Version 113.6 by Xiaoling on 2022/06/10 15:06

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220610095606-1.png]]
3
4
5 **Contents:**
6
7 {{toc/}}
8
9
10
11
12
13
14
15 = 1.  Introduction =
16
17 == 1.1 ​ What is LoRaWAN LiDAR ToF Distance Sensor ==
18
19 (((
20
21
22 (((
23 The Dragino LLDS12 is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
24 )))
25
26 (((
27 The LLDS12 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
28 )))
29
30 (((
31 It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
32 )))
33
34 (((
35 The LoRa wireless technology used in LLDS12 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
36 )))
37
38 (((
39 LLDS12 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
40 )))
41
42 (((
43 Each LLDS12 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
44 )))
45 )))
46
47
48 [[image:1654826306458-414.png]]
49
50
51
52 == ​1.2  Features ==
53
54 * LoRaWAN 1.0.3 Class A
55 * Ultra-low power consumption
56 * Laser technology for distance detection
57 * Operating Range - 0.1m~~12m①
58 * Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
59 * Monitor Battery Level
60 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
61 * AT Commands to change parameters
62 * Uplink on periodically
63 * Downlink to change configure
64 * 8500mAh Battery for long term use
65
66
67
68
69 == 1.3  Probe Specification ==
70
71 * Storage temperature :-20℃~~75℃
72 * Operating temperature - -20℃~~60℃
73 * Operating Range - 0.1m~~12m①
74 * Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
75 * Distance resolution - 5mm
76 * Ambient light immunity - 70klux
77 * Enclosure rating - IP65
78 * Light source - LED
79 * Central wavelength - 850nm
80 * FOV - 3.6°
81 * Material of enclosure - ABS+PC
82 * Wire length - 25cm
83
84
85
86
87 == 1.4  Probe Dimension ==
88
89
90 [[image:1654827224480-952.png]]
91
92
93 == 1.5 ​ Applications ==
94
95 * Horizontal distance measurement
96 * Parking management system
97 * Object proximity and presence detection
98 * Intelligent trash can management system
99 * Robot obstacle avoidance
100 * Automatic control
101 * Sewer
102
103
104
105
106 == 1.6  Pin mapping and power on ==
107
108
109 [[image:1654827332142-133.png]]
110
111
112 = 2.  Configure LLDS12 to connect to LoRaWAN network =
113
114 == 2.1  How it works ==
115
116 (((
117 The LLDS12 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
118 )))
119
120 (((
121 In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.A0UseATCommand"]]to set the keys in the LLDS12.
122 )))
123
124
125 == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
126
127 (((
128 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
129 )))
130
131 (((
132 [[image:1654827857527-556.png]]
133 )))
134
135 (((
136 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
137 )))
138
139 (((
140 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSPH01.
141 )))
142
143 (((
144 Each LSPH01 is shipped with a sticker with the default device EUI as below:
145 )))
146
147 [[image:image-20220607170145-1.jpeg]]
148
149
150
151 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
152
153
154 **Register the device**
155
156
157 [[image:1654592600093-601.png]]
158
159
160
161 **Add APP EUI and DEV EUI**
162
163 [[image:1654592619856-881.png]]
164
165
166
167 **Add APP EUI in the application**
168
169 [[image:1654592632656-512.png]]
170
171
172
173 **Add APP KEY**
174
175 [[image:1654592653453-934.png]]
176
177
178 (% style="color:blue" %)**Step 2**(%%): Power on LLDS12
179
180
181 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
182
183 [[image:image-20220607170442-2.png]]
184
185
186 (((
187 (% style="color:blue" %)**Step 3**(%%)**:** The LLDS12 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
188 )))
189
190 [[image:1654833501679-968.png]]
191
192
193
194 == 2.3  ​Uplink Payload ==
195
196 (((
197 LLDS12 will uplink payload via LoRaWAN with below payload format: 
198 )))
