Version 138.4 by Xiaoling on 2022/06/10 17:04

Show last authors
1 (% style="text-align:center" %)
2 [[image:1654846127817-788.png]]
3
4 **Contents:**
5
6
7
8
9
10
11
12
13 = 1.  Introduction =
14
15 == 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
16
17 (((
18
19
20 (((
21 The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
22
23
24 It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
25
26
27 The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
28
29
30 LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
31
32
33 Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
34
35
36 (% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors
37 )))
38 )))
39
40
41 [[image:1654847051249-359.png]]
42
43
44
45 == ​1.2  Features ==
46
47 * LoRaWAN 1.0.3 Class A
48 * Ultra low power consumption
49 * Distance Detection by Ultrasonic technology
50 * Flat object range 280mm - 7500mm
51 * Accuracy: ±(1cm+S*0.3%) (S: Distance)
52 * Cable Length : 25cm
53 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
54 * AT Commands to change parameters
55 * Uplink on periodically
56 * Downlink to change configure
57 * IP66 Waterproof Enclosure
58 * 4000mAh or 8500mAh Battery for long term use
59
60
61
62
63 == 1.3  Specification ==
64
65 === 1.3.1  Rated environmental conditions ===
66
67 [[image:image-20220610154839-1.png]]
68
69 **Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);**
70
71 **b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
72
73
74
75 === 1.3.2  Effective measurement range Reference beam pattern ===
76
77 **(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**[[image:image-20220610155021-2.png||height="440" width="1189"]]
78
79
80
81 **(2)** The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.[[image:image-20220610155021-3.png||height="437" width="1192"]]
82
83 (% style="display:none" %) (%%)
84
85
86
87 == 1.5 ​ Applications ==
88
89 * Horizontal distance measurement
90 * Liquid level measurement
91 * Parking management system
92 * Object proximity and presence detection
93 * Intelligent trash can management system
94 * Robot obstacle avoidance
95 * Automatic control
96 * Sewer
97 * Bottom water level monitoring
98
99
100
101
102 == 1.6  Pin mapping and power on ==
103
104
105 [[image:1654847583902-256.png]]
106
107
108
109 = 2.  Configure LDDS75 to connect to LoRaWAN network =
110
111 == 2.1  How it works ==
112
113 (((
114 The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
115 )))
116
117 (((
118 In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
119 )))
120
121
122
123 == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
124
125 (((
126 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
127 )))
128
129 (((
130 [[image:1654848616367-242.png]]
131 )))
132
133 (((
134 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
135 )))
136
137 (((
138 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
139 )))
140
141 (((
142 Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
143 )))
144
145 [[image:image-20220607170145-1.jpeg]]
146
147
148 For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
149
150 Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
151
152 **Add APP EUI in the application**
153
154 [[image:image-20220610161353-4.png]]
155
156 [[image:image-20220610161353-5.png]]
157
158 [[image:image-20220610161353-6.png]]
159
160
161 [[image:image-20220610161353-7.png]]
162
163
164 You can also choose to create the device manually.
165
166 [[image:image-20220610161538-8.png]]
167
168
169
170 **Add APP KEY and DEV EUI**
171
172 [[image:image-20220610161538-9.png]]
173
174
175
176 (% style="color:blue" %)**Step 2**(%%): Power on LDDS75
177
178
179 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
180
181 [[image:image-20220610161724-10.png]]
182
183
184 (((
185 (% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
186 )))
187
188 [[image:1654849068701-275.png]]
189
190
191
192 == 2.3  ​Uplink Payload ==
193
194 (((
195 LDDS75 will uplink payload via LoRaWAN with below payload format: 
196
197 Uplink payload includes in total 4 bytes.
198 Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
199 )))
200
201 (((
202
203 )))
204
205 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
206 |=(% style="width: 62.5px;" %)(((
207 **Size (bytes)**
208 )))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
209 |(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
210 [[Distance>>||anchor="H2.3.3A0Distance"]]
211
212 (unit: mm)
213 )))|[[Digital Interrupt (Optional)>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
214 [[Temperature (Optional )>>||anchor="H2.3.5A0InterruptPin"]]
215 )))|[[Sensor Flag>>path:#Sensor_Flag]]
216
217 [[image:1654850511545-399.png]]
