Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220610095606-1.png]]
3
4
5 **Contents:**
6
7 {{toc/}}
8
9
10
11
12
13
14
15 = 1.  Introduction =
16
17 == 1.1 ​ What is LoRaWAN LiDAR ToF Distance Sensor ==
18
19 (((
20
21
22 (((
23 The Dragino LLDS12 is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
24 )))
25
26 (((
27 The LLDS12 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
28 )))
29
30 (((
31 It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
32 )))
33
34 (((
35 The LoRa wireless technology used in LLDS12 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
36 )))
37
38 (((
39 LLDS12 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
40 )))
41
42 (((
43 Each LLDS12 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
44 )))
45 )))
46
47
48 [[image:1654826306458-414.png]]
49
50
51
52 == ​1.2  Features ==
53
54 * LoRaWAN 1.0.3 Class A
55 * Ultra-low power consumption
56 * Laser technology for distance detection
57 * Operating Range - 0.1m~~12m①
58 * Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
59 * Monitor Battery Level
60 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
61 * AT Commands to change parameters
62 * Uplink on periodically
63 * Downlink to change configure
64 * 8500mAh Battery for long term use
65
66
67
68
69 == 1.3  Probe Specification ==
70
71 * Storage temperature :-20℃~~75℃
72 * Operating temperature - -20℃~~60℃
73 * Operating Range - 0.1m~~12m①
74 * Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
75 * Distance resolution - 5mm
76 * Ambient light immunity - 70klux
77 * Enclosure rating - IP65
78 * Light source - LED
79 * Central wavelength - 850nm
80 * FOV - 3.6°
81 * Material of enclosure - ABS+PC
82 * Wire length - 25cm
83
84
85
86
87 == 1.4  Probe Dimension ==
88
89
90 [[image:1654827224480-952.png]]
91
92
93 == 1.5 ​ Applications ==
94
95 * Horizontal distance measurement
96 * Parking management system
97 * Object proximity and presence detection
98 * Intelligent trash can management system
99 * Robot obstacle avoidance
100 * Automatic control
101 * Sewer
102
103
104
105
106 == 1.6  Pin mapping and power on ==
107
108
109 [[image:1654827332142-133.png]]
110
111
112 = 2.  Configure LLDS12 to connect to LoRaWAN network =
113
114 == 2.1  How it works ==
115
116 (((
117 The LLDS12 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
118 )))
119
120 (((
121 In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.A0UseATCommand"]]to set the keys in the LLDS12.
122 )))
123
124
125 == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
126
127 (((
128 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
129 )))
130
131 (((
132 [[image:1654827857527-556.png]]
133 )))
134
135 (((
136 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
137 )))
138
139 (((
140 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSPH01.
141 )))
142
143 (((
144 Each LSPH01 is shipped with a sticker with the default device EUI as below:
145 )))
146
147 [[image:image-20220607170145-1.jpeg]]
148
149
150
151 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
152
153
154 **Register the device**
155
156
157 [[image:1654592600093-601.png]]
158
159
160
161 **Add APP EUI and DEV EUI**
162
163 [[image:1654592619856-881.png]]
164
165
166
167 **Add APP EUI in the application**
168
169 [[image:1654592632656-512.png]]
170
171
172
173 **Add APP KEY**
174
175 [[image:1654592653453-934.png]]
176
177
178 (% style="color:blue" %)**Step 2**(%%): Power on LLDS12
179
180
181 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
182
183 [[image:image-20220607170442-2.png]]
184
185
186 (((
187 (% style="color:blue" %)**Step 3**(%%)**:** The LLDS12 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
188 )))
189
190 [[image:1654833501679-968.png]]
191
192
193
194 == 2.3  ​Uplink Payload ==
195
196 (((
197 LLDS12 will uplink payload via LoRaWAN with below payload format: 
198 )))
