Show last authors
1 (% style="text-align:center" %)
2 [[image:1654846127817-788.png]]
3
4 **Contents:**
5
6
7
8
9
10
11
12
13 = 1.  Introduction =
14
15 == 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
16
17 (((
18
19
20 (((
21 The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
22
23
24 It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
25
26
27 The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
28
29
30 LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
31
32
33 Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
34
35
36 (% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors
37 )))
38 )))
39
40
41 [[image:1654847051249-359.png]]
42
43
44
45 == ​1.2  Features ==
46
47 * LoRaWAN 1.0.3 Class A
48 * Ultra low power consumption
49 * Distance Detection by Ultrasonic technology
50 * Flat object range 280mm - 7500mm
51 * Accuracy: ±(1cm+S*0.3%) (S: Distance)
52 * Cable Length : 25cm
53 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
54 * AT Commands to change parameters
55 * Uplink on periodically
56 * Downlink to change configure
57 * IP66 Waterproof Enclosure
58 * 4000mAh or 8500mAh Battery for long term use
59
60
61
62
63 == 1.3  Specification ==
64
65 === 1.3.1  Rated environmental conditions ===
66
67 [[image:image-20220610154839-1.png]]
68
69 **Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);**
70
71 **b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
72
73
74
75 === 1.3.2  Effective measurement range Reference beam pattern ===
76
77 **(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**[[image:image-20220610155021-2.png||height="440" width="1189"]]
78
79
80
81 **(2)** The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.[[image:image-20220610155021-3.png||height="437" width="1192"]]
82
83 (% style="display:none" %) (%%)
84
85
86
87 == 1.5 ​ Applications ==
88
89 * Horizontal distance measurement
90 * Liquid level measurement
91 * Parking management system
92 * Object proximity and presence detection
93 * Intelligent trash can management system
94 * Robot obstacle avoidance
95 * Automatic control
96 * Sewer
97 * Bottom water level monitoring
98
99
100
101
102 == 1.6  Pin mapping and power on ==
103
104
105 [[image:1654847583902-256.png]]
106
107
108
109 = 2.  Configure LDDS75 to connect to LoRaWAN network =
110
111 == 2.1  How it works ==
112
113 (((
114 The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
115 )))
116
117 (((
118 In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
119 )))
120
121
122 == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
123
124 (((
125 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
126 )))
127
128 (((
129 [[image:1654848616367-242.png]]
130 )))
131
132 (((
133 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
134 )))
135
136 (((
137 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
138 )))
139
140 (((
141 Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
142 )))
143
144 [[image:image-20220607170145-1.jpeg]]
145
146
147 For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
148
149 Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
150
151 **Add APP EUI in the application**
152
153 [[image:image-20220610161353-4.png]]
154
155 [[image:image-20220610161353-5.png]]
156
157 [[image:image-20220610161353-6.png]]
158
159
160 [[image:image-20220610161353-7.png]]
161
162
163 You can also choose to create the device manually.
164
165 [[image:image-20220610161538-8.png]]
166
167
168
169 **Add APP KEY and DEV EUI**
170
171 [[image:image-20220610161538-9.png]]
172
173
174
175 (% style="color:blue" %)**Step 2**(%%): Power on LDDS75
176
177
178 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
179
180 [[image:image-20220610161724-10.png]]
181
182
183 (((
184 (% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
185 )))
186
187 [[image:1654849068701-275.png]]
188
189
190
191 == 2.3  ​Uplink Payload ==
192
193 (((
194 LDDS75 will uplink payload via LoRaWAN with below payload format: 
195
196 Uplink payload includes in total 4 bytes.
197 Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
198 )))
199
200 (((
201
202 )))
203
204 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
205 |=(% style="width: 62.5px;" %)(((
206 **Size (bytes)**
207 )))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
208 |(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
209 [[Distance>>||anchor="H2.3.3A0Distance"]]
210
211 (unit: mm)
212 )))|[[Digital Interrupt (Optional)>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
213 [[Temperature (Optional )>>||anchor="H2.3.5A0InterruptPin"]]
214 )))|[[Sensor Flag>>path:#Sensor_Flag]]
215
216 [[image:1654850511545-399.png]]
217
218
219
220 === 2.3.1  Battery Info ===
221
222
223 Check the battery voltage for LDDS75.
224
225 Ex1: 0x0B45 = 2885mV
226
227 Ex2: 0x0B49 = 2889mV
228
229
230
231 === 2.3.2  Distance ===
232
233 Get the distance. Flat object range 280mm - 7500mm.
234
235 For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
236
237
238 * If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
239 * If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
240
241
242 === 2.3.3  Interrupt Pin ===
243
244 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
245
246 **Example:**
247
248 0x00: Normal uplink packet.
