 )))
721
722 (((
723 922.1 - SF7BW125 to SF12BW125
724 )))
725
726 (((
727 922.3 - SF7BW125 to SF12BW125
728 )))
729
730 (((
731 922.5 - SF7BW125 to SF12BW125
732 )))
733
734 (((
735 922.7 - SF7BW125 to SF12BW125
736 )))
737
738 (((
739 922.9 - SF7BW125 to SF12BW125
740 )))
741
742 (((
743 923.1 - SF7BW125 to SF12BW125
744 )))
745
746 (((
747 923.3 - SF7BW125 to SF12BW125
748 )))
749
750 (((
751
752 )))
753
754 (((
755 (% style="color:blue" %)**Downlink:**
756 )))
757
758 (((
759 Uplink channels 1-7(RX1)
760 )))
761
762 (((
763 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
764 )))
765
766
767
768
769 === 2.6.7  IN865-867 (IN865) ===
770
771 (((
772 (% style="color:blue" %)**Uplink:**
773 )))
774
775 (((
776 865.0625 - SF7BW125 to SF12BW125
777 )))
778
779 (((
780 865.4025 - SF7BW125 to SF12BW125
781 )))
782
783 (((
784 865.9850 - SF7BW125 to SF12BW125
785 )))
786
787 (((
788
789 )))
790
791 (((
792 (% style="color:blue" %)**Downlink:**
793 )))
794
795 (((
796 Uplink channels 1-3 (RX1)
797 )))
798
799 (((
800 866.550 - SF10BW125 (RX2)
801 )))
802
803
804
805
806 == 2.7  LED Indicator ==
807
808 The LLDS12 has an internal LED which is to show the status of different state.
809
810 * The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
811 * Blink once when device transmit a packet.
812
813 == 2.8  ​Firmware Change Log ==
814
815
816 **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
817
818
819 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
820
821
822
823 = 3.  LiDAR ToF Measurement =
824
825 == 3.1 Principle of Distance Measurement ==
826
827 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
828
829 [[image:1654831757579-263.png]]
830
831
832
833 == 3.2 Distance Measurement Characteristics ==
834
835 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
836
837 [[image:1654831774373-275.png]]
838
839
840 (((
841 (% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
842 )))
843
844 (((
845 (% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
846 )))
847
848 (((
849 (% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
850 )))
851
852
853 (((
854 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
855 )))
856
857
858 [[image:1654831797521-720.png]]
859
860
861 (((
862 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
863 )))
864
865 [[image:1654831810009-716.png]]
866
867
868 (((
869 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
870 )))
871
872
873
874 == 3.3 Notice of usage: ==
875
876 Possible invalid /wrong reading for LiDAR ToF tech:
877
878 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
879 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
880 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
881 * The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
882
883 = 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
884
885 (((
886 (((
887 Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
888 )))
889 )))
890
891 * (((
892 (((
893 AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]].
894 )))
895 )))
896 * (((
897 (((
898 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
899 )))
900 )))
901
902 (((
903 (((
904
905 )))
906
907 (((
908 There are two kinds of commands to configure LLDS12, they are:
909 )))
910 )))
911
912 * (((
913 (((
914 (% style="color:#4f81bd" %)** General Commands**.
915 )))
916 )))
917
918 (((
919 (((
920 These commands are to configure:
921 )))
922 )))
923
924 * (((
925 (((
926 General system settings like: uplink interval.
927 )))
928 )))
929 * (((
930 (((
931 LoRaWAN protocol & radio related command.
932 )))
933 )))
934
935 (((
936 (((
937 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
938 )))
939 )))
940
941 (((
942 (((
943
944 )))
945 )))
946
947 * (((
948 (((
949 (% style="color:#4f81bd" %)** Commands special design for LLDS12**
950 )))
951 )))
952
953 (((
954 (((
955 These commands only valid for LLDS12, as below:
956 )))
957 )))
958
959
960
961 == 4.1  Set Transmit Interval Time ==
962
963 Feature: Change LoRaWAN End Node Transmit Interval.
964
965 (% style="color:#037691" %)**AT Command: AT+TDC**
966
967 [[image:image-20220607171554-8.png]]
968
969
970 (((
971 (% style="color:#037691" %)**Downlink Command: 0x01**
972 )))
973
974 (((
975 Format: Command Code (0x01) followed by 3 bytes time value.
976 )))
977
978 (((
979 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
980 )))
981
982 * (((
983 Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
984 )))
985 * (((
986 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
987 )))
988
989 == 4.2  Set Interrupt Mode ==
990
991 Feature, Set Interrupt mode for GPIO_EXIT.
992
993 (% style="color:#037691" %)**AT Command: AT+INTMOD**
994
995 [[image:image-20220610105806-2.png]]
996
997
998 (((
999 (% style="color:#037691" %)**Downlink Command: 0x06**
1000 )))
1001
1002 (((
1003 Format: Command Code (0x06) followed by 3 bytes.
1004 )))
1005
1006 (((
1007 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1008 )))
1009
1010 * (((
1011 Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1012 )))
1013 * (((
1014 Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1015 )))
