Version 134.3 by Xiaoling on 2022/06/10 16:43

Show last authors
1 (% style="text-align:center" %)
2 [[image:1654846127817-788.png]]
3
4 **Contents:**
5
6
7
8
9
10
11
12
13 = 1.  Introduction =
14
15 == 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
16
17 (((
18
19
20 (((
21 The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
22
23
24 It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
25
26
27 The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
28
29
30 LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
31
32
33 Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
34
35
36 (% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors
37 )))
38 )))
39
40
41 [[image:1654847051249-359.png]]
42
43
44
45 == ​1.2  Features ==
46
47 * LoRaWAN 1.0.3 Class A
48 * Ultra low power consumption
49 * Distance Detection by Ultrasonic technology
50 * Flat object range 280mm - 7500mm
51 * Accuracy: ±(1cm+S*0.3%) (S: Distance)
52 * Cable Length : 25cm
53 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
54 * AT Commands to change parameters
55 * Uplink on periodically
56 * Downlink to change configure
57 * IP66 Waterproof Enclosure
58 * 4000mAh or 8500mAh Battery for long term use
59
60 == 1.3  Specification ==
61
62 === 1.3.1  Rated environmental conditions ===
63
64 [[image:image-20220610154839-1.png]]
65
66 **Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);**
67
68 **b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
69
70
71
72 === 1.3.2  Effective measurement range Reference beam pattern ===
73
74 **(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**[[image:image-20220610155021-2.png||height="440" width="1189"]]
75
76
77
78 **(2)** The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.[[image:image-20220610155021-3.png||height="437" width="1192"]]
79
80 (% style="display:none" %) (%%)
81
82
83 == 1.5 ​ Applications ==
84
85 * Horizontal distance measurement
86 * Liquid level measurement
87 * Parking management system
88 * Object proximity and presence detection
89 * Intelligent trash can management system
90 * Robot obstacle avoidance
91 * Automatic control
92 * Sewer
93 * Bottom water level monitoring
94
95 == 1.6  Pin mapping and power on ==
96
97
98 [[image:1654847583902-256.png]]
99
100
101 = 2.  Configure LDDS75 to connect to LoRaWAN network =
102
103 == 2.1  How it works ==
104
105 (((
106 The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
107 )))
108
109 (((
110 In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
111 )))
112
113
114 == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
115
116 (((
117 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
118 )))
119
120 (((
121 [[image:1654848616367-242.png]]
122 )))
123
124 (((
125 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
126 )))
127
128 (((
129 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
130 )))
131
132 (((
133 Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
134 )))
135
136 [[image:image-20220607170145-1.jpeg]]
137
138
139 For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
140
141 Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
142
143 **Add APP EUI in the application**
144
145 [[image:image-20220610161353-4.png]]
146
147 [[image:image-20220610161353-5.png]]
148
149 [[image:image-20220610161353-6.png]]
150
151
152 [[image:image-20220610161353-7.png]]
153
154
155 You can also choose to create the device manually.
156
157 [[image:image-20220610161538-8.png]]
158
159
160
161 **Add APP KEY and DEV EUI**
162
163 [[image:image-20220610161538-9.png]]
164
165
166
167 (% style="color:blue" %)**Step 2**(%%): Power on LDDS75
168
169
170 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
171
172 [[image:image-20220610161724-10.png]]
173
174
175 (((
176 (% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
177 )))
178
179 [[image:1654849068701-275.png]]