249
250 0x01: Interrupt Uplink Packet.
251
252
253 === 2.3.4  DS18B20 Temperature sensor ===
254
255 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
256
257 **Example**:
258
259 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
260
261 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
262
263 (% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021.
264
265
266
267 === 2.3.5  Sensor Flag ===
268
269 0x01: Detect Ultrasonic Sensor
270
271 0x00: No Ultrasonic Sensor
272
273
274 ===
275 (% style="color:inherit; font-family:inherit" %)2.3.6  Decode payload in The Things Network(%%) ===
276
277 While using TTN network, you can add the payload format to decode the payload.
278
279
280 [[image:1654850829385-439.png]]
281
282 The payload decoder function for TTN V3 is here:
283
284 LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
285
286
287
288 == 2.4  Uplink Interval ==
289
290 The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
291
292
293
294 == 2.5  ​Show Data in DataCake IoT Server ==
295
296 (((
297 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
298 )))
299
300 (((
301
302 )))
303
304 (((
305 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
306 )))
307
308 (((
309 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
310 )))
311
312
313 [[image:1654592790040-760.png]]
314
315
316 [[image:1654592800389-571.png]]
317
318
319 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
320
321 (% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.**
322
323 [[image:1654851029373-510.png]]
324
325
326 After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
327
328 [[image:image-20220610165129-11.png||height="595" width="1088"]]
329
330
331
332 == 2.6  Frequency Plans ==
333
334 (((
335 The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
336 )))
337
338
339
340 === 2.6.1  EU863-870 (EU868) ===
341
342 (((
343 (% style="color:blue" %)**Uplink:**
344 )))
345
346 (((
347 868.1 - SF7BW125 to SF12BW125
348 )))
349
350 (((
351 868.3 - SF7BW125 to SF12BW125 and SF7BW250
352 )))
353
354 (((
355 868.5 - SF7BW125 to SF12BW125
356 )))
357
358 (((
359 867.1 - SF7BW125 to SF12BW125
360 )))
361
362 (((
363 867.3 - SF7BW125 to SF12BW125
364 )))
365
366 (((
367 867.5 - SF7BW125 to SF12BW125
368 )))
369
370 (((
371 867.7 - SF7BW125 to SF12BW125
372 )))
373
374 (((
375 867.9 - SF7BW125 to SF12BW125
376 )))
377
378 (((
379 868.8 - FSK
380 )))
381
382 (((
383
384 )))
385
386 (((
387 (% style="color:blue" %)**Downlink:**
388 )))
389
390 (((
391 Uplink channels 1-9 (RX1)
392 )))
393
394 (((
395 869.525 - SF9BW125 (RX2 downlink only)
396 )))
397
398
399
400 === 2.6.2  US902-928(US915) ===
401
402 (((
403 Used in USA, Canada and South America. Default use CHE=2
404
405 (% style="color:blue" %)**Uplink:**
406
407 903.9 - SF7BW125 to SF10BW125
408
409 904.1 - SF7BW125 to SF10BW125
410
411 904.3 - SF7BW125 to SF10BW125
412