199
200 (((
201 Uplink payload includes in total 11 bytes.
202 )))
203
204 (((
205
206 )))
207
208 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
209 |=(% style="width: 62.5px;" %)(((
210 **Size (bytes)**
211 )))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1**
212 |(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)(((
213 [[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]]
214 )))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
215 [[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]]
216 )))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|(((
217 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
218 )))
219
220 [[image:1654833689380-972.png]]
221
222
223
224 === 2.3.1  Battery Info ===
225
226
227 Check the battery voltage for LLDS12.
228
229 Ex1: 0x0B45 = 2885mV
230
231 Ex2: 0x0B49 = 2889mV
232
233
234
235 === 2.3.2  DS18B20 Temperature sensor ===
236
237 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
238
239
240 **Example**:
241
242 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
243
244 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
245
246
247
248 === 2.3.3  Distance ===
249
250 Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
251
252
253 **Example**:
254
255 If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
256
257
258
259 === 2.3.4  Distance signal strength ===
260
261 Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
262
263
264 **Example**:
265
266 If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
267
268 Customers can judge whether they need to adjust the environment based on the signal strength.
269
270
271
272 === 2.3.5  Interrupt Pin ===
273
274 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
275
276 Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]].
277
278 **Example:**
279
280 0x00: Normal uplink packet.
281
282 0x01: Interrupt Uplink Packet.
283
284
285
286 === 2.3.6  LiDAR temp ===
287
288 Characterize the internal temperature value of the sensor.
289
290 **Example: **
291 If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
292 If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
293
294
295
296 === 2.3.7  Message Type ===
297
298 (((
299 For a normal uplink payload, the message type is always 0x01.
300 )))
301
302 (((
303 Valid Message Type:
304 )))
305
306
307 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %)
308 |=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload**
309 |(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]]
310 |(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]]
311
312
313
314
315 === 2.3.8  Decode payload in The Things Network ===
316
317 While using TTN network, you can add the payload format to decode the payload.
318
319
320 [[image:1654592762713-715.png]]
321
322 (((
323 The payload decoder function for TTN is here:
324 )))
325
326 (((
327 LLDS12 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/]]
328 )))
329
330
331
332 == 2.4  Uplink Interval ==
333
334 The LLDS12 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
335
336
337
338 == 2.5  ​Show Data in DataCake IoT Server ==
339
340 (((
341 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
342 )))
343
344 (((
345
346 )))
347
348 (((
349 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
350 )))
351
352 (((
353 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
354 )))
355
356
357 [[image:1654592790040-760.png]]
358
359
360 [[image:1654592800389-571.png]]
361
362
363 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
364
365 (% style="color:blue" %)**Step 4**(%%)**: Create LLDS12 product.**
366
367 [[image:1654832691989-514.png]]
368
369
370 [[image:1654592833877-762.png]]
371
372
373 [[image:1654832740634-933.png]]
374
375
376
377 (((
378 (% style="color:blue" %)**Step 5**(%%)**: add payload decode**
379 )))
380
381 (((
382
383 )))
384
385 [[image:1654833065139-942.png]]
386
387
388
389 [[image:1654833092678-390.png]]
390
391
392
393 After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
394
395 [[image:1654833163048-332.png]]
396
397
398
