Show last authors
1 (% style="text-align:center" %)
2 [[image:1654846127817-788.png]]
3
4 **Contents:**
5
6
7
8
9
10
11
12
13 = 1.  Introduction =
14
15 == 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
16
17 (((
18
19
20 (((
21 The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
22
23
24 It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
25
26
27 The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
28
29
30 LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
31
32
33 Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
34
35
36 (% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors
37 )))
38 )))
39
40
41 [[image:1654847051249-359.png]]
42
43
44
45 == ​1.2  Features ==
46
47 * LoRaWAN 1.0.3 Class A
48 * Ultra low power consumption
49 * Distance Detection by Ultrasonic technology
50 * Flat object range 280mm - 7500mm
51 * Accuracy: ±(1cm+S*0.3%) (S: Distance)
52 * Cable Length : 25cm
53 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
54 * AT Commands to change parameters
55 * Uplink on periodically
56 * Downlink to change configure
57 * IP66 Waterproof Enclosure
58 * 4000mAh or 8500mAh Battery for long term use
59
60
61
62 == 1.3  Specification ==
63
64 === 1.3.1  Rated environmental conditions ===
65
66 [[image:image-20220610154839-1.png]]
67
68 **Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);**
69
70 **b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
71
72
73
74 === 1.3.2  Effective measurement range Reference beam pattern ===
75
76 **(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**[[image:image-20220610155021-2.png||height="440" width="1189"]]
77
78
79
80 **(2)** The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.[[image:image-20220610155021-3.png||height="437" width="1192"]]
81
82 (% style="display:none" %) (%%)
83
84
85
86 == 1.5 ​ Applications ==
87
88 * Horizontal distance measurement
89 * Liquid level measurement
90 * Parking management system
91 * Object proximity and presence detection
92 * Intelligent trash can management system
93 * Robot obstacle avoidance
94 * Automatic control
95 * Sewer
96 * Bottom water level monitoring
97
98
99
100 == 1.6  Pin mapping and power on ==
101
102
103 [[image:1654847583902-256.png]]
104
105
106
107 = 2.  Configure LDDS75 to connect to LoRaWAN network =
108
109 == 2.1  How it works ==
110
111 (((
112 The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
113 )))
114
115 (((
116 In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
117 )))
118
119
120
121 == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
122
123 (((
124 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
125 )))
126
127 (((
128 [[image:1654848616367-242.png]]
129 )))
130
131 (((
132 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
133 )))
134
135 (((
136 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
137 )))
138
139 (((
140 Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
141 )))
142
143 [[image:image-20220607170145-1.jpeg]]
144
145
146 For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
147
148 Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
149
150 **Add APP EUI in the application**
151
152 [[image:image-20220610161353-4.png]]
153
154 [[image:image-20220610161353-5.png]]
155
156 [[image:image-20220610161353-6.png]]
157
158
159 [[image:image-20220610161353-7.png]]
160
161
162 You can also choose to create the device manually.
163
164 [[image:image-20220610161538-8.png]]
165
166
167
168 **Add APP KEY and DEV EUI**
169
170 [[image:image-20220610161538-9.png]]
171
172
173
174 (% style="color:blue" %)**Step 2**(%%): Power on LDDS75
175
176
177 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
178
179 [[image:image-20220610161724-10.png]]
180
181
182 (((
183 (% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
184 )))
185
186 [[image:1654849068701-275.png]]
187
188
189
190 == 2.3  ​Uplink Payload ==
191
192 (((
193 LDDS75 will uplink payload via LoRaWAN with below payload format: 
194
195 Uplink payload includes in total 4 bytes.
196 Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
197 )))
198
199 (((
200
201 )))
202
203 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
204 |=(% style="width: 62.5px;" %)(((
205 **Size (bytes)**
206 )))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
207 |(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
208 [[Distance>>||anchor="H2.3.3A0Distance"]]
209
210 (unit: mm)
211 )))|[[Digital Interrupt (Optional)>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
212 [[Temperature (Optional )>>||anchor="H2.3.5A0InterruptPin"]]
213 )))|[[Sensor Flag>>path:#Sensor_Flag]]
214
215 [[image:1654850511545-399.png]]
216
217
218
219 === 2.3.1  Battery Info ===
220
221
222 Check the battery voltage for LDDS75.
223
224 Ex1: 0x0B45 = 2885mV
225
226 Ex2: 0x0B49 = 2889mV
227
228
229
230 === 2.3.2  Distance ===
231
232 Get the distance. Flat object range 280mm - 7500mm.
233
234 For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
235
236
237 * If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
238 * If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
239
240 === 2.3.3  Interrupt Pin ===
241
242 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
243
244 **Example:**
245
246 0x00: Normal uplink packet.