413 904.5 - SF7BW125 to SF10BW125
414
415 904.7 - SF7BW125 to SF10BW125
416
417 904.9 - SF7BW125 to SF10BW125
418
419 905.1 - SF7BW125 to SF10BW125
420
421 905.3 - SF7BW125 to SF10BW125
422
423
424 (% style="color:blue" %)**Downlink:**
425
426 923.3 - SF7BW500 to SF12BW500
427
428 923.9 - SF7BW500 to SF12BW500
429
430 924.5 - SF7BW500 to SF12BW500
431
432 925.1 - SF7BW500 to SF12BW500
433
434 925.7 - SF7BW500 to SF12BW500
435
436 926.3 - SF7BW500 to SF12BW500
437
438 926.9 - SF7BW500 to SF12BW500
439
440 927.5 - SF7BW500 to SF12BW500
441
442 923.3 - SF12BW500(RX2 downlink only)
443
444
445
446 )))
447
448 === 2.6.3  CN470-510 (CN470) ===
449
450 (((
451 Used in China, Default use CHE=1
452 )))
453
454 (((
455 (% style="color:blue" %)**Uplink:**
456 )))
457
458 (((
459 486.3 - SF7BW125 to SF12BW125
460 )))
461
462 (((
463 486.5 - SF7BW125 to SF12BW125
464 )))
465
466 (((
467 486.7 - SF7BW125 to SF12BW125
468 )))
469
470 (((
471 486.9 - SF7BW125 to SF12BW125
472 )))
473
474 (((
475 487.1 - SF7BW125 to SF12BW125
476 )))
477
478 (((
479 487.3 - SF7BW125 to SF12BW125
480 )))
481
482 (((
483 487.5 - SF7BW125 to SF12BW125
484 )))
485
486 (((
487 487.7 - SF7BW125 to SF12BW125
488 )))
489
490 (((
491
492 )))
493
494 (((
495 (% style="color:blue" %)**Downlink:**
496 )))
497
498 (((
499 506.7 - SF7BW125 to SF12BW125
500 )))
501
502 (((
503 506.9 - SF7BW125 to SF12BW125
504 )))
505
506 (((
507 507.1 - SF7BW125 to SF12BW125
508 )))
509
510 (((
511 507.3 - SF7BW125 to SF12BW125
512 )))
513
514 (((
515 507.5 - SF7BW125 to SF12BW125
516 )))
517
518 (((
519 507.7 - SF7BW125 to SF12BW125
520 )))
521
522 (((
523 507.9 - SF7BW125 to SF12BW125
524 )))
525
526 (((
527 508.1 - SF7BW125 to SF12BW125
528 )))
529
530 (((
531 505.3 - SF12BW125 (RX2 downlink only)
532 )))
533
534
535
536
537 === 2.6.4  AU915-928(AU915) ===
538
539 (((
540 Default use CHE=2
541
542 (% style="color:blue" %)**Uplink:**
543
544 916.8 - SF7BW125 to SF12BW125
545
546 917.0 - SF7BW125 to SF12BW125
547
548 917.2 - SF7BW125 to SF12BW125
549
550 917.4 - SF7BW125 to SF12BW125
551
552 917.6 - SF7BW125 to SF12BW125
553
554 917.8 - SF7BW125 to SF12BW125
555
556 918.0 - SF7BW125 to SF12BW125
557
558 918.2 - SF7BW125 to SF12BW125
559
560
561 (% style="color:blue" %)**Downlink:**
562
563 923.3 - SF7BW500 to SF12BW500
564
565 923.9 - SF7BW500 to SF12BW500
566
567 924.5 - SF7BW500 to SF12BW500
568
569 925.1 - SF7BW500 to SF12BW500
570
571 925.7 - SF7BW500 to SF12BW500
572
573 926.3 - SF7BW500 to SF12BW500
574
575 926.9 - SF7BW500 to SF12BW500
576
577 927.5 - SF7BW500 to SF12BW500
578
579 923.3 - SF12BW500(RX2 downlink only)
580
581
582
583 )))
584
585 === 2.6.5  AS920-923 & AS923-925 (AS923) ===
586
587 (((
588 (% style="color:blue" %)**Default Uplink channel:**
589 )))
590
591 (((
592 923.2 - SF7BW125 to SF10BW125
593 )))
594
595 (((
596 923.4 - SF7BW125 to SF10BW125
597 )))
598
599 (((
600
601 )))
