Show last authors
1 (% style="text-align:center" %)
2 [[image:1654846127817-788.png]]
3
4 **Contents:**
5
6
7
8
9
10
11
12
13 = 1.  Introduction =
14
15 == 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
16
17 (((
18
19
20 (((
21 The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
22
23
24 It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
25
26
27 The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
28
29
30 LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
31
32
33 Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
34
35
36 (% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors
37 )))
38 )))
39
40
41 [[image:1654847051249-359.png]]
42
43
44
45 == ​1.2  Features ==
46
47 * LoRaWAN 1.0.3 Class A
48 * Ultra low power consumption
49 * Distance Detection by Ultrasonic technology
50 * Flat object range 280mm - 7500mm
51 * Accuracy: ±(1cm+S*0.3%) (S: Distance)
52 * Cable Length : 25cm
53 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
54 * AT Commands to change parameters
55 * Uplink on periodically
56 * Downlink to change configure
57 * IP66 Waterproof Enclosure
58 * 4000mAh or 8500mAh Battery for long term use
59
60 == 1.3  Specification ==
61
62 === 1.3.1  Rated environmental conditions ===
63
64 [[image:image-20220610154839-1.png]]
65
66 **Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);**
67
68 **b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
69
70
71
72 === 1.3.2  Effective measurement range Reference beam pattern ===
73
74 **(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**[[image:image-20220610155021-2.png||height="440" width="1189"]]
75
76
77
78 **(2)** The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.[[image:image-20220610155021-3.png||height="437" width="1192"]]
79
80 (% style="display:none" %) (%%)
81
82
83 == 1.5 ​ Applications ==
84
85 * Horizontal distance measurement
86 * Liquid level measurement
87 * Parking management system
88 * Object proximity and presence detection
89 * Intelligent trash can management system
90 * Robot obstacle avoidance
91 * Automatic control
92 * Sewer
93 * Bottom water level monitoring
94
95
96 == 1.6  Pin mapping and power on ==
97
98
99 [[image:1654847583902-256.png]]
100
101
102 = 2.  Configure LDDS75 to connect to LoRaWAN network =
103
104 == 2.1  How it works ==
105
106 (((
107 The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
108 )))
109
110 (((
111 In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
112 )))
113
114
115 == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
116
117 (((
118 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
119 )))
120
121 (((
122 [[image:1654848616367-242.png]]
123 )))
124
125 (((
126 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
127 )))
128
129 (((
130 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
131 )))
132
133 (((
134 Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
135 )))
136
137 [[image:image-20220607170145-1.jpeg]]
138
139
140 For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
141
142 Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
143
144 **Add APP EUI in the application**
145
146 [[image:image-20220610161353-4.png]]
147
148 [[image:image-20220610161353-5.png]]
149
150 [[image:image-20220610161353-6.png]]
151
152
153 [[image:image-20220610161353-7.png]]
154
155
156 You can also choose to create the device manually.
157
158 [[image:image-20220610161538-8.png]]
159
160
161
162 **Add APP KEY and DEV EUI**
163
164 [[image:image-20220610161538-9.png]]
165
166
167
168 (% style="color:blue" %)**Step 2**(%%): Power on LDDS75
169
170
171 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
172
173 [[image:image-20220610161724-10.png]]
174
175
176 (((
177 (% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
178 )))
179
180 [[image:1654849068701-275.png]]
181
182
183
184 == 2.3  ​Uplink Payload ==
185
186 (((
187 LDDS75 will uplink payload via LoRaWAN with below payload format:
188
189 Uplink payload includes in total 4 bytes.
190 Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
191 )))
192
193 (((
194
195 )))
196
197 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
198 |=(% style="width: 62.5px;" %)(((
199 **Size (bytes)**
200 )))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1**
201 |(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)(((
202 [[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]]
203 )))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
204 [[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]]
205 )))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|(((
206 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
207 )))
208
209 [[image:1654833689380-972.png]]