247
248 0x01: Interrupt Uplink Packet.
249
250
251 === 2.3.4  DS18B20 Temperature sensor ===
252
253 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
254
255 **Example**:
256
257 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
258
259 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
260
261 (% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021.
262
263
264
265 === 2.3.5  Sensor Flag ===
266
267 0x01: Detect Ultrasonic Sensor
268
269 0x00: No Ultrasonic Sensor
270
271
272 ===
273 (% style="color:inherit; font-family:inherit" %)2.3.6  Decode payload in The Things Network(%%) ===
274
275 While using TTN network, you can add the payload format to decode the payload.
276
277
278 [[image:1654850829385-439.png]]
279
280 The payload decoder function for TTN V3 is here:
281
282 LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
283
284
285
286 == 2.4  Uplink Interval ==
287
288 The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
289
290
291
292 == 2.5  ​Show Data in DataCake IoT Server ==
293
294 (((
295 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
296 )))
297
298 (((
299
300 )))
301
302 (((
303 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
304 )))
305
306 (((
307 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
308 )))
309
310
311 [[image:1654592790040-760.png]]
312
313
314 [[image:1654592800389-571.png]]
315
316
317 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
318
319 (% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.**
320
321 [[image:1654851029373-510.png]]
322
323
324 After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
325
326 [[image:image-20220610165129-11.png||height="595" width="1088"]]
327
328
329
330 == 2.6  Frequency Plans ==
331
332 (((
333 The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
334 )))
335
336
337
338 === 2.6.1  EU863-870 (EU868) ===
339
340 (((
341 (% style="color:blue" %)**Uplink:**
342 )))
343
344 (((
345 868.1 - SF7BW125 to SF12BW125
346 )))
347
348 (((
349 868.3 - SF7BW125 to SF12BW125 and SF7BW250
350 )))
351
352 (((
353 868.5 - SF7BW125 to SF12BW125
354 )))
355
356 (((
357 867.1 - SF7BW125 to SF12BW125
358 )))
359
360 (((
361 867.3 - SF7BW125 to SF12BW125
362 )))
363
364 (((
365 867.5 - SF7BW125 to SF12BW125
366 )))
367
368 (((
369 867.7 - SF7BW125 to SF12BW125
370 )))
371
372 (((
373 867.9 - SF7BW125 to SF12BW125
374 )))
375
376 (((
377 868.8 - FSK
378 )))
379
380 (((
381
382 )))
383
384 (((
385 (% style="color:blue" %)**Downlink:**
386 )))
387
388 (((
389 Uplink channels 1-9 (RX1)
390 )))
391
392 (((
393 869.525 - SF9BW125 (RX2 downlink only)
394 )))
395
396
397
398 === 2.6.2  US902-928(US915) ===
399
400 (((
401 Used in USA, Canada and South America. Default use CHE=2
402
403 (% style="color:blue" %)**Uplink:**
404
405 903.9 - SF7BW125 to SF10BW125
406
407 904.1 - SF7BW125 to SF10BW125
408
409 904.3 - SF7BW125 to SF10BW125
410