602
603 (((
604 (% style="color:blue" %)**Additional Uplink Channel**:
605 )))
606
607 (((
608 (OTAA mode, channel added by JoinAccept message)
609 )))
610
611 (((
612
613 )))
614
615 (((
616 (% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
617 )))
618
619 (((
620 922.2 - SF7BW125 to SF10BW125
621 )))
622
623 (((
624 922.4 - SF7BW125 to SF10BW125
625 )))
626
627 (((
628 922.6 - SF7BW125 to SF10BW125
629 )))
630
631 (((
632 922.8 - SF7BW125 to SF10BW125
633 )))
634
635 (((
636 923.0 - SF7BW125 to SF10BW125
637 )))
638
639 (((
640 922.0 - SF7BW125 to SF10BW125
641 )))
642
643 (((
644
645 )))
646
647 (((
648 (% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
649 )))
650
651 (((
652 923.6 - SF7BW125 to SF10BW125
653 )))
654
655 (((
656 923.8 - SF7BW125 to SF10BW125
657 )))
658
659 (((
660 924.0 - SF7BW125 to SF10BW125
661 )))
662
663 (((
664 924.2 - SF7BW125 to SF10BW125
665 )))
666
667 (((
668 924.4 - SF7BW125 to SF10BW125
669 )))
670
671 (((
672 924.6 - SF7BW125 to SF10BW125
673 )))
674
675 (((
676
677 )))
678
679 (((
680 (% style="color:blue" %)**Downlink:**
681 )))
682
683 (((
684 Uplink channels 1-8 (RX1)
685 )))
686
687 (((
688 923.2 - SF10BW125 (RX2)
689 )))
690
691
692
693
694 === 2.6.6  KR920-923 (KR920) ===
695
696 (((
697 (% style="color:blue" %)**Default channel:**
698 )))
699
700 (((
701 922.1 - SF7BW125 to SF12BW125
702 )))
703
704 (((
705 922.3 - SF7BW125 to SF12BW125
706 )))
707
708 (((
709 922.5 - SF7BW125 to SF12BW125
710 )))
711
712 (((
713
714 )))
715
716 (((
717 (% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
718 )))
719
720 (((
721 922.1 - SF7BW125 to SF12BW125
722 )))
723
724 (((
725 922.3 - SF7BW125 to SF12BW125
726 )))
727
728 (((
729 922.5 - SF7BW125 to SF12BW125
730 )))
731
732 (((
733 922.7 - SF7BW125 to SF12BW125
734 )))
735
736 (((
737 922.9 - SF7BW125 to SF12BW125
738 )))
739
740 (((
741 923.1 - SF7BW125 to SF12BW125
742 )))
743
744 (((
745 923.3 - SF7BW125 to SF12BW125
746 )))
747
748 (((
749
750 )))
751
752 (((
753 (% style="color:blue" %)**Downlink:**
754 )))
755
756 (((
757 Uplink channels 1-7(RX1)
758 )))
759
760 (((
761 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
762 )))
763
764
765
766
767 === 2.6.7  IN865-867 (IN865) ===
768
769 (((
770 (% style="color:blue" %)**Uplink:**
771 )))
772
773 (((
774 865.0625 - SF7BW125 to SF12BW125
775 )))
776
777 (((
778 865.4025 - SF7BW125 to SF12BW125
779 )))
780
781 (((
782 865.9850 - SF7BW125 to SF12BW125
783 )))
784
785 (((
786
787 )))
788
789 (((
790 (% style="color:blue" %)**Downlink:**
791 )))
792
793 (((
794 Uplink channels 1-3 (RX1)
795 )))
796
797 (((
798 866.550 - SF10BW125 (RX2)
799 )))
800
801
802
803
804 == 2.7  LED Indicator ==
805
806 The LLDS12 has an internal LED which is to show the status of different state.
807
808 * The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
809 * Blink once when device transmit a packet.