399 == 2.6  Frequency Plans ==
400
401 (((
402 The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
403 )))
404
405
406 === 2.6.1  EU863-870 (EU868) ===
407
408 (((
409 (% style="color:blue" %)**Uplink:**
410 )))
411
412 (((
413 868.1 - SF7BW125 to SF12BW125
414 )))
415
416 (((
417 868.3 - SF7BW125 to SF12BW125 and SF7BW250
418 )))
419
420 (((
421 868.5 - SF7BW125 to SF12BW125
422 )))
423
424 (((
425 867.1 - SF7BW125 to SF12BW125
426 )))
427
428 (((
429 867.3 - SF7BW125 to SF12BW125
430 )))
431
432 (((
433 867.5 - SF7BW125 to SF12BW125
434 )))
435
436 (((
437 867.7 - SF7BW125 to SF12BW125
438 )))
439
440 (((
441 867.9 - SF7BW125 to SF12BW125
442 )))
443
444 (((
445 868.8 - FSK
446 )))
447
448 (((
449
450 )))
451
452 (((
453 (% style="color:blue" %)**Downlink:**
454 )))
455
456 (((
457 Uplink channels 1-9 (RX1)
458 )))
459
460 (((
461 869.525 - SF9BW125 (RX2 downlink only)
462 )))
463
464
465
466 === 2.6.2  US902-928(US915) ===
467
468 (((
469 Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
470 )))
471
472 (((
473 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
474 )))
475
476 (((
477 After Join success, the end node will switch to the correct sub band by:
478 )))
479
480 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
481 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
482
483
484
485
486 === 2.6.3  CN470-510 (CN470) ===
487
488 (((
489 Used in China, Default use CHE=1
490 )))
491
492 (((
493 (% style="color:blue" %)**Uplink:**
494 )))
495
496 (((
497 486.3 - SF7BW125 to SF12BW125
498 )))
499
500 (((
501 486.5 - SF7BW125 to SF12BW125
502 )))
503
504 (((
505 486.7 - SF7BW125 to SF12BW125
506 )))
507
508 (((
509 486.9 - SF7BW125 to SF12BW125
510 )))
511
512 (((
513 487.1 - SF7BW125 to SF12BW125
514 )))
515
516 (((
517 487.3 - SF7BW125 to SF12BW125
518 )))
519
520 (((
521 487.5 - SF7BW125 to SF12BW125
522 )))
523
524 (((
525 487.7 - SF7BW125 to SF12BW125
526 )))
527
528 (((
529
530 )))
531
532 (((
533 (% style="color:blue" %)**Downlink:**
534 )))
535
536 (((
537 506.7 - SF7BW125 to SF12BW125
538 )))
539
540 (((
541 506.9 - SF7BW125 to SF12BW125
542 )))
543
544 (((
545 507.1 - SF7BW125 to SF12BW125
546 )))
547
548 (((
549 507.3 - SF7BW125 to SF12BW125
550 )))
551
552 (((
553 507.5 - SF7BW125 to SF12BW125
554 )))
555
556 (((
557 507.7 - SF7BW125 to SF12BW125
558 )))
559
560 (((
561 507.9 - SF7BW125 to SF12BW125
562 )))
563
564 (((
565 508.1 - SF7BW125 to SF12BW125
566 )))
567
568 (((
569 505.3 - SF12BW125 (RX2 downlink only)
570 )))
571
572
573
574
575 === 2.6.4  AU915-928(AU915) ===
576
577 (((
578 Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
579 )))
580
581 (((
582 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
583 )))
584
585 (((
586
587 )))
588
589 (((
590 After Join success, the end node will switch to the correct sub band by:
591 )))
592
593 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
594 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
595
596 === 2.6.5  AS920-923 & AS923-925 (AS923) ===
597
598 (((
599 (% style="color:blue" %)**Default Uplink channel:**
600 )))
601
602 (((
603 923.2 - SF7BW125 to SF10BW125
604 )))
605
606 (((
607 923.4 - SF7BW125 to SF10BW125
608 )))
609
610 (((
611
612 )))
613
614 (((
615 (% style="color:blue" %)**Additional Uplink Channel**:
616 )))
617
618 (((
619 (OTAA mode, channel added by JoinAccept message)
620 )))
621
622 (((
623
624 )))
625
626 (((
627 (% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
628 )))
629
630 (((
631 922.2 - SF7BW125 to SF10BW125
632 )))
633
634 (((
635 922.4 - SF7BW125 to SF10BW125
636 )))
637
638 (((
639 922.6 - SF7BW125 to SF10BW125
640 )))
641
642 (((
643 922.8 - SF7BW125 to SF10BW125
644 )))
645
646 (((
647 923.0 - SF7BW125 to SF10BW125
648 )))
649
650 (((
651 922.0 - SF7BW125 to SF10BW125
652 )))
653
654 (((
655
656 )))
657
658 (((
659 (% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
660 )))
661
662 (((
663 923.6 - SF7BW125 to SF10BW125
664 )))
665
666 (((
667 923.8 - SF7BW125 to SF10BW125
668 )))
669
670 (((
671 924.0 - SF7BW125 to SF10BW125
672 )))