411 904.5 - SF7BW125 to SF10BW125
412
413 904.7 - SF7BW125 to SF10BW125
414
415 904.9 - SF7BW125 to SF10BW125
416
417 905.1 - SF7BW125 to SF10BW125
418
419 905.3 - SF7BW125 to SF10BW125
420
421
422 (% style="color:blue" %)**Downlink:**
423
424 923.3 - SF7BW500 to SF12BW500
425
426 923.9 - SF7BW500 to SF12BW500
427
428 924.5 - SF7BW500 to SF12BW500
429
430 925.1 - SF7BW500 to SF12BW500
431
432 925.7 - SF7BW500 to SF12BW500
433
434 926.3 - SF7BW500 to SF12BW500
435
436 926.9 - SF7BW500 to SF12BW500
437
438 927.5 - SF7BW500 to SF12BW500
439
440 923.3 - SF12BW500(RX2 downlink only)
441
442
443
444 )))
445
446 === 2.6.3  CN470-510 (CN470) ===
447
448 (((
449 Used in China, Default use CHE=1
450 )))
451
452 (((
453 (% style="color:blue" %)**Uplink:**
454 )))
455
456 (((
457 486.3 - SF7BW125 to SF12BW125
458 )))
459
460 (((
461 486.5 - SF7BW125 to SF12BW125
462 )))
463
464 (((
465 486.7 - SF7BW125 to SF12BW125
466 )))
467
468 (((
469 486.9 - SF7BW125 to SF12BW125
470 )))
471
472 (((
473 487.1 - SF7BW125 to SF12BW125
474 )))
475
476 (((
477 487.3 - SF7BW125 to SF12BW125
478 )))
479
480 (((
481 487.5 - SF7BW125 to SF12BW125
482 )))
483
484 (((
485 487.7 - SF7BW125 to SF12BW125
486 )))
487
488 (((
489
490 )))
491
492 (((
493 (% style="color:blue" %)**Downlink:**
494 )))
495
496 (((
497 506.7 - SF7BW125 to SF12BW125
498 )))
499
500 (((
501 506.9 - SF7BW125 to SF12BW125
502 )))
503
504 (((
505 507.1 - SF7BW125 to SF12BW125
506 )))
507
508 (((
509 507.3 - SF7BW125 to SF12BW125
510 )))
511
512 (((
513 507.5 - SF7BW125 to SF12BW125
514 )))
515
516 (((
517 507.7 - SF7BW125 to SF12BW125
518 )))
519
520 (((
521 507.9 - SF7BW125 to SF12BW125
522 )))
523
524 (((
525 508.1 - SF7BW125 to SF12BW125
526 )))
527
528 (((
529 505.3 - SF12BW125 (RX2 downlink only)
530 )))
531
532
533
534
535 === 2.6.4  AU915-928(AU915) ===
536
537 (((
538 Default use CHE=2
539
540 (% style="color:blue" %)**Uplink:**
541
542 916.8 - SF7BW125 to SF12BW125
543
544 917.0 - SF7BW125 to SF12BW125
545
546 917.2 - SF7BW125 to SF12BW125
547
548 917.4 - SF7BW125 to SF12BW125
549
550 917.6 - SF7BW125 to SF12BW125
551
552 917.8 - SF7BW125 to SF12BW125
553
554 918.0 - SF7BW125 to SF12BW125
555
556 918.2 - SF7BW125 to SF12BW125
557
558
559 (% style="color:blue" %)**Downlink:**
560
561 923.3 - SF7BW500 to SF12BW500
562
563 923.9 - SF7BW500 to SF12BW500
564
565 924.5 - SF7BW500 to SF12BW500
566
567 925.1 - SF7BW500 to SF12BW500
568
569 925.7 - SF7BW500 to SF12BW500
570
571 926.3 - SF7BW500 to SF12BW500
572
573 926.9 - SF7BW500 to SF12BW500
574
575 927.5 - SF7BW500 to SF12BW500
576
577 923.3 - SF12BW500(RX2 downlink only)
578
579
580
581 )))
582
583 === 2.6.5  AS920-923 & AS923-925 (AS923) ===
584
585 (((
586 (% style="color:blue" %)**Default Uplink channel:**
587 )))
588
589 (((
590 923.2 - SF7BW125 to SF10BW125
591 )))
592
593 (((
594 923.4 - SF7BW125 to SF10BW125
595 )))
596
597 (((
598
599 )))