199
200 (((
201 Uplink payload includes in total 11 bytes.
202 )))
203
204 (((
205
206 )))
207
208 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
209 |=(% style="width: 62.5px;" %)(((
210 **Size (bytes)**
211 )))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1**
212 |(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)(((
213 [[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]]
214 )))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
215 [[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]]
216 )))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|(((
217 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
218 )))
219
220 [[image:1654833689380-972.png]]
221
222
223
224 === 2.3.1  Battery Info ===
225
226
227 Check the battery voltage for LLDS12.
228
229 Ex1: 0x0B45 = 2885mV
230
231 Ex2: 0x0B49 = 2889mV
232
233
234
235 === 2.3.2  DS18B20 Temperature sensor ===
236
237 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
238
239
240 **Example**:
241
242 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
243
244 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
245
246
247
248 === 2.3.3  Distance ===
249
250 Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
251
252
253 **Example**:
254
255 If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
256
257
258
259 === 2.3.4  Distance signal strength ===
260
261 Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
262
263
264 **Example**:
265
266 If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
267
268 Customers can judge whether they need to adjust the environment based on the signal strength.
269
270
271
272 === 2.3.5  Interrupt Pin ===
273
274 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
275
276 Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]].
277
278 **Example:**
279
280 0x00: Normal uplink packet.
281
282 0x01: Interrupt Uplink Packet.
283
284
285
286 === 2.3.6  LiDAR temp ===
287
288 Characterize the internal temperature value of the sensor.
289
290 **Example: **
291 If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
292 If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
293
294
295
296 === 2.3.7  Message Type ===
297
298 (((
299 For a normal uplink payload, the message type is always 0x01.
300 )))
301
302 (((
303 Valid Message Type:
304 )))
305
306
307 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %)
308 |=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload**
309 |(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]]
310 |(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]]
311
312
313
314
315 === 2.3.8  Decode payload in The Things Network ===
316
317 While using TTN network, you can add the payload format to decode the payload.
318
319
320 [[image:1654592762713-715.png]]
321
322 (((
323 The payload decoder function for TTN is here:
324 )))
325
326 (((
327 LLDS12 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/]]
328 )))
329
330
331
332 == 2.4  Uplink Interval ==
333
334 The LLDS12 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
335
336
337
338 == 2.5  ​Show Data in DataCake IoT Server ==
339
340 (((
341 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
342 )))
343
344 (((
345
346 )))
347
348 (((
349 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
350 )))
351
352 (((
353 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
354 )))
355
356
357 [[image:1654592790040-760.png]]
358
359
360 [[image:1654592800389-571.png]]
361
362
363 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
364
365 (% style="color:blue" %)**Step 4**(%%)**: Create LLDS12 product.**
366
367 [[image:1654832691989-514.png]]
368
369
370 [[image:1654592833877-762.png]]
371
372
373 [[image:1654832740634-933.png]]
374
375
376
377 (((
378 (% style="color:blue" %)**Step 5**(%%)**: add payload decode**
379 )))
380
381 (((
382
383 )))
384
385 [[image:1654833065139-942.png]]
386
387
388
389 [[image:1654833092678-390.png]]
390
391
392
393 After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
394
395 [[image:1654833163048-332.png]]
396
397