210
211
212
213 === 2.3.1  Battery Info ===
214
215
216 Check the battery voltage for LLDS12.
217
218 Ex1: 0x0B45 = 2885mV
219
220 Ex2: 0x0B49 = 2889mV
221
222
223
224 === 2.3.2  DS18B20 Temperature sensor ===
225
226 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
227
228
229 **Example**:
230
231 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
232
233 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
234
235
236
237 === 2.3.3  Distance ===
238
239 Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
240
241
242 **Example**:
243
244 If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
245
246
247
248 === 2.3.4  Distance signal strength ===
249
250 Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
251
252
253 **Example**:
254
255 If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
256
257 Customers can judge whether they need to adjust the environment based on the signal strength.
258
259
260
261 === 2.3.5  Interrupt Pin ===
262
263 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
264
265 Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]].
266
267 **Example:**
268
269 0x00: Normal uplink packet.
270
271 0x01: Interrupt Uplink Packet.
272
273
274
275 === 2.3.6  LiDAR temp ===
276
277 Characterize the internal temperature value of the sensor.
278
279 **Example: **
280 If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
281 If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
282
283
284
285 === 2.3.7  Message Type ===
286
287 (((
288 For a normal uplink payload, the message type is always 0x01.
289 )))
290
291 (((
292 Valid Message Type:
293 )))
294
295
296 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %)
297 |=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload**
298 |(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]]
299 |(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]]
300
301 === 2.3.8  Decode payload in The Things Network ===
302
303 While using TTN network, you can add the payload format to decode the payload.
304
305
306 [[image:1654592762713-715.png]]
307
308 (((
309 The payload decoder function for TTN is here:
310 )))
311
312 (((
313 LLDS12 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/]]
314 )))
315
316
317
318 == 2.4  Uplink Interval ==
319
320 The LLDS12 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
321
322
323
324 == 2.5  ​Show Data in DataCake IoT Server ==
325
326 (((
327 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
328 )))
329
330 (((
331
332 )))
333
334 (((
335 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
336 )))
337
338 (((
339 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
340 )))
341
342
343 [[image:1654592790040-760.png]]
344
345
346 [[image:1654592800389-571.png]]
347
348
349 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
350
351 (% style="color:blue" %)**Step 4**(%%)**: Create LLDS12 product.**
352
353 [[image:1654832691989-514.png]]
354
355
356 [[image:1654592833877-762.png]]
357
358
359 [[image:1654832740634-933.png]]
360
361
362
363 (((
364 (% style="color:blue" %)**Step 5**(%%)**: add payload decode**
365 )))
366
367 (((
368
369 )))
370
371 [[image:1654833065139-942.png]]
372
373
374
375 [[image:1654833092678-390.png]]
376
377
378
379 After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
380
381 [[image:1654833163048-332.png]]
382
383
384
385 == 2.6  Frequency Plans ==
386
387 (((
388 The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
389 )))
390
391
392 === 2.6.1  EU863-870 (EU868) ===
393
394 (((
395 (% style="color:blue" %)**Uplink:**
396 )))
397
398 (((
399 868.1 - SF7BW125 to SF12BW125
400 )))
401
402 (((
403 868.3 - SF7BW125 to SF12BW125 and SF7BW250
404 )))
405
406 (((
407 868.5 - SF7BW125 to SF12BW125
408 )))
409
410 (((
411 867.1 - SF7BW125 to SF12BW125
412 )))
413
414 (((