600
601 (((
602 (% style="color:blue" %)**Additional Uplink Channel**:
603 )))
604
605 (((
606 (OTAA mode, channel added by JoinAccept message)
607 )))
608
609 (((
610
611 )))
612
613 (((
614 (% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
615 )))
616
617 (((
618 922.2 - SF7BW125 to SF10BW125
619 )))
620
621 (((
622 922.4 - SF7BW125 to SF10BW125
623 )))
624
625 (((
626 922.6 - SF7BW125 to SF10BW125
627 )))
628
629 (((
630 922.8 - SF7BW125 to SF10BW125
631 )))
632
633 (((
634 923.0 - SF7BW125 to SF10BW125
635 )))
636
637 (((
638 922.0 - SF7BW125 to SF10BW125
639 )))
640
641 (((
642
643 )))
644
645 (((
646 (% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
647 )))
648
649 (((
650 923.6 - SF7BW125 to SF10BW125
651 )))
652
653 (((
654 923.8 - SF7BW125 to SF10BW125
655 )))
656
657 (((
658 924.0 - SF7BW125 to SF10BW125
659 )))
660
661 (((
662 924.2 - SF7BW125 to SF10BW125
663 )))
664
665 (((
666 924.4 - SF7BW125 to SF10BW125
667 )))
668
669 (((
670 924.6 - SF7BW125 to SF10BW125
671 )))
672
673 (((
674
675 )))
676
677 (((
678 (% style="color:blue" %)**Downlink:**
679 )))
680
681 (((
682 Uplink channels 1-8 (RX1)
683 )))
684
685 (((
686 923.2 - SF10BW125 (RX2)
687 )))
688
689
690
691
692 === 2.6.6  KR920-923 (KR920) ===
693
694 (((
695 (% style="color:blue" %)**Default channel:**
696 )))
697
698 (((
699 922.1 - SF7BW125 to SF12BW125
700 )))
701
702 (((
703 922.3 - SF7BW125 to SF12BW125
704 )))
705
706 (((
707 922.5 - SF7BW125 to SF12BW125
708 )))
709
710 (((
711
712 )))
713
714 (((
715 (% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
716 )))
717
718 (((
719 922.1 - SF7BW125 to SF12BW125
720 )))
721
722 (((
723 922.3 - SF7BW125 to SF12BW125
724 )))
725
726 (((
727 922.5 - SF7BW125 to SF12BW125
728 )))
729
730 (((
731 922.7 - SF7BW125 to SF12BW125
732 )))
733
734 (((
735 922.9 - SF7BW125 to SF12BW125
736 )))
737
738 (((
739 923.1 - SF7BW125 to SF12BW125
740 )))
741
742 (((
743 923.3 - SF7BW125 to SF12BW125
744 )))
745
746 (((
747
748 )))
749
750 (((
751 (% style="color:blue" %)**Downlink:**
752 )))
753
754 (((
755 Uplink channels 1-7(RX1)
756 )))
757
758 (((
759 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
760 )))
761
762
763
764
765 === 2.6.7  IN865-867 (IN865) ===
766
767 (((
768 (% style="color:blue" %)**Uplink:**
769 )))
770
771 (((
772 865.0625 - SF7BW125 to SF12BW125
773 )))
774
775 (((
776 865.4025 - SF7BW125 to SF12BW125
777 )))
778
779 (((
780 865.9850 - SF7BW125 to SF12BW125
781 )))
782
783 (((
784
785 )))
786
787 (((
788 (% style="color:blue" %)**Downlink:**
789 )))
790
791 (((
792 Uplink channels 1-3 (RX1)
793 )))
794
795 (((
796 866.550 - SF10BW125 (RX2)
797 )))
798
799
800
801
802 == 2.7  LED Indicator ==
803
804 The LLDS12 has an internal LED which is to show the status of different state.
805
806 * The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
807 * Blink once when device transmit a packet.