218
219
220
221 === 2.3.1  Battery Info ===
222
223
224 Check the battery voltage for LDDS75.
225
226 Ex1: 0x0B45 = 2885mV
227
228 Ex2: 0x0B49 = 2889mV
229
230
231
232 === 2.3.2  Distance ===
233
234 Get the distance. Flat object range 280mm - 7500mm.
235
236 For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
237
238
239 * If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
240 * If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
241
242
243 === 2.3.3  Interrupt Pin ===
244
245 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
246
247 **Example:**
248
249 0x00: Normal uplink packet.
250
251 0x01: Interrupt Uplink Packet.
252
253
254 === 2.3.4  DS18B20 Temperature sensor ===
255
256 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
257
258 **Example**:
259
260 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
261
262 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
263
264 (% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021.
265
266
267
268 === 2.3.5  Sensor Flag ===
269
270 0x01: Detect Ultrasonic Sensor
271
272 0x00: No Ultrasonic Sensor
273
274
275 ===
276 (% style="color:inherit; font-family:inherit" %)2.3.6  Decode payload in The Things Network(%%) ===
277
278 While using TTN network, you can add the payload format to decode the payload.
279
280
281 [[image:1654850829385-439.png]]
282
283 The payload decoder function for TTN V3 is here:
284
285 LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
286
287
288
289 == 2.4  Uplink Interval ==
290
291 The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
292
293
294
295 == 2.5  ​Show Data in DataCake IoT Server ==
296
297 (((
298 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
299 )))
300
301 (((
302
303 )))
304
305 (((
306 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
307 )))
308
309 (((
310 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
311 )))
312
313
314 [[image:1654592790040-760.png]]
315
316
317 [[image:1654592800389-571.png]]
318
319
320 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
321
322 (% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.**
323
324 [[image:1654851029373-510.png]]
325
326
327 After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
328
329 [[image:image-20220610165129-11.png||height="595" width="1088"]]
330
331
332
333 == 2.6  Frequency Plans ==
334
335 (((
336 The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
337 )))
338
339
340
341 === 2.6.1  EU863-870 (EU868) ===
342
343 (((
344 (% style="color:blue" %)**Uplink:**
345 )))
346
347 (((
348 868.1 - SF7BW125 to SF12BW125
349 )))
350
351 (((
352 868.3 - SF7BW125 to SF12BW125 and SF7BW250
353 )))
354
355 (((
356 868.5 - SF7BW125 to SF12BW125
357 )))
358
359 (((
360 867.1 - SF7BW125 to SF12BW125
361 )))
362
363 (((
364 867.3 - SF7BW125 to SF12BW125
365 )))
366
367 (((
368 867.5 - SF7BW125 to SF12BW125
369 )))
370
371 (((
372 867.7 - SF7BW125 to SF12BW125
373 )))
374
375 (((
376 867.9 - SF7BW125 to SF12BW125
377 )))
378
379 (((
380 868.8 - FSK
381 )))
382
383 (((
384
385 )))
386
387 (((
388 (% style="color:blue" %)**Downlink:**