415 867.3 - SF7BW125 to SF12BW125
416 )))
417
418 (((
419 867.5 - SF7BW125 to SF12BW125
420 )))
421
422 (((
423 867.7 - SF7BW125 to SF12BW125
424 )))
425
426 (((
427 867.9 - SF7BW125 to SF12BW125
428 )))
429
430 (((
431 868.8 - FSK
432 )))
433
434 (((
435
436 )))
437
438 (((
439 (% style="color:blue" %)**Downlink:**
440 )))
441
442 (((
443 Uplink channels 1-9 (RX1)
444 )))
445
446 (((
447 869.525 - SF9BW125 (RX2 downlink only)
448 )))
449
450
451
452 === 2.6.2  US902-928(US915) ===
453
454 (((
455 Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
456 )))
457
458 (((
459 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
460 )))
461
462 (((
463 After Join success, the end node will switch to the correct sub band by:
464 )))
465
466 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
467 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
468
469 === 2.6.3  CN470-510 (CN470) ===
470
471 (((
472 Used in China, Default use CHE=1
473 )))
474
475 (((
476 (% style="color:blue" %)**Uplink:**
477 )))
478
479 (((
480 486.3 - SF7BW125 to SF12BW125
481 )))
482
483 (((
484 486.5 - SF7BW125 to SF12BW125
485 )))
486
487 (((
488 486.7 - SF7BW125 to SF12BW125
489 )))
490
491 (((
492 486.9 - SF7BW125 to SF12BW125
493 )))
494
495 (((
496 487.1 - SF7BW125 to SF12BW125
497 )))
498
499 (((
500 487.3 - SF7BW125 to SF12BW125
501 )))
502
503 (((
504 487.5 - SF7BW125 to SF12BW125
505 )))
506
507 (((
508 487.7 - SF7BW125 to SF12BW125
509 )))
510
511 (((
512
513 )))
514
515 (((
516 (% style="color:blue" %)**Downlink:**
517 )))
518
519 (((
520 506.7 - SF7BW125 to SF12BW125
521 )))
522
523 (((
524 506.9 - SF7BW125 to SF12BW125
525 )))
526
527 (((
528 507.1 - SF7BW125 to SF12BW125
529 )))
530
531 (((
532 507.3 - SF7BW125 to SF12BW125
533 )))
534
535 (((
536 507.5 - SF7BW125 to SF12BW125
537 )))
538
539 (((
540 507.7 - SF7BW125 to SF12BW125
541 )))
542
543 (((
544 507.9 - SF7BW125 to SF12BW125
545 )))
546
547 (((
548 508.1 - SF7BW125 to SF12BW125
549 )))
550
551 (((
552 505.3 - SF12BW125 (RX2 downlink only)
553 )))
554
555
556
557
558 === 2.6.4  AU915-928(AU915) ===
559
560 (((
561 Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
562 )))
563
564 (((
565 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
566 )))
567
568 (((
569
570 )))
571
572 (((
573 After Join success, the end node will switch to the correct sub band by:
574 )))
575
576 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
577 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
578
579 === 2.6.5  AS920-923 & AS923-925 (AS923) ===
580
581 (((
582 (% style="color:blue" %)**Default Uplink channel:**
583 )))
584
585 (((
586 923.2 - SF7BW125 to SF10BW125
587 )))
588
589 (((
590 923.4 - SF7BW125 to SF10BW125
591 )))
592
593 (((
594
595 )))
596
597 (((
598 (% style="color:blue" %)**Additional Uplink Channel**:
599 )))
600
601 (((
602 (OTAA mode, channel added by JoinAccept message)
603 )))
604
605 (((
606
607 )))
608
609 (((
610 (% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
611 )))
612
613 (((
614 922.2 - SF7BW125 to SF10BW125
615 )))
616
617 (((
618 922.4 - SF7BW125 to SF10BW125
619 )))
620
621 (((
622 922.6 - SF7BW125 to SF10BW125
623 )))
624
625 (((
626 922.8 - SF7BW125 to SF10BW125
627 )))
628
629 (((
630 923.0 - SF7BW125 to SF10BW125
631 )))
632
633 (((
634 922.0 - SF7BW125 to SF10BW125
635 )))
636
637 (((
638
639 )))
640
641 (((
642 (% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
643 )))
644
645 (((
646 923.6 - SF7BW125 to SF10BW125
647 )))
648
649 (((
650 923.8 - SF7BW125 to SF10BW125
651 )))
652
653 (((
654 924.0 - SF7BW125 to SF10BW125
655 )))
656
657 (((
658 924.2 - SF7BW125 to SF10BW125
659 )))
660
661 (((
662 924.4 - SF7BW125 to SF10BW125
663 )))
664
665 (((
666 924.6 - SF7BW125 to SF10BW125
667 )))
668
669 (((
670
671 )))
672
673 (((
674 (% style="color:blue" %)**Downlink:**