808
809 == 2.8  ​Firmware Change Log ==
810
811
812 **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
813
814
815 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
816
817
818
819 = 3.  LiDAR ToF Measurement =
820
821 == 3.1 Principle of Distance Measurement ==
822
823 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
824
825 [[image:1654831757579-263.png]]
826
827
828
829 == 3.2 Distance Measurement Characteristics ==
830
831 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
832
833 [[image:1654831774373-275.png]]
834
835
836 (((
837 (% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
838 )))
839
840 (((
841 (% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
842 )))
843
844 (((
845 (% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
846 )))
847
848
849 (((
850 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
851 )))
852
853
854 [[image:1654831797521-720.png]]
855
856
857 (((
858 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
859 )))
860
861 [[image:1654831810009-716.png]]
862
863
864 (((
865 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
866 )))
867
868
869
870 == 3.3 Notice of usage: ==
871
872 Possible invalid /wrong reading for LiDAR ToF tech:
873
874 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
875 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
876 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
877 * The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
878
879 = 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
880
881 (((
882 (((
883 Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
884 )))
885 )))
886
887 * (((
888 (((
889 AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]].
890 )))
891 )))
892 * (((
893 (((
894 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
895 )))
896 )))
897
898 (((
899 (((
900
901 )))
902
903 (((
904 There are two kinds of commands to configure LLDS12, they are:
905 )))
906 )))
907
908 * (((
909 (((
910 (% style="color:#4f81bd" %)** General Commands**.
911 )))
912 )))
913
914 (((
915 (((
916 These commands are to configure:
917 )))
918 )))
919
920 * (((
921 (((
922 General system settings like: uplink interval.
923 )))
924 )))
925 * (((
926 (((
927 LoRaWAN protocol & radio related command.
928 )))
929 )))
930
931 (((
932 (((
933 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
934 )))
935 )))
936
937 (((
938 (((
939
940 )))
941 )))
942
943 * (((
944 (((
945 (% style="color:#4f81bd" %)** Commands special design for LLDS12**
946 )))
947 )))
948
949 (((
950 (((
951 These commands only valid for LLDS12, as below:
952 )))
953 )))
954
955
956
957 == 4.1  Set Transmit Interval Time ==
958
959 Feature: Change LoRaWAN End Node Transmit Interval.
960
961 (% style="color:#037691" %)**AT Command: AT+TDC**
962
963 [[image:image-20220607171554-8.png]]
964
965
966 (((
967 (% style="color:#037691" %)**Downlink Command: 0x01**
968 )))
969
970 (((
971 Format: Command Code (0x01) followed by 3 bytes time value.
972 )))
973
974 (((
975 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
976 )))
977
978 * (((
979 Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
980 )))
981 * (((
982 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
983 )))
984
985 == 4.2  Set Interrupt Mode ==
986
987 Feature, Set Interrupt mode for GPIO_EXIT.
988
989 (% style="color:#037691" %)**AT Command: AT+INTMOD**
990
991 [[image:image-20220610105806-2.png]]
992
993
994 (((
995 (% style="color:#037691" %)**Downlink Command: 0x06**
996 )))
997
998 (((
999 Format: Command Code (0x06) followed by 3 bytes.
1000 )))
1001
1002 (((
1003 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1004 )))
1005
1006 * (((
1007 Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1008 )))
1009 * (((
1010 Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1011 )))
1012
1013 == 4.3  Get Firmware Version Info ==
1014
1015 Feature: use downlink to get firmware version.
1016
1017 (% style="color:#037691" %)**Downlink Command: 0x26**
1018
1019 [[image:image-20220607171917-10.png]]
1020
1021 * Reply to the confirmation package: 26 01
1022 * Reply to non-confirmed packet: 26 00
1023
1024 Device will send an uplink after got this downlink command. With below payload:
1025
1026 Configures info payload:
1027
1028 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1029 |=(((
1030 **Size(bytes)**
1031 )))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1032 |**Value**|Software Type|(((
1033 Frequency
1034
1035 Band
1036 )))|Sub-band|(((
1037 Firmware
1038
1039 Version
1040 )))|Sensor Type|Reserve|(((
1041 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
1042 Always 0x02
1043 )))
1044
1045 **Software Type**: Always 0x03 for LLDS12
1046
1047
1048 **Frequency Band**:
1049
1050 *0x01: EU868
1051
1052 *0x02: US915
1053
1054 *0x03: IN865
1055
1056 *0x04: AU915
1057
1058 *0x05: KZ865
1059
1060 *0x06: RU864
1061
1062 *0x07: AS923
1063
1064 *0x08: AS923-1
1065
1066 *0x09: AS923-2
1067
1068 *0xa0: AS923-3
1069
1070
1071 **Sub-Band**: value 0x00 ~~ 0x08
1072
1073
1074 **Firmware Version**: 0x0100, Means: v1.0.0 version
1075
1076
1077 **Sensor Type**:
1078
1079 0x01: LSE01
1080
1081 0x02: LDDS75
1082
1083 0x03: LDDS20
1084
1085 0x04: LLMS01
1086
1087 0x05: LSPH01
1088
1089 0x06: LSNPK01
1090
1091 0x07: LLDS12
1092
1093
1094
1095 = 5.  Battery & How to replace =
1096
1097 == 5.1  Battery Type ==
1098
1099 (((
1100 LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1101 )))
1102
1103 (((
1104 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1105 )))
1106
1107 [[image:1654593587246-335.png]]
1108
1109
1110 Minimum Working Voltage for the LLDS12:
1111
1112 LLDS12:  2.45v ~~ 3.6v
1113
1114
1115
1116 == 5.2  Replace Battery ==
1117
1118 (((
1119 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1120 )))