673
674 (((
675 924.2 - SF7BW125 to SF10BW125
676 )))
677
678 (((
679 924.4 - SF7BW125 to SF10BW125
680 )))
681
682 (((
683 924.6 - SF7BW125 to SF10BW125
684 )))
685
686 (((
687
688 )))
689
690 (((
691 (% style="color:blue" %)**Downlink:**
692 )))
693
694 (((
695 Uplink channels 1-8 (RX1)
696 )))
697
698 (((
699 923.2 - SF10BW125 (RX2)
700 )))
701
702
703
704
705 === 2.6.6  KR920-923 (KR920) ===
706
707 (((
708 (% style="color:blue" %)**Default channel:**
709 )))
710
711 (((
712 922.1 - SF7BW125 to SF12BW125
713 )))
714
715 (((
716 922.3 - SF7BW125 to SF12BW125
717 )))
718
719 (((
720 922.5 - SF7BW125 to SF12BW125
721 )))
722
723 (((
724
725 )))
726
727 (((
728 (% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
729 )))
730
731 (((
732 922.1 - SF7BW125 to SF12BW125
733 )))
734
735 (((
736 922.3 - SF7BW125 to SF12BW125
737 )))
738
739 (((
740 922.5 - SF7BW125 to SF12BW125
741 )))
742
743 (((
744 922.7 - SF7BW125 to SF12BW125
745 )))
746
747 (((
748 922.9 - SF7BW125 to SF12BW125
749 )))
750
751 (((
752 923.1 - SF7BW125 to SF12BW125
753 )))
754
755 (((
756 923.3 - SF7BW125 to SF12BW125
757 )))
758
759 (((
760
761 )))
762
763 (((
764 (% style="color:blue" %)**Downlink:**
765 )))
766
767 (((
768 Uplink channels 1-7(RX1)
769 )))
770
771 (((
772 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
773 )))
774
775
776
777
778 === 2.6.7  IN865-867 (IN865) ===
779
780 (((
781 (% style="color:blue" %)**Uplink:**
782 )))
783
784 (((
785 865.0625 - SF7BW125 to SF12BW125
786 )))
787
788 (((
789 865.4025 - SF7BW125 to SF12BW125
790 )))
791
792 (((
793 865.9850 - SF7BW125 to SF12BW125
794 )))
795
796 (((
797
798 )))
799
800 (((
801 (% style="color:blue" %)**Downlink:**
802 )))
803
804 (((
805 Uplink channels 1-3 (RX1)
806 )))
807
808 (((
809 866.550 - SF10BW125 (RX2)
810 )))
811
812
813
814
815 == 2.7  LED Indicator ==
816
817 The LLDS12 has an internal LED which is to show the status of different state.
818
819 * The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
820 * Blink once when device transmit a packet.
821
822 == 2.8  ​Firmware Change Log ==
823
824
825 **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
826
827
828 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
829
830
831
832 = 3.  LiDAR ToF Measurement =
833
834 == 3.1 Principle of Distance Measurement ==
835
836 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
837
838 [[image:1654831757579-263.png]]
839
840
841
842 == 3.2 Distance Measurement Characteristics ==
843
844 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
845
846 [[image:1654831774373-275.png]]
847
848
849 (((
850 (% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
851 )))
852
853 (((
854 (% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
855 )))
856
857 (((
858 (% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
859 )))
860
861
862 (((
863 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
864 )))
865
866
867 [[image:1654831797521-720.png]]
868
869
870 (((
871 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
872 )))
873
874 [[image:1654831810009-716.png]]
875
876
877 (((
878 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
879 )))
880
881
882
883 == 3.3 Notice of usage: ==
884
885 Possible invalid /wrong reading for LiDAR ToF tech:
886
887 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
888 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
889 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
890 * The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
891
892 = 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
893
894 (((
895 (((
896 Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
897 )))
898 )))
899
900 * (((
901 (((
902 AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]].
903 )))
904 )))
905 * (((
906 (((
907 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
908 )))
909 )))
910
911 (((
912 (((
913
914 )))
915
916 (((
917 There are two kinds of commands to configure LLDS12, they are:
918 )))
919 )))
920
921 * (((
922 (((
923 (% style="color:#4f81bd" %)** General Commands**.