675 )))
676
677 (((
678 Uplink channels 1-8 (RX1)
679 )))
680
681 (((
682 923.2 - SF10BW125 (RX2)
683 )))
684
685
686
687
688 === 2.6.6  KR920-923 (KR920) ===
689
690 (((
691 (% style="color:blue" %)**Default channel:**
692 )))
693
694 (((
695 922.1 - SF7BW125 to SF12BW125
696 )))
697
698 (((
699 922.3 - SF7BW125 to SF12BW125
700 )))
701
702 (((
703 922.5 - SF7BW125 to SF12BW125
704 )))
705
706 (((
707
708 )))
709
710 (((
711 (% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
712 )))
713
714 (((
715 922.1 - SF7BW125 to SF12BW125
716 )))
717
718 (((
719 922.3 - SF7BW125 to SF12BW125
720 )))
721
722 (((
723 922.5 - SF7BW125 to SF12BW125
724 )))
725
726 (((
727 922.7 - SF7BW125 to SF12BW125
728 )))
729
730 (((
731 922.9 - SF7BW125 to SF12BW125
732 )))
733
734 (((
735 923.1 - SF7BW125 to SF12BW125
736 )))
737
738 (((
739 923.3 - SF7BW125 to SF12BW125
740 )))
741
742 (((
743
744 )))
745
746 (((
747 (% style="color:blue" %)**Downlink:**
748 )))
749
750 (((
751 Uplink channels 1-7(RX1)
752 )))
753
754 (((
755 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
756 )))
757
758
759
760
761 === 2.6.7  IN865-867 (IN865) ===
762
763 (((
764 (% style="color:blue" %)**Uplink:**
765 )))
766
767 (((
768 865.0625 - SF7BW125 to SF12BW125
769 )))
770
771 (((
772 865.4025 - SF7BW125 to SF12BW125
773 )))
774
775 (((
776 865.9850 - SF7BW125 to SF12BW125
777 )))
778
779 (((
780
781 )))
782
783 (((
784 (% style="color:blue" %)**Downlink:**
785 )))
786
787 (((
788 Uplink channels 1-3 (RX1)
789 )))
790
791 (((
792 866.550 - SF10BW125 (RX2)
793 )))
794
795
796
797
798 == 2.7  LED Indicator ==
799
800 The LLDS12 has an internal LED which is to show the status of different state.
801
802 * The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
803 * Blink once when device transmit a packet.
804
805 == 2.8  ​Firmware Change Log ==
806
807
808 **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
809
810
811 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
812
813
814
815 = 3.  LiDAR ToF Measurement =
816
817 == 3.1 Principle of Distance Measurement ==
818
819 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
820
821 [[image:1654831757579-263.png]]
822
823
824
825 == 3.2 Distance Measurement Characteristics ==
826
827 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
828
829 [[image:1654831774373-275.png]]
830
831
832 (((
833 (% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
834 )))
835
836 (((
837 (% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
838 )))
839
840 (((
841 (% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
842 )))
843
844
845 (((
846 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
847 )))
848
849
850 [[image:1654831797521-720.png]]
851
852
853 (((
854 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
855 )))
856
857 [[image:1654831810009-716.png]]
858
859
860 (((
861 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
862 )))
863
864
865
866 == 3.3 Notice of usage: ==
867
868 Possible invalid /wrong reading for LiDAR ToF tech:
869
870 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
871 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
872 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
873 * The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
874
875 = 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
876
877 (((
878 (((
879 Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
880 )))
881 )))
882
883 * (((
884 (((
885 AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]].
886 )))
887 )))
888 * (((
889 (((
890 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
891 )))
892 )))
893
894 (((
895 (((
896
897 )))
898
899 (((
900 There are two kinds of commands to configure LLDS12, they are:
901 )))
902 )))
903
904 * (((
905 (((
906 (% style="color:#4f81bd" %)** General Commands**.