1121
1122 (((
1123 And make sure the positive and negative pins match.
1124 )))
1125
1126
1127
1128 == 5.3  Power Consumption Analyze ==
1129
1130 (((
1131 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1132 )))
1133
1134 (((
1135 Instruction to use as below:
1136 )))
1137
1138
1139 **Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1140
1141 [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1142
1143
1144 **Step 2**: Open it and choose
1145
1146 * Product Model
1147 * Uplink Interval
1148 * Working Mode
1149
1150 And the Life expectation in difference case will be shown on the right.
1151
1152 [[image:1654593605679-189.png]]
1153
1154
1155 The battery related documents as below:
1156
1157 * (((
1158 [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
1159 )))
1160 * (((
1161 [[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1162 )))
1163 * (((
1164 [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1165 )))
1166
1167 [[image:image-20220607172042-11.png]]
1168
1169
1170
1171 === 5.3.1  ​Battery Note ===
1172
1173 (((
1174 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1175 )))
1176
1177
1178
1179 === ​5.3.2  Replace the battery ===
1180
1181 (((
1182 You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1183 )))
1184
1185 (((
1186 The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1187 )))
1188
1189
1190
1191 = 6.  Use AT Command =
1192
1193 == 6.1  Access AT Commands ==
1194
1195 LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1196
1197 [[image:1654593668970-604.png]]
1198
1199 **Connection:**
1200
1201 (% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1202
1203 (% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1204
1205 (% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1206
1207
1208 (((
1209 (((
1210 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1211 )))
1212
1213 (((
1214 LLDS12 will output system info once power on as below:
1215 )))
1216 )))
1217
1218
1219 [[image:1654593712276-618.png]]
1220
1221 Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
1222
1223
1224 = 7.  FAQ =
1225
1226 == 7.1  How to change the LoRa Frequency Bands/Region ==
1227
1228 You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1229 When downloading the images, choose the required image file for download. ​
1230
1231
1232 = 8.  Trouble Shooting =
1233
1234 == 8.1  AT Commands input doesn’t work ==
1235
1236
1237 (((
1238 In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1239 )))
1240
1241
1242 == 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1243
1244
1245 (((
1246 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1247 )))
1248
1249 (((
1250 Troubleshooting: Please avoid use of this product under such circumstance in practice.
1251 )))
1252
1253 (((
1254
1255 )))
1256
1257 (((
1258 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1259 )))
1260
1261 (((
1262 Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1263 )))
1264
1265
1266
1267 = 9.  Order Info =
1268
1269
1270 Part Number: (% style="color:blue" %)**LLDS12-XX**
1271
1272
1273 (% style="color:blue" %)**XX**(%%): The default frequency band
1274
1275 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1276 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1277 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1278 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1279 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1280 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1281 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1282 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1283
1284 = 10. ​ Packing Info =
1285
1286
1287 **Package Includes**:
1288
1289 * LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1290
1291 **Dimension and weight**:
1292
1293 * Device Size: cm
1294 * Device Weight: g
1295 * Package Size / pcs : cm
1296 * Weight / pcs : g
1297
1298 = 11.  ​Support =
1299
1300 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1301 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0