398
399 == 2.6  Frequency Plans ==
400
401 (((
402 The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
403 )))
404
405
406 === 2.6.1  EU863-870 (EU868) ===
407
408 (((
409 (% style="color:blue" %)**Uplink:**
410 )))
411
412 (((
413 868.1 - SF7BW125 to SF12BW125
414 )))
415
416 (((
417 868.3 - SF7BW125 to SF12BW125 and SF7BW250
418 )))
419
420 (((
421 868.5 - SF7BW125 to SF12BW125
422 )))
423
424 (((
425 867.1 - SF7BW125 to SF12BW125
426 )))
427
428 (((
429 867.3 - SF7BW125 to SF12BW125
430 )))
431
432 (((
433 867.5 - SF7BW125 to SF12BW125
434 )))
435
436 (((
437 867.7 - SF7BW125 to SF12BW125
438 )))
439
440 (((
441 867.9 - SF7BW125 to SF12BW125
442 )))
443
444 (((
445 868.8 - FSK
446 )))
447
448 (((
449
450 )))
451
452 (((
453 (% style="color:blue" %)**Downlink:**
454 )))
455
456 (((
457 Uplink channels 1-9 (RX1)
458 )))
459
460 (((
461 869.525 - SF9BW125 (RX2 downlink only)
462 )))
463
464
465
466 === 2.6.2  US902-928(US915) ===
467
468 (((
469 Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
470 )))
471
472 (((
473 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
474 )))
475
476 (((
477 After Join success, the end node will switch to the correct sub band by:
478 )))
479
480 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
481 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
482
483 === 2.6.3  CN470-510 (CN470) ===
484
485 (((
486 Used in China, Default use CHE=1
487 )))
488
489 (((
490 (% style="color:blue" %)**Uplink:**
491 )))
492
493 (((
494 486.3 - SF7BW125 to SF12BW125
495 )))
496
497 (((
498 486.5 - SF7BW125 to SF12BW125
499 )))
500
501 (((
502 486.7 - SF7BW125 to SF12BW125
503 )))
504
505 (((
506 486.9 - SF7BW125 to SF12BW125
507 )))
508
509 (((
510 487.1 - SF7BW125 to SF12BW125
511 )))
512
513 (((
514 487.3 - SF7BW125 to SF12BW125
515 )))
516
517 (((
518 487.5 - SF7BW125 to SF12BW125
519 )))
520
521 (((
522 487.7 - SF7BW125 to SF12BW125
523 )))
524
525 (((
526
527 )))
528
529 (((
530 (% style="color:blue" %)**Downlink:**
531 )))
532
533 (((
534 506.7 - SF7BW125 to SF12BW125
535 )))
536
537 (((
538 506.9 - SF7BW125 to SF12BW125
539 )))
540
541 (((
542 507.1 - SF7BW125 to SF12BW125
543 )))
544
545 (((
546 507.3 - SF7BW125 to SF12BW125
547 )))
548
549 (((
550 507.5 - SF7BW125 to SF12BW125
551 )))
552
553 (((
554 507.7 - SF7BW125 to SF12BW125
555 )))
556
557 (((
558 507.9 - SF7BW125 to SF12BW125
559 )))
560
561 (((
562 508.1 - SF7BW125 to SF12BW125
563 )))
564
565 (((
566 505.3 - SF12BW125 (RX2 downlink only)
567 )))
568
569
570
571
572 === 2.6.4  AU915-928(AU915) ===
573
574 (((
575 Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
576 )))
577
578 (((
579 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
580 )))
581
582 (((
583
584 )))
585
586 (((
587 After Join success, the end node will switch to the correct sub band by:
588 )))
589
590 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
591 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
592
593 === 2.6.5  AS920-923 & AS923-925 (AS923) ===
594
595 (((
596 (% style="color:blue" %)**Default Uplink channel:**
597 )))
598
599 (((
600 923.2 - SF7BW125 to SF10BW125
601 )))
602
603 (((
604 923.4 - SF7BW125 to SF10BW125
605 )))
606
607 (((
608
609 )))
610
611 (((
612 (% style="color:blue" %)**Additional Uplink Channel**:
613 )))
614
615 (((
616 (OTAA mode, channel added by JoinAccept message)
617 )))
618
619 (((
620
621 )))
622
623 (((
624 (% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
625 )))
626
627 (((
628 922.2 - SF7BW125 to SF10BW125
629 )))
630
631 (((
632 922.4 - SF7BW125 to SF10BW125
633 )))
634
635 (((
636 922.6 - SF7BW125 to SF10BW125
637 )))
638
639 (((
640 922.8 - SF7BW125 to SF10BW125
641 )))
642
643 (((
644 923.0 - SF7BW125 to SF10BW125
645 )))
646
647 (((
648 922.0 - SF7BW125 to SF10BW125
649 )))
650
651 (((
652
653 )))
654
655 (((
656 (% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
657 )))
658
659 (((
660 923.6 - SF7BW125 to SF10BW125
661 )))
662
663 (((
664 923.8 - SF7BW125 to SF10BW125
665 )))
666
667 (((
668 924.0 - SF7BW125 to SF10BW125
669 )))