1016
1017 == 4.3  Get Firmware Version Info ==
1018
1019 Feature: use downlink to get firmware version.
1020
1021 (% style="color:#037691" %)**Downlink Command: 0x26**
1022
1023 [[image:image-20220607171917-10.png]]
1024
1025 * Reply to the confirmation package: 26 01
1026 * Reply to non-confirmed packet: 26 00
1027
1028 Device will send an uplink after got this downlink command. With below payload:
1029
1030 Configures info payload:
1031
1032 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1033 |=(((
1034 **Size(bytes)**
1035 )))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1036 |**Value**|Software Type|(((
1037 Frequency
1038
1039 Band
1040 )))|Sub-band|(((
1041 Firmware
1042
1043 Version
1044 )))|Sensor Type|Reserve|(((
1045 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
1046 Always 0x02
1047 )))
1048
1049 **Software Type**: Always 0x03 for LLDS12
1050
1051
1052 **Frequency Band**:
1053
1054 *0x01: EU868
1055
1056 *0x02: US915
1057
1058 *0x03: IN865
1059
1060 *0x04: AU915
1061
1062 *0x05: KZ865
1063
1064 *0x06: RU864
1065
1066 *0x07: AS923
1067
1068 *0x08: AS923-1
1069
1070 *0x09: AS923-2
1071
1072 *0xa0: AS923-3
1073
1074
1075 **Sub-Band**: value 0x00 ~~ 0x08
1076
1077
1078 **Firmware Version**: 0x0100, Means: v1.0.0 version
1079
1080
1081 **Sensor Type**:
1082
1083 0x01: LSE01
1084
1085 0x02: LDDS75
1086
1087 0x03: LDDS20
1088
1089 0x04: LLMS01
1090
1091 0x05: LSPH01
1092
1093 0x06: LSNPK01
1094
1095 0x07: LLDS12
1096
1097
1098
1099 = 5.  Battery & How to replace =
1100
1101 == 5.1  Battery Type ==
1102
1103 (((
1104 LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1105 )))
1106
1107 (((
1108 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1109 )))
1110
1111 [[image:1654593587246-335.png]]
1112
1113
1114 Minimum Working Voltage for the LLDS12:
1115
1116 LLDS12:  2.45v ~~ 3.6v
1117
1118
1119
1120 == 5.2  Replace Battery ==
1121
1122 (((
1123 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1124 )))
1125
1126 (((
1127 And make sure the positive and negative pins match.
1128 )))
1129
1130
1131
1132 == 5.3  Power Consumption Analyze ==
1133
1134 (((
1135 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1136 )))
1137
1138 (((
1139 Instruction to use as below:
1140 )))
1141
1142
1143 **Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1144
1145 [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1146
1147
1148 **Step 2**: Open it and choose
1149
1150 * Product Model
1151 * Uplink Interval
1152 * Working Mode
1153
1154 And the Life expectation in difference case will be shown on the right.
1155
1156 [[image:1654593605679-189.png]]
1157
1158
1159 The battery related documents as below:
1160
1161 * (((
1162 [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
1163 )))
1164 * (((
1165 [[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1166 )))
1167 * (((
1168 [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1169 )))
1170
1171 [[image:image-20220607172042-11.png]]
1172
1173
1174
1175 === 5.3.1  ​Battery Note ===
1176
1177 (((
1178 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1179 )))
1180
1181
1182
1183 === ​5.3.2  Replace the battery ===
1184
1185 (((
1186 You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1187 )))
1188
1189 (((
1190 The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1191 )))
1192
1193
1194
1195 = 6.  Use AT Command =
1196
1197 == 6.1  Access AT Commands ==
1198
1199 LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1200
1201 [[image:1654593668970-604.png]]
1202
1203 **Connection:**
1204
1205 (% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1206
1207 (% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1208
1209 (% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1210
1211
1212 (((
1213 (((
1214 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1215 )))
1216
1217 (((
1218 LLDS12 will output system info once power on as below:
1219 )))
1220 )))
1221
1222
1223 [[image:1654593712276-618.png]]
1224
1225 Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
1226
1227
1228 = 7.  FAQ =
1229
1230 == 7.1  How to change the LoRa Frequency Bands/Region ==
1231
1232 You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1233 When downloading the images, choose the required image file for download. ​
1234
1235
1236 = 8.  Trouble Shooting =
1237
1238 == 8.1  AT Commands input doesn’t work ==
1239
1240
1241 (((
1242 In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1243 )))
1244
1245
1246 == 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1247
1248
1249 (((
1250 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1251 )))
1252
1253 (((
1254 Troubleshooting: Please avoid use of this product under such circumstance in practice.
1255 )))
1256
1257 (((
1258
1259 )))
1260
1261 (((
1262 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1263 )))
1264
1265 (((
1266 Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1267 )))
1268
1269
1270
1271 = 9.  Order Info =
1272
1273
1274 Part Number: (% style="color:blue" %)**LLDS12-XX**
1275
1276
1277 (% style="color:blue" %)**XX**(%%): The default frequency band
1278
1279 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1280 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1281 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1282 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1283 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1284 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1285 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1286 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1287
1288 = 10. ​ Packing Info =
1289
1290
1291 **Package Includes**:
1292
1293 * LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1294
1295 **Dimension and weight**:
1296
1297 * Device Size: cm
1298 * Device Weight: g
1299 * Package Size / pcs : cm
1300 * Weight / pcs : g
1301
1302 = 11.  ​Support =
1303
1304 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1305 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0