389 )))
390
391 (((
392 Uplink channels 1-9 (RX1)
393 )))
394
395 (((
396 869.525 - SF9BW125 (RX2 downlink only)
397 )))
398
399
400
401 === 2.6.2  US902-928(US915) ===
402
403 (((
404 Used in USA, Canada and South America. Default use CHE=2
405
406 (% style="color:blue" %)**Uplink:**
407
408 903.9 - SF7BW125 to SF10BW125
409
410 904.1 - SF7BW125 to SF10BW125
411
412 904.3 - SF7BW125 to SF10BW125
413
414 904.5 - SF7BW125 to SF10BW125
415
416 904.7 - SF7BW125 to SF10BW125
417
418 904.9 - SF7BW125 to SF10BW125
419
420 905.1 - SF7BW125 to SF10BW125
421
422 905.3 - SF7BW125 to SF10BW125
423
424
425 (% style="color:blue" %)**Downlink:**
426
427 923.3 - SF7BW500 to SF12BW500
428
429 923.9 - SF7BW500 to SF12BW500
430
431 924.5 - SF7BW500 to SF12BW500
432
433 925.1 - SF7BW500 to SF12BW500
434
435 925.7 - SF7BW500 to SF12BW500
436
437 926.3 - SF7BW500 to SF12BW500
438
439 926.9 - SF7BW500 to SF12BW500
440
441 927.5 - SF7BW500 to SF12BW500
442
443 923.3 - SF12BW500(RX2 downlink only)
444
445
446
447 )))
448
449 === 2.6.3  CN470-510 (CN470) ===
450
451 (((
452 Used in China, Default use CHE=1
453 )))
454
455 (((
456 (% style="color:blue" %)**Uplink:**
457 )))
458
459 (((
460 486.3 - SF7BW125 to SF12BW125
461 )))
462
463 (((
464 486.5 - SF7BW125 to SF12BW125
465 )))
466
467 (((
468 486.7 - SF7BW125 to SF12BW125
469 )))
470
471 (((
472 486.9 - SF7BW125 to SF12BW125
473 )))
474
475 (((
476 487.1 - SF7BW125 to SF12BW125
477 )))
478
479 (((
480 487.3 - SF7BW125 to SF12BW125
481 )))
482
483 (((
484 487.5 - SF7BW125 to SF12BW125
485 )))
486
487 (((
488 487.7 - SF7BW125 to SF12BW125
489 )))
490
491 (((
492
493 )))
494
495 (((
496 (% style="color:blue" %)**Downlink:**
497 )))
498
499 (((
500 506.7 - SF7BW125 to SF12BW125
501 )))
502
503 (((
504 506.9 - SF7BW125 to SF12BW125
505 )))
506
507 (((
508 507.1 - SF7BW125 to SF12BW125
509 )))
510
511 (((
512 507.3 - SF7BW125 to SF12BW125
513 )))
514
515 (((
516 507.5 - SF7BW125 to SF12BW125
517 )))
518
519 (((
520 507.7 - SF7BW125 to SF12BW125
521 )))
522
523 (((
524 507.9 - SF7BW125 to SF12BW125
525 )))
526
527 (((
528 508.1 - SF7BW125 to SF12BW125
529 )))
530
531 (((
532 505.3 - SF12BW125 (RX2 downlink only)
533 )))
534
535
536
537
538 === 2.6.4  AU915-928(AU915) ===
539
540 (((
541 Default use CHE=2
542
543 (% style="color:blue" %)**Uplink:**
544
545 916.8 - SF7BW125 to SF12BW125
546
547 917.0 - SF7BW125 to SF12BW125
548
549 917.2 - SF7BW125 to SF12BW125
550
551 917.4 - SF7BW125 to SF12BW125
552
553 917.6 - SF7BW125 to SF12BW125
554
555 917.8 - SF7BW125 to SF12BW125
556
557 918.0 - SF7BW125 to SF12BW125
558
559 918.2 - SF7BW125 to SF12BW125
560
561
562 (% style="color:blue" %)**Downlink:**
563
564 923.3 - SF7BW500 to SF12BW500
565
566 923.9 - SF7BW500 to SF12BW500
567
568 924.5 - SF7BW500 to SF12BW500
569
570 925.1 - SF7BW500 to SF12BW500
571
572 925.7 - SF7BW500 to SF12BW500
573
574 926.3 - SF7BW500 to SF12BW500
575
576 926.9 - SF7BW500 to SF12BW500
577
578 927.5 - SF7BW500 to SF12BW500
579
580 923.3 - SF12BW500(RX2 downlink only)
581
582
583
584 )))
585
586 === 2.6.5  AS920-923 & AS923-925 (AS923) ===
587