670
671 (((
672 924.2 - SF7BW125 to SF10BW125
673 )))
674
675 (((
676 924.4 - SF7BW125 to SF10BW125
677 )))
678
679 (((
680 924.6 - SF7BW125 to SF10BW125
681 )))
682
683 (((
684
685 )))
686
687 (((
688 (% style="color:blue" %)**Downlink:**
689 )))
690
691 (((
692 Uplink channels 1-8 (RX1)
693 )))
694
695 (((
696 923.2 - SF10BW125 (RX2)
697 )))
698
699
700
701
702 === 2.6.6  KR920-923 (KR920) ===
703
704 (((
705 (% style="color:blue" %)**Default channel:**
706 )))
707
708 (((
709 922.1 - SF7BW125 to SF12BW125
710 )))
711
712 (((
713 922.3 - SF7BW125 to SF12BW125
714 )))
715
716 (((
717 922.5 - SF7BW125 to SF12BW125
718 )))
719
720 (((
721
722 )))
723
724 (((
725 (% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
726 )))
727
728 (((
729 922.1 - SF7BW125 to SF12BW125
730 )))
731
732 (((
733 922.3 - SF7BW125 to SF12BW125
734 )))
735
736 (((
737 922.5 - SF7BW125 to SF12BW125
738 )))
739
740 (((
741 922.7 - SF7BW125 to SF12BW125
742 )))
743
744 (((
745 922.9 - SF7BW125 to SF12BW125
746 )))
747
748 (((
749 923.1 - SF7BW125 to SF12BW125
750 )))
751
752 (((
753 923.3 - SF7BW125 to SF12BW125
754 )))
755
756 (((
757
758 )))
759
760 (((
761 (% style="color:blue" %)**Downlink:**
762 )))
763
764 (((
765 Uplink channels 1-7(RX1)
766 )))
767
768 (((
769 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
770 )))
771
772
773
774
775 === 2.6.7  IN865-867 (IN865) ===
776
777 (((
778 (% style="color:blue" %)**Uplink:**
779 )))
780
781 (((
782 865.0625 - SF7BW125 to SF12BW125
783 )))
784
785 (((
786 865.4025 - SF7BW125 to SF12BW125
787 )))
788
789 (((
790 865.9850 - SF7BW125 to SF12BW125
791 )))
792
793 (((
794
795 )))
796
797 (((
798 (% style="color:blue" %)**Downlink:**
799 )))
800
801 (((
802 Uplink channels 1-3 (RX1)
803 )))
804
805 (((
806 866.550 - SF10BW125 (RX2)
807 )))
808
809
810
811
812 == 2.7  LED Indicator ==
813
814 The LLDS12 has an internal LED which is to show the status of different state.
815
816 * The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
817 * Blink once when device transmit a packet.
818
819 == 2.8  ​Firmware Change Log ==
820
821
822 **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
823
824
825 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
826
827
828
829 = 3.  LiDAR ToF Measurement =
830
831 == 3.1 Principle of Distance Measurement ==
832
833 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
834
835 [[image:1654831757579-263.png]]
836
837
838
839 == 3.2 Distance Measurement Characteristics ==
840
841 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
842
843 [[image:1654831774373-275.png]]
844
845
846 (((
847 (% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
848 )))
849
850 (((
851 (% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
852 )))
853
854 (((
855 (% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
856 )))
857
858
859 (((
860 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
861 )))
862
863
864 [[image:1654831797521-720.png]]
865
866
867 (((
868 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
869 )))
870
871 [[image:1654831810009-716.png]]
872
873
874 (((
875 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
876 )))
877
878
879
880 == 3.3 Notice of usage: ==
881
882 Possible invalid /wrong reading for LiDAR ToF tech:
883
884 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
885 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
886 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
887 * The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
888
889 = 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
890
891 (((
892 (((
893 Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
894 )))
895 )))
896
897 * (((
898 (((
899 AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]].
900 )))
901 )))
902 * (((
903 (((
904 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
905 )))
906 )))
907
908 (((
909 (((
910
911 )))
912
913 (((
914 There are two kinds of commands to configure LLDS12, they are:
915 )))
916 )))
917
918 * (((
919 (((
920 (% style="color:#4f81bd" %)** General Commands**.