907 )))
908 )))
909
910 (((
911 (((
912 These commands are to configure:
913 )))
914 )))
915
916 * (((
917 (((
918 General system settings like: uplink interval.
919 )))
920 )))
921 * (((
922 (((
923 LoRaWAN protocol & radio related command.
924 )))
925 )))
926
927 (((
928 (((
929 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
930 )))
931 )))
932
933 (((
934 (((
935
936 )))
937 )))
938
939 * (((
940 (((
941 (% style="color:#4f81bd" %)** Commands special design for LLDS12**
942 )))
943 )))
944
945 (((
946 (((
947 These commands only valid for LLDS12, as below:
948 )))
949 )))
950
951
952
953 == 4.1  Set Transmit Interval Time ==
954
955 Feature: Change LoRaWAN End Node Transmit Interval.
956
957 (% style="color:#037691" %)**AT Command: AT+TDC**
958
959 [[image:image-20220607171554-8.png]]
960
961
962 (((
963 (% style="color:#037691" %)**Downlink Command: 0x01**
964 )))
965
966 (((
967 Format: Command Code (0x01) followed by 3 bytes time value.
968 )))
969
970 (((
971 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
972 )))
973
974 * (((
975 Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
976 )))
977 * (((
978 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
979 )))
980
981 == 4.2  Set Interrupt Mode ==
982
983 Feature, Set Interrupt mode for GPIO_EXIT.
984
985 (% style="color:#037691" %)**AT Command: AT+INTMOD**
986
987 [[image:image-20220610105806-2.png]]
988
989
990 (((
991 (% style="color:#037691" %)**Downlink Command: 0x06**
992 )))
993
994 (((
995 Format: Command Code (0x06) followed by 3 bytes.
996 )))
997
998 (((
999 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1000 )))
1001
1002 * (((
1003 Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1004 )))
1005 * (((
1006 Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1007 )))
1008
1009 == 4.3  Get Firmware Version Info ==
1010
1011 Feature: use downlink to get firmware version.
1012
1013 (% style="color:#037691" %)**Downlink Command: 0x26**
1014
1015 [[image:image-20220607171917-10.png]]
1016
1017 * Reply to the confirmation package: 26 01
1018 * Reply to non-confirmed packet: 26 00
1019
1020 Device will send an uplink after got this downlink command. With below payload:
1021
1022 Configures info payload:
1023
1024 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1025 |=(((
1026 **Size(bytes)**
1027 )))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1028 |**Value**|Software Type|(((
1029 Frequency
1030
1031 Band
1032 )))|Sub-band|(((
1033 Firmware
1034
1035 Version
1036 )))|Sensor Type|Reserve|(((
1037 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
1038 Always 0x02
1039 )))
1040
1041 **Software Type**: Always 0x03 for LLDS12
1042
1043
1044 **Frequency Band**:
1045
1046 *0x01: EU868
1047
1048 *0x02: US915
1049
1050 *0x03: IN865
1051
1052 *0x04: AU915
1053
1054 *0x05: KZ865
1055
1056 *0x06: RU864
1057
1058 *0x07: AS923
1059
1060 *0x08: AS923-1
1061
1062 *0x09: AS923-2
1063
1064 *0xa0: AS923-3
1065
1066
1067 **Sub-Band**: value 0x00 ~~ 0x08
1068
1069
1070 **Firmware Version**: 0x0100, Means: v1.0.0 version
1071
1072
1073 **Sensor Type**:
1074
1075 0x01: LSE01
1076
1077 0x02: LDDS75
1078
1079 0x03: LDDS20
1080
1081 0x04: LLMS01
1082
1083 0x05: LSPH01
1084
1085 0x06: LSNPK01
1086
1087 0x07: LLDS12
1088
1089
1090
1091 = 5.  Battery & How to replace =
1092
1093 == 5.1  Battery Type ==
1094
1095 (((
1096 LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1097 )))
1098
1099 (((
1100 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1101 )))
1102
1103 [[image:1654593587246-335.png]]
1104
1105
1106 Minimum Working Voltage for the LLDS12:
1107
1108 LLDS12:  2.45v ~~ 3.6v
1109
1110
1111
1112 == 5.2  Replace Battery ==
1113
1114 (((
1115 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1116 )))