924 )))
925 )))
926
927 (((
928 (((
929 These commands are to configure:
930 )))
931 )))
932
933 * (((
934 (((
935 General system settings like: uplink interval.
936 )))
937 )))
938 * (((
939 (((
940 LoRaWAN protocol & radio related command.
941 )))
942 )))
943
944 (((
945 (((
946 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
947 )))
948 )))
949
950 (((
951 (((
952
953 )))
954 )))
955
956 * (((
957 (((
958 (% style="color:#4f81bd" %)** Commands special design for LLDS12**
959 )))
960 )))
961
962 (((
963 (((
964 These commands only valid for LLDS12, as below:
965 )))
966 )))
967
968
969
970 == 4.1  Set Transmit Interval Time ==
971
972 Feature: Change LoRaWAN End Node Transmit Interval.
973
974 (% style="color:#037691" %)**AT Command: AT+TDC**
975
976 [[image:image-20220607171554-8.png]]
977
978
979 (((
980 (% style="color:#037691" %)**Downlink Command: 0x01**
981 )))
982
983 (((
984 Format: Command Code (0x01) followed by 3 bytes time value.
985 )))
986
987 (((
988 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
989 )))
990
991 * (((
992 Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
993 )))
994 * (((
995 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
996
997
998
999 )))
1000
1001
1002 == 4.2  Set Interrupt Mode ==
1003
1004 Feature, Set Interrupt mode for GPIO_EXIT.
1005
1006 (% style="color:#037691" %)**AT Command: AT+INTMOD**
1007
1008 [[image:image-20220610105806-2.png]]
1009
1010
1011 (((
1012 (% style="color:#037691" %)**Downlink Command: 0x06**
1013 )))
1014
1015 (((
1016 Format: Command Code (0x06) followed by 3 bytes.
1017 )))
1018
1019 (((
1020 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1021 )))
1022
1023 * (((
1024 Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1025 )))
1026 * (((
1027 Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1028 )))
1029
1030
1031 == 4.3  Get Firmware Version Info ==
1032
1033 Feature: use downlink to get firmware version.
1034
1035 (% style="color:#037691" %)**Downlink Command: 0x26**
1036
1037 [[image:image-20220607171917-10.png]]
1038
1039 * Reply to the confirmation package: 26 01
1040 * Reply to non-confirmed packet: 26 00
1041
1042 Device will send an uplink after got this downlink command. With below payload:
1043
1044 Configures info payload:
1045
1046 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1047 |=(((
1048 **Size(bytes)**
1049 )))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1050 |**Value**|Software Type|(((
1051 Frequency
1052
1053 Band
1054 )))|Sub-band|(((
1055 Firmware
1056
1057 Version
1058 )))|Sensor Type|Reserve|(((
1059 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
1060 Always 0x02
1061 )))
1062
1063 **Software Type**: Always 0x03 for LLDS12
1064
1065
1066 **Frequency Band**:
1067
1068 *0x01: EU868
1069
1070 *0x02: US915
1071
1072 *0x03: IN865
1073
1074 *0x04: AU915
1075
1076 *0x05: KZ865
1077
1078 *0x06: RU864
1079
1080 *0x07: AS923
1081
1082 *0x08: AS923-1
1083
1084 *0x09: AS923-2
1085
1086 *0xa0: AS923-3
1087
1088
1089 **Sub-Band**: value 0x00 ~~ 0x08
1090
1091
1092 **Firmware Version**: 0x0100, Means: v1.0.0 version
1093
1094
1095 **Sensor Type**:
1096
1097 0x01: LSE01
1098
1099 0x02: LDDS75
1100
1101 0x03: LDDS20
1102
1103 0x04: LLMS01
1104
1105 0x05: LSPH01
1106
1107 0x06: LSNPK01
1108
1109 0x07: LLDS12
1110
1111
1112
1113 = 5.  Battery & How to replace =
1114
1115 == 5.1  Battery Type ==
1116
1117 (((
1118 LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1119 )))
1120
1121 (((
1122 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1123 )))
1124
1125 [[image:1654593587246-335.png]]
1126
1127
1128 Minimum Working Voltage for the LLDS12:
1129
1130 LLDS12:  2.45v ~~ 3.6v
1131
1132
1133
1134 == 5.2  Replace Battery ==
1135
1136 (((
1137 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1138 )))