180
181
182
183 == 2.3  ​Uplink Payload ==
184
185 (((
186 LDDS75 will uplink payload via LoRaWAN with below payload format: 
187
188 Uplink payload includes in total 4 bytes.
189 Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
190 )))
191
192 (((
193
194 )))
195
196 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
197 |=(% style="width: 62.5px;" %)(((
198 **Size (bytes)**
199 )))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
200 |(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
201 [[Distance>>||anchor="H2.3.3A0Distance"]]
202
203 (unit: mm)
204 )))|[[Digital Interrupt (Optional)>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
205 [[Temperature (Optional )>>||anchor="H2.3.5A0InterruptPin"]]
206 )))|[[Sensor Flag>>path:#Sensor_Flag]]
207
208 [[image:1654850511545-399.png]]
209
210
211
212 === 2.3.1  Battery Info ===
213
214
215 Check the battery voltage for LDDS75.
216
217 Ex1: 0x0B45 = 2885mV
218
219 Ex2: 0x0B49 = 2889mV
220
221
222
223 === 2.3.2  Distance ===
224
225 Get the distance. Flat object range 280mm - 7500mm.
226
227 For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
228
229
230 * If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
231 * If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
232
233
234
235
236 === 2.3.3  Interrupt Pin ===
237
238 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
239
240 **Example:**
241
242 0x00: Normal uplink packet.
243
244 0x01: Interrupt Uplink Packet.
245
246
247 === 2.3.4  DS18B20 Temperature sensor ===
248
249 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
250
251 **Example**:
252
253 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
254
255 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
256
257 (% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021.
258
259
260
261 === 2.3.5  Sensor Flag ===
262
263 0x01: Detect Ultrasonic Sensor
264
265 0x00: No Ultrasonic Sensor
266
267
268 ===
269 (% style="color:inherit; font-family:inherit" %)2.3.6  Decode payload in The Things Network(%%) ===
270
271 While using TTN network, you can add the payload format to decode the payload.
272
273
274 [[image:1654592762713-715.png]]
275
276 (((
277 The payload decoder function for TTN is here:
278 )))
279
280 (((
281 LLDS12 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/]]
282 )))
283
284
285
286 == 2.4  Uplink Interval ==
287
288 The LLDS12 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
289
290
291
292 == 2.5  ​Show Data in DataCake IoT Server ==
293
294 (((
295 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
296 )))
297
298 (((
299
300 )))
301
302 (((
303 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
304 )))
305
306 (((
307 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
308 )))
309
310
311 [[image:1654592790040-760.png]]
312
313
314 [[image:1654592800389-571.png]]
315
316
317 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
318
319 (% style="color:blue" %)**Step 4**(%%)**: Create LLDS12 product.**
320
321 [[image:1654832691989-514.png]]
322
323
324 [[image:1654592833877-762.png]]
325
326
327 [[image:1654832740634-933.png]]
328
329
330
331 (((
332 (% style="color:blue" %)**Step 5**(%%)**: add payload decode**
333 )))
334
335 (((
336
337 )))
338
339 [[image:1654833065139-942.png]]
340
341
342
343 [[image:1654833092678-390.png]]
344
345
346
347 After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
348
349 [[image:1654833163048-332.png]]
350
351
352
353 == 2.6  Frequency Plans ==
354
355 (((
356 The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
357 )))
358
359
360 === 2.6.1  EU863-870 (EU868) ===
361
362 (((
363 (% style="color:blue" %)**Uplink:**
364 )))
365
366 (((
367 868.1 - SF7BW125 to SF12BW125
368 )))
369
370 (((
371 868.3 - SF7BW125 to SF12BW125 and SF7BW250
372 )))
373
374 (((
375 868.5 - SF7BW125 to SF12BW125
376 )))
377