810
811 == 2.8  ​Firmware Change Log ==
812
813
814 **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
815
816
817 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
818
819
820
821 = 3.  LiDAR ToF Measurement =
822
823 == 3.1 Principle of Distance Measurement ==
824
825 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
826
827 [[image:1654831757579-263.png]]
828
829
830
831 == 3.2 Distance Measurement Characteristics ==
832
833 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
834
835 [[image:1654831774373-275.png]]
836
837
838 (((
839 (% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
840 )))
841
842 (((
843 (% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
844 )))
845
846 (((
847 (% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
848 )))
849
850
851 (((
852 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
853 )))
854
855
856 [[image:1654831797521-720.png]]
857
858
859 (((
860 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
861 )))
862
863 [[image:1654831810009-716.png]]
864
865
866 (((
867 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
868 )))
869
870
871
872 == 3.3 Notice of usage: ==
873
874 Possible invalid /wrong reading for LiDAR ToF tech:
875
876 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
877 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
878 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
879 * The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
880
881 = 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
882
883 (((
884 (((
885 Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
886 )))
887 )))
888
889 * (((
890 (((
891 AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]].
892 )))
893 )))
894 * (((
895 (((
896 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
897 )))
898 )))
899
900 (((
901 (((
902
903 )))
904
905 (((
906 There are two kinds of commands to configure LLDS12, they are:
907 )))
908 )))
909
910 * (((
911 (((
912 (% style="color:#4f81bd" %)** General Commands**.
913 )))
914 )))
915
916 (((
917 (((
918 These commands are to configure:
919 )))
920 )))
921
922 * (((
923 (((
924 General system settings like: uplink interval.
925 )))
926 )))
927 * (((
928 (((
929 LoRaWAN protocol & radio related command.
930 )))
931 )))
932
933 (((
934 (((
935 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
936 )))
937 )))
938
939 (((
940 (((
941
942 )))
943 )))
944
945 * (((
946 (((
947 (% style="color:#4f81bd" %)** Commands special design for LLDS12**
948 )))
949 )))
950
951 (((
952 (((
953 These commands only valid for LLDS12, as below:
954 )))
955 )))
956
957
958
959 == 4.1  Set Transmit Interval Time ==
960
961 Feature: Change LoRaWAN End Node Transmit Interval.
962
963 (% style="color:#037691" %)**AT Command: AT+TDC**
964
965 [[image:image-20220607171554-8.png]]
966
967
968 (((
969 (% style="color:#037691" %)**Downlink Command: 0x01**
970 )))
971
972 (((
973 Format: Command Code (0x01) followed by 3 bytes time value.
974 )))
975
976 (((
977 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
978 )))
979
980 * (((
981 Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
982 )))
983 * (((
984 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
985 )))
986
987 == 4.2  Set Interrupt Mode ==
988
989 Feature, Set Interrupt mode for GPIO_EXIT.
990
991 (% style="color:#037691" %)**AT Command: AT+INTMOD**
992
993 [[image:image-20220610105806-2.png]]
994
995
996 (((
997 (% style="color:#037691" %)**Downlink Command: 0x06**
998 )))
999
1000 (((
1001 Format: Command Code (0x06) followed by 3 bytes.
1002 )))
1003
1004 (((
1005 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1006 )))
1007
1008 * (((
1009 Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1010 )))
1011 * (((
1012 Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1013 )))
1014
1015 == 4.3  Get Firmware Version Info ==
1016
1017 Feature: use downlink to get firmware version.
1018
1019 (% style="color:#037691" %)**Downlink Command: 0x26**
1020
1021 [[image:image-20220607171917-10.png]]
1022
1023 * Reply to the confirmation package: 26 01
1024 * Reply to non-confirmed packet: 26 00
1025
1026 Device will send an uplink after got this downlink command. With below payload:
1027
1028 Configures info payload:
1029
1030 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1031 |=(((
1032 **Size(bytes)**
1033 )))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1034 |**Value**|Software Type|(((
1035 Frequency
1036
1037 Band
1038 )))|Sub-band|(((
1039 Firmware
1040
1041 Version
1042 )))|Sensor Type|Reserve|(((
1043 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
1044 Always 0x02
1045 )))
1046
1047 **Software Type**: Always 0x03 for LLDS12
1048
1049
1050 **Frequency Band**:
1051
1052 *0x01: EU868
1053
1054 *0x02: US915
1055
1056 *0x03: IN865
1057
1058 *0x04: AU915
1059
1060 *0x05: KZ865
1061
1062 *0x06: RU864
1063
1064 *0x07: AS923
1065
1066 *0x08: AS923-1
1067
1068 *0x09: AS923-2
1069
1070 *0xa0: AS923-3
1071
1072
1073 **Sub-Band**: value 0x00 ~~ 0x08
1074
1075
1076 **Firmware Version**: 0x0100, Means: v1.0.0 version
1077
1078
1079 **Sensor Type**:
1080
1081 0x01: LSE01
1082
1083 0x02: LDDS75
1084
1085 0x03: LDDS20
1086
1087 0x04: LLMS01
1088
1089 0x05: LSPH01
1090
1091 0x06: LSNPK01
1092
1093 0x07: LLDS12
1094
1095
1096
1097 = 5.  Battery & How to replace =
1098
1099 == 5.1  Battery Type ==
1100
1101 (((
1102 LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1103 )))
1104
1105 (((
1106 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1107 )))
1108
1109 [[image:1654593587246-335.png]]
1110
1111
1112 Minimum Working Voltage for the LLDS12:
1113
1114 LLDS12:  2.45v ~~ 3.6v
1115
1116
1117
1118 == 5.2  Replace Battery ==
1119
1120 (((
1121 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1122 )))