1139
1140 (((
1141 And make sure the positive and negative pins match.
1142 )))
1143
1144
1145
1146 == 5.3  Power Consumption Analyze ==
1147
1148 (((
1149 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1150 )))
1151
1152 (((
1153 Instruction to use as below:
1154 )))
1155
1156
1157 **Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1158
1159 [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1160
1161
1162 **Step 2**: Open it and choose
1163
1164 * Product Model
1165 * Uplink Interval
1166 * Working Mode
1167
1168 And the Life expectation in difference case will be shown on the right.
1169
1170 [[image:1654593605679-189.png]]
1171
1172
1173 The battery related documents as below:
1174
1175 * (((
1176 [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
1177 )))
1178 * (((
1179 [[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1180 )))
1181 * (((
1182 [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1183 )))
1184
1185 [[image:image-20220607172042-11.png]]
1186
1187
1188
1189 === 5.3.1  ​Battery Note ===
1190
1191 (((
1192 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1193 )))
1194
1195
1196
1197 === ​5.3.2  Replace the battery ===
1198
1199 (((
1200 You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1201 )))
1202
1203 (((
1204 The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1205 )))
1206
1207
1208
1209 = 6.  Use AT Command =
1210
1211 == 6.1  Access AT Commands ==
1212
1213 LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1214
1215 [[image:1654593668970-604.png]]
1216
1217 **Connection:**
1218
1219 (% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1220
1221 (% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1222
1223 (% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1224
1225
1226 (((
1227 (((
1228 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1229 )))
1230
1231 (((
1232 LLDS12 will output system info once power on as below:
1233 )))
1234 )))
1235
1236
1237 [[image:1654593712276-618.png]]
1238
1239 Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
1240
1241
1242 = 7.  FAQ =
1243
1244 == 7.1  How to change the LoRa Frequency Bands/Region ==
1245
1246 You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1247 When downloading the images, choose the required image file for download. ​
1248
1249
1250 = 8.  Trouble Shooting =
1251
1252 == 8.1  AT Commands input doesn’t work ==
1253
1254
1255 (((
1256 In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1257 )))
1258
1259
1260 == 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1261
1262
1263 (((
1264 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1265 )))
1266
1267 (((
1268 Troubleshooting: Please avoid use of this product under such circumstance in practice.
1269 )))
1270
1271 (((
1272
1273 )))
1274
1275 (((
1276 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1277 )))
1278
1279 (((
1280 Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1281 )))
1282
1283
1284
1285 = 9.  Order Info =
1286
1287
1288 Part Number: (% style="color:blue" %)**LLDS12-XX**
1289
1290
1291 (% style="color:blue" %)**XX**(%%): The default frequency band
1292
1293 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1294 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1295 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1296 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1297 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1298 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1299 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1300 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1301
1302 = 10. ​ Packing Info =
1303
1304
1305 **Package Includes**:
1306
1307 * LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1308
1309 **Dimension and weight**:
1310
1311 * Device Size: cm
1312 * Device Weight: g
1313 * Package Size / pcs : cm
1314 * Weight / pcs : g
1315
1316 = 11.  ​Support =
1317
1318 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1319 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].