378 (((
379 867.1 - SF7BW125 to SF12BW125
380 )))
381
382 (((
383 867.3 - SF7BW125 to SF12BW125
384 )))
385
386 (((
387 867.5 - SF7BW125 to SF12BW125
388 )))
389
390 (((
391 867.7 - SF7BW125 to SF12BW125
392 )))
393
394 (((
395 867.9 - SF7BW125 to SF12BW125
396 )))
397
398 (((
399 868.8 - FSK
400 )))
401
402 (((
403
404 )))
405
406 (((
407 (% style="color:blue" %)**Downlink:**
408 )))
409
410 (((
411 Uplink channels 1-9 (RX1)
412 )))
413
414 (((
415 869.525 - SF9BW125 (RX2 downlink only)
416 )))
417
418
419
420 === 2.6.2  US902-928(US915) ===
421
422 (((
423 Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
424 )))
425
426 (((
427 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
428 )))
429
430 (((
431 After Join success, the end node will switch to the correct sub band by:
432 )))
433
434 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
435 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
436
437 === 2.6.3  CN470-510 (CN470) ===
438
439 (((
440 Used in China, Default use CHE=1
441 )))
442
443 (((
444 (% style="color:blue" %)**Uplink:**
445 )))
446
447 (((
448 486.3 - SF7BW125 to SF12BW125
449 )))
450
451 (((
452 486.5 - SF7BW125 to SF12BW125
453 )))
454
455 (((
456 486.7 - SF7BW125 to SF12BW125
457 )))
458
459 (((
460 486.9 - SF7BW125 to SF12BW125
461 )))
462
463 (((
464 487.1 - SF7BW125 to SF12BW125
465 )))
466
467 (((
468 487.3 - SF7BW125 to SF12BW125
469 )))
470
471 (((
472 487.5 - SF7BW125 to SF12BW125
473 )))
474
475 (((
476 487.7 - SF7BW125 to SF12BW125
477 )))
478
479 (((
480
481 )))
482
483 (((
484 (% style="color:blue" %)**Downlink:**
485 )))
486
487 (((
488 506.7 - SF7BW125 to SF12BW125
489 )))
490
491 (((
492 506.9 - SF7BW125 to SF12BW125
493 )))
494
495 (((
496 507.1 - SF7BW125 to SF12BW125
497 )))
498
499 (((
500 507.3 - SF7BW125 to SF12BW125
501 )))
502
503 (((
504 507.5 - SF7BW125 to SF12BW125
505 )))
506
507 (((
508 507.7 - SF7BW125 to SF12BW125
509 )))
510
511 (((
512 507.9 - SF7BW125 to SF12BW125
513 )))
514
515 (((
516 508.1 - SF7BW125 to SF12BW125
517 )))
518
519 (((
520 505.3 - SF12BW125 (RX2 downlink only)
521 )))
522
523
524
525
526 === 2.6.4  AU915-928(AU915) ===
527
528 (((
529 Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
530 )))
531
532 (((
533 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
534 )))
535
536 (((
537
538 )))
539
540 (((
541 After Join success, the end node will switch to the correct sub band by:
542 )))
543
544 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
545 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
546
547 === 2.6.5  AS920-923 & AS923-925 (AS923) ===
548
549 (((
550 (% style="color:blue" %)**Default Uplink channel:**
551 )))
552
553 (((
554 923.2 - SF7BW125 to SF10BW125
555 )))
556
557 (((
558 923.4 - SF7BW125 to SF10BW125
559 )))
560
561 (((
562
563 )))
564
565 (((
566 (% style="color:blue" %)**Additional Uplink Channel**:
567 )))
568
569 (((
570 (OTAA mode, channel added by JoinAccept message)
571 )))
572
573 (((
574
575 )))
576
577 (((
578 (% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
579 )))
580
581 (((
582 922.2 - SF7BW125 to SF10BW125
583 )))
584
585 (((
586 922.4 - SF7BW125 to SF10BW125
587 )))
588
589 (((
590 922.6 - SF7BW125 to SF10BW125
591 )))
592
593 (((
594 922.8 - SF7BW125 to SF10BW125
595 )))
596
597 (((
598 923.0 - SF7BW125 to SF10BW125
599 )))
600
601 (((
602 922.0 - SF7BW125 to SF10BW125
603 )))
604
605 (((
606
607 )))
608
609 (((
610 (% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
611 )))
612
613 (((
614 923.6 - SF7BW125 to SF10BW125
615 )))
616
617 (((
618 923.8 - SF7BW125 to SF10BW125
619 )))
620
621 (((
622 924.0 - SF7BW125 to SF10BW125
623 )))
624
625 (((
626 924.2 - SF7BW125 to SF10BW125
627 )))
628
629 (((
630 924.4 - SF7BW125 to SF10BW125
631 )))
632
633 (((
634 924.6 - SF7BW125 to SF10BW125
635 )))
636
637 (((
638
639 )))
640
641 (((