588 (((
589 (% style="color:blue" %)**Default Uplink channel:**
590 )))
591
592 (((
593 923.2 - SF7BW125 to SF10BW125
594 )))
595
596 (((
597 923.4 - SF7BW125 to SF10BW125
598 )))
599
600 (((
601
602 )))
603
604 (((
605 (% style="color:blue" %)**Additional Uplink Channel**:
606 )))
607
608 (((
609 (OTAA mode, channel added by JoinAccept message)
610 )))
611
612 (((
613
614 )))
615
616 (((
617 (% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
618 )))
619
620 (((
621 922.2 - SF7BW125 to SF10BW125
622 )))
623
624 (((
625 922.4 - SF7BW125 to SF10BW125
626 )))
627
628 (((
629 922.6 - SF7BW125 to SF10BW125
630 )))
631
632 (((
633 922.8 - SF7BW125 to SF10BW125
634 )))
635
636 (((
637 923.0 - SF7BW125 to SF10BW125
638 )))
639
640 (((
641 922.0 - SF7BW125 to SF10BW125
642 )))
643
644 (((
645
646 )))
647
648 (((
649 (% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
650 )))
651
652 (((
653 923.6 - SF7BW125 to SF10BW125
654 )))
655
656 (((
657 923.8 - SF7BW125 to SF10BW125
658 )))
659
660 (((
661 924.0 - SF7BW125 to SF10BW125
662 )))
663
664 (((
665 924.2 - SF7BW125 to SF10BW125
666 )))
667
668 (((
669 924.4 - SF7BW125 to SF10BW125
670 )))
671
672 (((
673 924.6 - SF7BW125 to SF10BW125
674 )))
675
676 (((
677
678 )))
679
680 (((
681 (% style="color:blue" %)**Downlink:**
682 )))
683
684 (((
685 Uplink channels 1-8 (RX1)
686 )))
687
688 (((
689 923.2 - SF10BW125 (RX2)
690 )))
691
692
693
694
695 === 2.6.6  KR920-923 (KR920) ===
696
697 (((
698 (% style="color:blue" %)**Default channel:**
699 )))
700
701 (((
702 922.1 - SF7BW125 to SF12BW125
703 )))
704
705 (((
706 922.3 - SF7BW125 to SF12BW125
707 )))
708
709 (((
710 922.5 - SF7BW125 to SF12BW125
711 )))
712
713 (((
714
715 )))
716
717 (((
718 (% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
719 )))
720
721 (((
722 922.1 - SF7BW125 to SF12BW125
723 )))
724
725 (((
726 922.3 - SF7BW125 to SF12BW125
727 )))
728
729 (((
730 922.5 - SF7BW125 to SF12BW125
731 )))
732
733 (((
734 922.7 - SF7BW125 to SF12BW125
735 )))
736
737 (((
738 922.9 - SF7BW125 to SF12BW125
739 )))
740
741 (((
742 923.1 - SF7BW125 to SF12BW125
743 )))
744
745 (((
746 923.3 - SF7BW125 to SF12BW125
747 )))
748
749 (((
750
751 )))
752
753 (((
754 (% style="color:blue" %)**Downlink:**
755 )))
756
757 (((
758 Uplink channels 1-7(RX1)
759 )))
760
761 (((
762 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
763 )))
764
765
766
767
768 === 2.6.7  IN865-867 (IN865) ===
769
770 (((
771 (% style="color:blue" %)**Uplink:**
772 )))
773
774 (((
775 865.0625 - SF7BW125 to SF12BW125
776 )))
777
778 (((
779 865.4025 - SF7BW125 to SF12BW125
780 )))
781
782 (((
783 865.9850 - SF7BW125 to SF12BW125
784 )))
785
786 (((
787
788 )))
789
790 (((
791 (% style="color:blue" %)**Downlink:**
792 )))
793
794 (((
795 Uplink channels 1-3 (RX1)
796 )))
797
798 (((
799 866.550 - SF10BW125 (RX2)
800 )))
801
802
803
804
805 == 2.7  LED Indicator ==
806
807 The LLDS12 has an internal LED which is to show the status of different state.
808
809 * The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
810 * Blink once when device transmit a packet.