921 )))
922 )))
923
924 (((
925 (((
926 These commands are to configure:
927 )))
928 )))
929
930 * (((
931 (((
932 General system settings like: uplink interval.
933 )))
934 )))
935 * (((
936 (((
937 LoRaWAN protocol & radio related command.
938 )))
939 )))
940
941 (((
942 (((
943 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
944 )))
945 )))
946
947 (((
948 (((
949
950 )))
951 )))
952
953 * (((
954 (((
955 (% style="color:#4f81bd" %)** Commands special design for LLDS12**
956 )))
957 )))
958
959 (((
960 (((
961 These commands only valid for LLDS12, as below:
962 )))
963 )))
964
965
966
967 == 4.1  Set Transmit Interval Time ==
968
969 Feature: Change LoRaWAN End Node Transmit Interval.
970
971 (% style="color:#037691" %)**AT Command: AT+TDC**
972
973 [[image:image-20220607171554-8.png]]
974
975
976 (((
977 (% style="color:#037691" %)**Downlink Command: 0x01**
978 )))
979
980 (((
981 Format: Command Code (0x01) followed by 3 bytes time value.
982 )))
983
984 (((
985 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
986 )))
987
988 * (((
989 Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
990 )))
991 * (((
992 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
993
994
995
996 )))
997
998
999 == 4.2  Set Interrupt Mode ==
1000
1001 Feature, Set Interrupt mode for GPIO_EXIT.
1002
1003 (% style="color:#037691" %)**AT Command: AT+INTMOD**
1004
1005 [[image:image-20220610105806-2.png]]
1006
1007
1008 (((
1009 (% style="color:#037691" %)**Downlink Command: 0x06**
1010 )))
1011
1012 (((
1013 Format: Command Code (0x06) followed by 3 bytes.
1014 )))
1015
1016 (((
1017 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1018 )))
1019
1020 * (((
1021 Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1022 )))
1023 * (((
1024 Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1025 )))
1026
1027
1028 == 4.3  Get Firmware Version Info ==
1029
1030 Feature: use downlink to get firmware version.
1031
1032 (% style="color:#037691" %)**Downlink Command: 0x26**
1033
1034 [[image:image-20220607171917-10.png]]
1035
1036 * Reply to the confirmation package: 26 01
1037 * Reply to non-confirmed packet: 26 00
1038
1039 Device will send an uplink after got this downlink command. With below payload:
1040
1041 Configures info payload:
1042
1043 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1044 |=(((
1045 **Size(bytes)**
1046 )))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1047 |**Value**|Software Type|(((
1048 Frequency
1049
1050 Band
1051 )))|Sub-band|(((
1052 Firmware
1053
1054 Version
1055 )))|Sensor Type|Reserve|(((
1056 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
1057 Always 0x02
1058 )))
1059
1060 **Software Type**: Always 0x03 for LLDS12
1061
1062
1063 **Frequency Band**:
1064
1065 *0x01: EU868
1066
1067 *0x02: US915
1068
1069 *0x03: IN865
1070
1071 *0x04: AU915
1072
1073 *0x05: KZ865
1074
1075 *0x06: RU864
1076
1077 *0x07: AS923
1078
1079 *0x08: AS923-1
1080
1081 *0x09: AS923-2
1082
1083 *0xa0: AS923-3
1084
1085
1086 **Sub-Band**: value 0x00 ~~ 0x08
1087
1088
1089 **Firmware Version**: 0x0100, Means: v1.0.0 version
1090
1091
1092 **Sensor Type**:
1093
1094 0x01: LSE01
1095
1096 0x02: LDDS75
1097
1098 0x03: LDDS20
1099
1100 0x04: LLMS01
1101
1102 0x05: LSPH01
1103
1104 0x06: LSNPK01
1105
1106 0x07: LLDS12
1107
1108
1109
1110 = 5.  Battery & How to replace =
1111
1112 == 5.1  Battery Type ==
1113
1114 (((
1115 LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1116 )))
1117
1118 (((
1119 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1120 )))
1121
1122 [[image:1654593587246-335.png]]
1123
1124
1125 Minimum Working Voltage for the LLDS12:
1126
1127 LLDS12:  2.45v ~~ 3.6v
1128
1129
1130
1131 == 5.2  Replace Battery ==
1132
1133 (((
1134 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1135 )))