1123
1124 (((
1125 And make sure the positive and negative pins match.
1126 )))
1127
1128
1129
1130 == 5.3  Power Consumption Analyze ==
1131
1132 (((
1133 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1134 )))
1135
1136 (((
1137 Instruction to use as below:
1138 )))
1139
1140
1141 **Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1142
1143 [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1144
1145
1146 **Step 2**: Open it and choose
1147
1148 * Product Model
1149 * Uplink Interval
1150 * Working Mode
1151
1152 And the Life expectation in difference case will be shown on the right.
1153
1154 [[image:1654593605679-189.png]]
1155
1156
1157 The battery related documents as below:
1158
1159 * (((
1160 [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
1161 )))
1162 * (((
1163 [[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1164 )))
1165 * (((
1166 [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1167 )))
1168
1169 [[image:image-20220607172042-11.png]]
1170
1171
1172
1173 === 5.3.1  ​Battery Note ===
1174
1175 (((
1176 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1177 )))
1178
1179
1180
1181 === ​5.3.2  Replace the battery ===
1182
1183 (((
1184 You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1185 )))
1186
1187 (((
1188 The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1189 )))
1190
1191
1192
1193 = 6.  Use AT Command =
1194
1195 == 6.1  Access AT Commands ==
1196
1197 LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1198
1199 [[image:1654593668970-604.png]]
1200
1201 **Connection:**
1202
1203 (% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1204
1205 (% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1206
1207 (% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1208
1209
1210 (((
1211 (((
1212 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1213 )))
1214
1215 (((
1216 LLDS12 will output system info once power on as below:
1217 )))
1218 )))
1219
1220
1221 [[image:1654593712276-618.png]]
1222
1223 Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
1224
1225
1226 = 7.  FAQ =
1227
1228 == 7.1  How to change the LoRa Frequency Bands/Region ==
1229
1230 You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1231 When downloading the images, choose the required image file for download. ​
1232
1233
1234 = 8.  Trouble Shooting =
1235
1236 == 8.1  AT Commands input doesn’t work ==
1237
1238
1239 (((
1240 In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1241 )))
1242
1243
1244 == 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1245
1246
1247 (((
1248 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1249 )))
1250
1251 (((
1252 Troubleshooting: Please avoid use of this product under such circumstance in practice.
1253 )))
1254
1255 (((
1256
1257 )))
1258
1259 (((
1260 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1261 )))
1262
1263 (((
1264 Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1265 )))
1266
1267
1268
1269 = 9.  Order Info =
1270
1271
1272 Part Number: (% style="color:blue" %)**LLDS12-XX**
1273
1274
1275 (% style="color:blue" %)**XX**(%%): The default frequency band
1276
1277 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1278 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1279 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1280 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1281 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1282 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1283 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1284 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1285
1286 = 10. ​ Packing Info =
1287
1288
1289 **Package Includes**:
1290
1291 * LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1292
1293 **Dimension and weight**:
1294
1295 * Device Size: cm
1296 * Device Weight: g
1297 * Package Size / pcs : cm
1298 * Weight / pcs : g
1299
1300 = 11.  ​Support =
1301
1302 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1303 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0