1117
1118 (((
1119 And make sure the positive and negative pins match.
1120 )))
1121
1122
1123
1124 == 5.3  Power Consumption Analyze ==
1125
1126 (((
1127 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1128 )))
1129
1130 (((
1131 Instruction to use as below:
1132 )))
1133
1134
1135 **Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1136
1137 [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1138
1139
1140 **Step 2**: Open it and choose
1141
1142 * Product Model
1143 * Uplink Interval
1144 * Working Mode
1145
1146 And the Life expectation in difference case will be shown on the right.
1147
1148 [[image:1654593605679-189.png]]
1149
1150
1151 The battery related documents as below:
1152
1153 * (((
1154 [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
1155 )))
1156 * (((
1157 [[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1158 )))
1159 * (((
1160 [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1161 )))
1162
1163 [[image:image-20220607172042-11.png]]
1164
1165
1166
1167 === 5.3.1  ​Battery Note ===
1168
1169 (((
1170 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1171 )))
1172
1173
1174
1175 === ​5.3.2  Replace the battery ===
1176
1177 (((
1178 You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1179 )))
1180
1181 (((
1182 The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1183 )))
1184
1185
1186
1187 = 6.  Use AT Command =
1188
1189 == 6.1  Access AT Commands ==
1190
1191 LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1192
1193 [[image:1654593668970-604.png]]
1194
1195 **Connection:**
1196
1197 (% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1198
1199 (% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1200
1201 (% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1202
1203
1204 (((
1205 (((
1206 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1207 )))
1208
1209 (((
1210 LLDS12 will output system info once power on as below:
1211 )))
1212 )))
1213
1214
1215 [[image:1654593712276-618.png]]
1216
1217 Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
1218
1219
1220 = 7.  FAQ =
1221
1222 == 7.1  How to change the LoRa Frequency Bands/Region ==
1223
1224 You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1225 When downloading the images, choose the required image file for download. ​
1226
1227
1228 = 8.  Trouble Shooting =
1229
1230 == 8.1  AT Commands input doesn’t work ==
1231
1232
1233 (((
1234 In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1235 )))
1236
1237
1238 == 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1239
1240
1241 (((
1242 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1243 )))
1244
1245 (((
1246 Troubleshooting: Please avoid use of this product under such circumstance in practice.
1247 )))
1248
1249 (((
1250
1251 )))
1252
1253 (((
1254 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1255 )))
1256
1257 (((
1258 Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1259 )))
1260
1261
1262
1263 = 9.  Order Info =
1264
1265
1266 Part Number: (% style="color:blue" %)**LLDS12-XX**
1267
1268
1269 (% style="color:blue" %)**XX**(%%): The default frequency band
1270
1271 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1272 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1273 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1274 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1275 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1276 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1277 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1278 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1279
1280 = 10. ​ Packing Info =
1281
1282
1283 **Package Includes**:
1284
1285 * LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1286
1287 **Dimension and weight**:
1288
1289 * Device Size: cm
1290 * Device Weight: g
1291 * Package Size / pcs : cm
1292 * Weight / pcs : g
1293
1294 = 11.  ​Support =
1295
1296 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1297 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0