642 (% style="color:blue" %)**Downlink:**
643 )))
644
645 (((
646 Uplink channels 1-8 (RX1)
647 )))
648
649 (((
650 923.2 - SF10BW125 (RX2)
651 )))
652
653
654
655
656 === 2.6.6  KR920-923 (KR920) ===
657
658 (((
659 (% style="color:blue" %)**Default channel:**
660 )))
661
662 (((
663 922.1 - SF7BW125 to SF12BW125
664 )))
665
666 (((
667 922.3 - SF7BW125 to SF12BW125
668 )))
669
670 (((
671 922.5 - SF7BW125 to SF12BW125
672 )))
673
674 (((
675
676 )))
677
678 (((
679 (% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
680 )))
681
682 (((
683 922.1 - SF7BW125 to SF12BW125
684 )))
685
686 (((
687 922.3 - SF7BW125 to SF12BW125
688 )))
689
690 (((
691 922.5 - SF7BW125 to SF12BW125
692 )))
693
694 (((
695 922.7 - SF7BW125 to SF12BW125
696 )))
697
698 (((
699 922.9 - SF7BW125 to SF12BW125
700 )))
701
702 (((
703 923.1 - SF7BW125 to SF12BW125
704 )))
705
706 (((
707 923.3 - SF7BW125 to SF12BW125
708 )))
709
710 (((
711
712 )))
713
714 (((
715 (% style="color:blue" %)**Downlink:**
716 )))
717
718 (((
719 Uplink channels 1-7(RX1)
720 )))
721
722 (((
723 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
724 )))
725
726
727
728
729 === 2.6.7  IN865-867 (IN865) ===
730
731 (((
732 (% style="color:blue" %)**Uplink:**
733 )))
734
735 (((
736 865.0625 - SF7BW125 to SF12BW125
737 )))
738
739 (((
740 865.4025 - SF7BW125 to SF12BW125
741 )))
742
743 (((
744 865.9850 - SF7BW125 to SF12BW125
745 )))
746
747 (((
748
749 )))
750
751 (((
752 (% style="color:blue" %)**Downlink:**
753 )))
754
755 (((
756 Uplink channels 1-3 (RX1)
757 )))
758
759 (((
760 866.550 - SF10BW125 (RX2)
761 )))
762
763
764
765
766 == 2.7  LED Indicator ==
767
768 The LLDS12 has an internal LED which is to show the status of different state.
769
770 * The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
771 * Blink once when device transmit a packet.
772
773 == 2.8  ​Firmware Change Log ==
774
775
776 **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
777
778
779 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
780
781
782
783 = 3.  LiDAR ToF Measurement =
784
785 == 3.1 Principle of Distance Measurement ==
786
787 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
788
789 [[image:1654831757579-263.png]]
790
791
792
793 == 3.2 Distance Measurement Characteristics ==
794
795 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
796
797 [[image:1654831774373-275.png]]
798
799
800 (((
801 (% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
802 )))
803
804 (((
805 (% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
806 )))
807
808 (((
809 (% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
810 )))
811
812
813 (((
814 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
815 )))
816
817
818 [[image:1654831797521-720.png]]
819
820
821 (((
822 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
823 )))
824
825 [[image:1654831810009-716.png]]
826
827
828 (((
829 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
830 )))
831
832
833
834 == 3.3 Notice of usage: ==
835
836 Possible invalid /wrong reading for LiDAR ToF tech:
837
838 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
839 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
840 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
841 * The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
842
843 = 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
844
845 (((
846 (((
847 Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
848 )))
849 )))
850
851 * (((
852 (((
853 AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]].
854 )))
855 )))
856 * (((
857 (((
858 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
859 )))
860 )))
861
862 (((
863 (((
864
865 )))
866
867 (((
868 There are two kinds of commands to configure LLDS12, they are:
869 )))
870 )))
871
872 * (((
873 (((
874 (% style="color:#4f81bd" %)** General Commands**.