1136
1137 (((
1138 And make sure the positive and negative pins match.
1139 )))
1140
1141
1142
1143 == 5.3  Power Consumption Analyze ==
1144
1145 (((
1146 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1147 )))
1148
1149 (((
1150 Instruction to use as below:
1151 )))
1152
1153
1154 **Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1155
1156 [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1157
1158
1159 **Step 2**: Open it and choose
1160
1161 * Product Model
1162 * Uplink Interval
1163 * Working Mode
1164
1165 And the Life expectation in difference case will be shown on the right.
1166
1167 [[image:1654593605679-189.png]]
1168
1169
1170 The battery related documents as below:
1171
1172 * (((
1173 [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
1174 )))
1175 * (((
1176 [[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1177 )))
1178 * (((
1179 [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1180 )))
1181
1182 [[image:image-20220607172042-11.png]]
1183
1184
1185
1186 === 5.3.1  ​Battery Note ===
1187
1188 (((
1189 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1190 )))
1191
1192
1193
1194 === ​5.3.2  Replace the battery ===
1195
1196 (((
1197 You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1198 )))
1199
1200 (((
1201 The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1202 )))
1203
1204
1205
1206 = 6.  Use AT Command =
1207
1208 == 6.1  Access AT Commands ==
1209
1210 LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1211
1212 [[image:1654593668970-604.png]]
1213
1214 **Connection:**
1215
1216 (% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1217
1218 (% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1219
1220 (% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1221
1222
1223 (((
1224 (((
1225 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1226 )))
1227
1228 (((
1229 LLDS12 will output system info once power on as below:
1230 )))
1231 )))
1232
1233
1234 [[image:1654593712276-618.png]]
1235
1236 Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
1237
1238
1239 = 7.  FAQ =
1240
1241 == 7.1  How to change the LoRa Frequency Bands/Region ==
1242
1243 You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1244 When downloading the images, choose the required image file for download. ​
1245
1246
1247 = 8.  Trouble Shooting =
1248
1249 == 8.1  AT Commands input doesn’t work ==
1250
1251
1252 (((
1253 In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1254 )))
1255
1256
1257 == 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1258
1259
1260 (((
1261 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1262 )))
1263
1264 (((
1265 Troubleshooting: Please avoid use of this product under such circumstance in practice.
1266 )))
1267
1268 (((
1269
1270 )))
1271
1272 (((
1273 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1274 )))
1275
1276 (((
1277 Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1278 )))
1279
1280
1281
1282 = 9.  Order Info =
1283
1284
1285 Part Number: (% style="color:blue" %)**LLDS12-XX**
1286
1287
1288 (% style="color:blue" %)**XX**(%%): The default frequency band
1289
1290 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1291 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1292 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1293 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1294 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1295 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1296 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1297 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1298
1299 = 10. ​ Packing Info =
1300
1301
1302 **Package Includes**:
1303
1304 * LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1305
1306 **Dimension and weight**:
1307
1308 * Device Size: cm
1309 * Device Weight: g
1310 * Package Size / pcs : cm
1311 * Weight / pcs : g
1312
1313 = 11.  ​Support =
1314
1315 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1316 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0