811
812 == 2.8  ​Firmware Change Log ==
813
814
815 **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
816
817
818 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
819
820
821
822 = 3.  LiDAR ToF Measurement =
823
824 == 3.1 Principle of Distance Measurement ==
825
826 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
827
828 [[image:1654831757579-263.png]]
829
830
831
832 == 3.2 Distance Measurement Characteristics ==
833
834 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
835
836 [[image:1654831774373-275.png]]
837
838
839 (((
840 (% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
841 )))
842
843 (((
844 (% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
845 )))
846
847 (((
848 (% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
849 )))
850
851
852 (((
853 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
854 )))
855
856
857 [[image:1654831797521-720.png]]
858
859
860 (((
861 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
862 )))
863
864 [[image:1654831810009-716.png]]
865
866
867 (((
868 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
869 )))
870
871
872
873 == 3.3 Notice of usage: ==
874
875 Possible invalid /wrong reading for LiDAR ToF tech:
876
877 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
878 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
879 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
880 * The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
881
882 = 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
883
884 (((
885 (((
886 Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
887 )))
888 )))
889
890 * (((
891 (((
892 AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]].
893 )))
894 )))
895 * (((
896 (((
897 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
898 )))
899 )))
900
901 (((
902 (((
903
904 )))
905
906 (((
907 There are two kinds of commands to configure LLDS12, they are:
908 )))
909 )))
910
911 * (((
912 (((
913 (% style="color:#4f81bd" %)** General Commands**.
914 )))
915 )))
916
917 (((
918 (((
919 These commands are to configure:
920 )))
921 )))
922
923 * (((
924 (((
925 General system settings like: uplink interval.
926 )))
927 )))
928 * (((
929 (((
930 LoRaWAN protocol & radio related command.
931 )))
932 )))
933
934 (((
935 (((
936 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
937 )))
938 )))
939
940 (((
941 (((
942
943 )))
944 )))
945
946 * (((
947 (((
948 (% style="color:#4f81bd" %)** Commands special design for LLDS12**
949 )))
950 )))
951
952 (((
953 (((
954 These commands only valid for LLDS12, as below:
955 )))
956 )))
957
958
959
960 == 4.1  Set Transmit Interval Time ==
961
962 Feature: Change LoRaWAN End Node Transmit Interval.
963
964 (% style="color:#037691" %)**AT Command: AT+TDC**
965
966 [[image:image-20220607171554-8.png]]
967
968
969 (((
970 (% style="color:#037691" %)**Downlink Command: 0x01**
971 )))
972
973 (((
974 Format: Command Code (0x01) followed by 3 bytes time value.
975 )))
976
977 (((
978 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
979 )))
980
981 * (((
982 Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
983 )))
984 * (((
985 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
986 )))
987
988 == 4.2  Set Interrupt Mode ==
989
990 Feature, Set Interrupt mode for GPIO_EXIT.
991
992 (% style="color:#037691" %)**AT Command: AT+INTMOD**
993
994 [[image:image-20220610105806-2.png]]
995
996
997 (((
998 (% style="color:#037691" %)**Downlink Command: 0x06**
999 )))
1000
1001 (((
1002 Format: Command Code (0x06) followed by 3 bytes.
1003 )))
1004
1005 (((
1006 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1007 )))
1008
1009 * (((
1010 Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1011 )))
1012 * (((
1013 Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1014 )))
1015
1016 == 4.3  Get Firmware Version Info ==
1017
1018 Feature: use downlink to get firmware version.
1019
1020 (% style="color:#037691" %)**Downlink Command: 0x26**
1021
1022 [[image:image-20220607171917-10.png]]
1023
1024 * Reply to the confirmation package: 26 01
1025 * Reply to non-confirmed packet: 26 00
1026
1027 Device will send an uplink after got this downlink command. With below payload:
1028
1029 Configures info payload:
1030
1031 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1032 |=(((
1033 **Size(bytes)**
1034 )))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1035 |**Value**|Software Type|(((
1036 Frequency
1037
1038 Band
1039 )))|Sub-band|(((
1040 Firmware
1041
1042 Version
1043 )))|Sensor Type|Reserve|(((
1044 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
1045 Always 0x02
1046 )))
1047
1048 **Software Type**: Always 0x03 for LLDS12
1049
1050
1051 **Frequency Band**:
1052
1053 *0x01: EU868
1054
1055 *0x02: US915
1056
1057 *0x03: IN865
1058
1059 *0x04: AU915
1060
1061 *0x05: KZ865
1062
1063 *0x06: RU864
1064
1065 *0x07: AS923
1066
1067 *0x08: AS923-1
1068
1069 *0x09: AS923-2
1070
1071 *0xa0: AS923-3
1072
1073
1074 **Sub-Band**: value 0x00 ~~ 0x08
1075
1076
1077 **Firmware Version**: 0x0100, Means: v1.0.0 version
1078
1079
1080 **Sensor Type**:
1081
1082 0x01: LSE01
1083
1084 0x02: LDDS75
1085
1086 0x03: LDDS20
1087
1088 0x04: LLMS01
1089
1090 0x05: LSPH01
1091
1092 0x06: LSNPK01
1093
1094 0x07: LLDS12
1095
1096
1097
1098 = 5.  Battery & How to replace =
1099
1100 == 5.1  Battery Type ==
1101
1102 (((
1103 LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1104 )))
1105
1106 (((
1107 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1108 )))
1109
1110 [[image:1654593587246-335.png]]
1111
1112
1113 Minimum Working Voltage for the LLDS12:
1114
1115 LLDS12:  2.45v ~~ 3.6v
1116
1117
1118
1119 == 5.2  Replace Battery ==
1120
1121 (((
1122 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1123 )))