875 )))
876 )))
877
878 (((
879 (((
880 These commands are to configure:
881 )))
882 )))
883
884 * (((
885 (((
886 General system settings like: uplink interval.
887 )))
888 )))
889 * (((
890 (((
891 LoRaWAN protocol & radio related command.
892 )))
893 )))
894
895 (((
896 (((
897 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
898 )))
899 )))
900
901 (((
902 (((
903
904 )))
905 )))
906
907 * (((
908 (((
909 (% style="color:#4f81bd" %)** Commands special design for LLDS12**
910 )))
911 )))
912
913 (((
914 (((
915 These commands only valid for LLDS12, as below:
916 )))
917 )))
918
919
920
921 == 4.1  Set Transmit Interval Time ==
922
923 Feature: Change LoRaWAN End Node Transmit Interval.
924
925 (% style="color:#037691" %)**AT Command: AT+TDC**
926
927 [[image:image-20220607171554-8.png]]
928
929
930 (((
931 (% style="color:#037691" %)**Downlink Command: 0x01**
932 )))
933
934 (((
935 Format: Command Code (0x01) followed by 3 bytes time value.
936 )))
937
938 (((
939 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
940 )))
941
942 * (((
943 Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
944 )))
945 * (((
946 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
947 )))
948
949 == 4.2  Set Interrupt Mode ==
950
951 Feature, Set Interrupt mode for GPIO_EXIT.
952
953 (% style="color:#037691" %)**AT Command: AT+INTMOD**
954
955 [[image:image-20220610105806-2.png]]
956
957
958 (((
959 (% style="color:#037691" %)**Downlink Command: 0x06**
960 )))
961
962 (((
963 Format: Command Code (0x06) followed by 3 bytes.
964 )))
965
966 (((
967 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
968 )))
969
970 * (((
971 Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
972 )))
973 * (((
974 Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
975 )))
976
977 == 4.3  Get Firmware Version Info ==
978
979 Feature: use downlink to get firmware version.
980
981 (% style="color:#037691" %)**Downlink Command: 0x26**
982
983 [[image:image-20220607171917-10.png]]
984
985 * Reply to the confirmation package: 26 01
986 * Reply to non-confirmed packet: 26 00
987
988 Device will send an uplink after got this downlink command. With below payload:
989
990 Configures info payload:
991
992 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
993 |=(((
994 **Size(bytes)**
995 )))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
996 |**Value**|Software Type|(((
997 Frequency
998
999 Band
1000 )))|Sub-band|(((
1001 Firmware
1002
1003 Version
1004 )))|Sensor Type|Reserve|(((
1005 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
1006 Always 0x02
1007 )))
1008
1009 **Software Type**: Always 0x03 for LLDS12
1010
1011
1012 **Frequency Band**:
1013
1014 *0x01: EU868
1015
1016 *0x02: US915
1017
1018 *0x03: IN865
1019
1020 *0x04: AU915
1021
1022 *0x05: KZ865
1023
1024 *0x06: RU864
1025
1026 *0x07: AS923
1027
1028 *0x08: AS923-1
1029
1030 *0x09: AS923-2
1031
1032 *0xa0: AS923-3
1033
1034
1035 **Sub-Band**: value 0x00 ~~ 0x08
1036
1037
1038 **Firmware Version**: 0x0100, Means: v1.0.0 version
1039
1040
1041 **Sensor Type**:
1042
1043 0x01: LSE01
1044
1045 0x02: LDDS75
1046
1047 0x03: LDDS20
1048
1049 0x04: LLMS01
1050
1051 0x05: LSPH01
1052
1053 0x06: LSNPK01
1054
1055 0x07: LLDS12
1056
1057
1058
1059 = 5.  Battery & How to replace =
1060
1061 == 5.1  Battery Type ==
1062
1063 (((
1064 LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1065 )))
1066
1067 (((
1068 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1069 )))
1070
1071 [[image:1654593587246-335.png]]
1072
1073
1074 Minimum Working Voltage for the LLDS12:
1075
1076 LLDS12:  2.45v ~~ 3.6v
1077
1078
1079
1080 == 5.2  Replace Battery ==
1081
1082 (((
1083 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1084 )))