1124
1125 (((
1126 And make sure the positive and negative pins match.
1127 )))
1128
1129
1130
1131 == 5.3  Power Consumption Analyze ==
1132
1133 (((
1134 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1135 )))
1136
1137 (((
1138 Instruction to use as below:
1139 )))
1140
1141
1142 **Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1143
1144 [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1145
1146
1147 **Step 2**: Open it and choose
1148
1149 * Product Model
1150 * Uplink Interval
1151 * Working Mode
1152
1153 And the Life expectation in difference case will be shown on the right.
1154
1155 [[image:1654593605679-189.png]]
1156
1157
1158 The battery related documents as below:
1159
1160 * (((
1161 [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
1162 )))
1163 * (((
1164 [[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1165 )))
1166 * (((
1167 [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1168 )))
1169
1170 [[image:image-20220607172042-11.png]]
1171
1172
1173
1174 === 5.3.1  ​Battery Note ===
1175
1176 (((
1177 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1178 )))
1179
1180
1181
1182 === ​5.3.2  Replace the battery ===
1183
1184 (((
1185 You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1186 )))
1187
1188 (((
1189 The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1190 )))
1191
1192
1193
1194 = 6.  Use AT Command =
1195
1196 == 6.1  Access AT Commands ==
1197
1198 LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1199
1200 [[image:1654593668970-604.png]]
1201
1202 **Connection:**
1203
1204 (% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1205
1206 (% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1207
1208 (% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1209
1210
1211 (((
1212 (((
1213 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1214 )))
1215
1216 (((
1217 LLDS12 will output system info once power on as below:
1218 )))
1219 )))
1220
1221
1222 [[image:1654593712276-618.png]]
1223
1224 Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
1225
1226
1227 = 7.  FAQ =
1228
1229 == 7.1  How to change the LoRa Frequency Bands/Region ==
1230
1231 You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1232 When downloading the images, choose the required image file for download. ​
1233
1234
1235 = 8.  Trouble Shooting =
1236
1237 == 8.1  AT Commands input doesn’t work ==
1238
1239
1240 (((
1241 In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1242 )))
1243
1244
1245 == 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1246
1247
1248 (((
1249 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1250 )))
1251
1252 (((
1253 Troubleshooting: Please avoid use of this product under such circumstance in practice.
1254 )))
1255
1256 (((
1257
1258 )))
1259
1260 (((
1261 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1262 )))
1263
1264 (((
1265 Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1266 )))
1267
1268
1269
1270 = 9.  Order Info =
1271
1272
1273 Part Number: (% style="color:blue" %)**LLDS12-XX**
1274
1275
1276 (% style="color:blue" %)**XX**(%%): The default frequency band
1277
1278 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1279 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1280 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1281 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1282 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1283 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1284 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1285 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1286
1287 = 10. ​ Packing Info =
1288
1289
1290 **Package Includes**:
1291
1292 * LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1293
1294 **Dimension and weight**:
1295
1296 * Device Size: cm
1297 * Device Weight: g
1298 * Package Size / pcs : cm
1299 * Weight / pcs : g
1300
1301 = 11.  ​Support =
1302
1303 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1304 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0