1085
1086 (((
1087 And make sure the positive and negative pins match.
1088 )))
1089
1090
1091
1092 == 5.3  Power Consumption Analyze ==
1093
1094 (((
1095 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1096 )))
1097
1098 (((
1099 Instruction to use as below:
1100 )))
1101
1102
1103 **Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1104
1105 [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1106
1107
1108 **Step 2**: Open it and choose
1109
1110 * Product Model
1111 * Uplink Interval
1112 * Working Mode
1113
1114 And the Life expectation in difference case will be shown on the right.
1115
1116 [[image:1654593605679-189.png]]
1117
1118
1119 The battery related documents as below:
1120
1121 * (((
1122 [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
1123 )))
1124 * (((
1125 [[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1126 )))
1127 * (((
1128 [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1129 )))
1130
1131 [[image:image-20220607172042-11.png]]
1132
1133
1134
1135 === 5.3.1  ​Battery Note ===
1136
1137 (((
1138 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1139 )))
1140
1141
1142
1143 === ​5.3.2  Replace the battery ===
1144
1145 (((
1146 You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1147 )))
1148
1149 (((
1150 The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1151 )))
1152
1153
1154
1155 = 6.  Use AT Command =
1156
1157 == 6.1  Access AT Commands ==
1158
1159 LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1160
1161 [[image:1654593668970-604.png]]
1162
1163 **Connection:**
1164
1165 (% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1166
1167 (% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1168
1169 (% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1170
1171
1172 (((
1173 (((
1174 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1175 )))
1176
1177 (((
1178 LLDS12 will output system info once power on as below:
1179 )))
1180 )))
1181
1182
1183 [[image:1654593712276-618.png]]
1184
1185 Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
1186
1187
1188 = 7.  FAQ =
1189
1190 == 7.1  How to change the LoRa Frequency Bands/Region ==
1191
1192 You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1193 When downloading the images, choose the required image file for download. ​
1194
1195
1196 = 8.  Trouble Shooting =
1197
1198 == 8.1  AT Commands input doesn’t work ==
1199
1200
1201 (((
1202 In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1203 )))
1204
1205
1206 == 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1207
1208
1209 (((
1210 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1211 )))
1212
1213 (((
1214 Troubleshooting: Please avoid use of this product under such circumstance in practice.
1215 )))
1216
1217 (((
1218
1219 )))
1220
1221 (((
1222 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1223 )))
1224
1225 (((
1226 Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1227 )))
1228
1229
1230
1231 = 9.  Order Info =
1232
1233
1234 Part Number: (% style="color:blue" %)**LLDS12-XX**
1235
1236
1237 (% style="color:blue" %)**XX**(%%): The default frequency band
1238
1239 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1240 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1241 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1242 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1243 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1244 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1245 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1246 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1247
1248 = 10. ​ Packing Info =
1249
1250
1251 **Package Includes**:
1252
1253 * LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1254
1255 **Dimension and weight**:
1256
1257 * Device Size: cm
1258 * Device Weight: g
1259 * Package Size / pcs : cm
1260 * Weight / pcs : g
1261
1262 = 11.  ​Support =
1263
1264 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1265 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].