Version 113.4 by Xiaoling on 2022/06/10 15:04

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220610095606-1.png]]
3
4
5 **Contents:**
6
7 {{toc/}}
8
9
10
11
12
13
14
15 = 1.  Introduction =
16
17 == 1.1 ​ What is LoRaWAN LiDAR ToF Distance Sensor ==
18
19 (((
20
21
22 (((
23 The Dragino LLDS12 is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
24 )))
25
26 (((
27 The LLDS12 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
28 )))
29
30 (((
31 It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
32 )))
33
34 (((
35 The LoRa wireless technology used in LLDS12 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
36 )))
37
38 (((
39 LLDS12 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
40 )))
41
42 (((
43 Each LLDS12 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
44 )))
45 )))
46
47
48 [[image:1654826306458-414.png]]
49
50
51
52 == ​1.2  Features ==
53
54 * LoRaWAN 1.0.3 Class A
55 * Ultra-low power consumption
56 * Laser technology for distance detection
57 * Operating Range - 0.1m~~12m①
58 * Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
59 * Monitor Battery Level
60 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
61 * AT Commands to change parameters
62 * Uplink on periodically
63 * Downlink to change configure
64 * 8500mAh Battery for long term use
65
66
67
68
69 == 1.3  Probe Specification ==
70
71 * Storage temperature :-20℃~~75℃
72 * Operating temperature - -20℃~~60℃
73 * Operating Range - 0.1m~~12m①
74 * Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
75 * Distance resolution - 5mm
76 * Ambient light immunity - 70klux
77 * Enclosure rating - IP65
78 * Light source - LED
79 * Central wavelength - 850nm
80 * FOV - 3.6°
81 * Material of enclosure - ABS+PC
82 * Wire length - 25cm
83
84
85
86
87 == 1.4  Probe Dimension ==
88
89
90 [[image:1654827224480-952.png]]
91
92
93 == 1.5 ​ Applications ==
94
95 * Horizontal distance measurement
96 * Parking management system
97 * Object proximity and presence detection
98 * Intelligent trash can management system
99 * Robot obstacle avoidance
100 * Automatic control
101 * Sewer
102
103
104
105
106 == 1.6  Pin mapping and power on ==
107
108
109 [[image:1654827332142-133.png]]
110
111
112 = 2.  Configure LLDS12 to connect to LoRaWAN network =
113
114 == 2.1  How it works ==
115
116 (((
117 The LLDS12 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
118 )))
119
120 (((
121 In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.A0UseATCommand"]]to set the keys in the LLDS12.
122 )))
123
124
125 == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
126
127 (((
128 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
129 )))
130
131 (((
132 [[image:1654827857527-556.png]]
133 )))
134
135 (((
136 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
137 )))
138
139 (((
140 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSPH01.
141 )))
142
143 (((
144 Each LSPH01 is shipped with a sticker with the default device EUI as below:
145 )))
146
147 [[image:image-20220607170145-1.jpeg]]
148
149
150
151 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
152
153
154 **Register the device**
155
156
157 [[image:1654592600093-601.png]]
158
159
160
161 **Add APP EUI and DEV EUI**
162
163 [[image:1654592619856-881.png]]
164
165
166
167 **Add APP EUI in the application**
168
169 [[image:1654592632656-512.png]]
170
171
172
173 **Add APP KEY**
174
175 [[image:1654592653453-934.png]]
176
177
178 (% style="color:blue" %)**Step 2**(%%): Power on LLDS12
179
180
181 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
182
183 [[image:image-20220607170442-2.png]]
184
185
186 (((
187 (% style="color:blue" %)**Step 3**(%%)**:** The LLDS12 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
188 )))
189
190 [[image:1654833501679-968.png]]
191
192
193
194 == 2.3  ​Uplink Payload ==
195
196 (((
197 LLDS12 will uplink payload via LoRaWAN with below payload format: 
198 )))
199
200 (((
201 Uplink payload includes in total 11 bytes.
202 )))
203
204 (((
205
206 )))
207
208 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
209 |=(% style="width: 62.5px;" %)(((
210 **Size (bytes)**
211 )))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1**
212 |(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)(((
213 [[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]]
214 )))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
215 [[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]]
216 )))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|(((
217 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
218 )))
219
220 [[image:1654833689380-972.png]]
221
222
223
224 === 2.3.1  Battery Info ===
225
226
227 Check the battery voltage for LLDS12.
228
229 Ex1: 0x0B45 = 2885mV
230
231 Ex2: 0x0B49 = 2889mV
232
233
234
235 === 2.3.2  DS18B20 Temperature sensor ===
236
237 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
238
239
240 **Example**:
241
242 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
243
244 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
245
246
247
248 === 2.3.3  Distance ===
249
250 Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
251
252
253 **Example**:
254
255 If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
256
257
258
259 === 2.3.4  Distance signal strength ===
260
261 Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
262
263
264 **Example**:
265
266 If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
267
268 Customers can judge whether they need to adjust the environment based on the signal strength.
269
270
271
272 === 2.3.5  Interrupt Pin ===
273
274 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
275
276 Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]].
277
278 **Example:**
279
280 0x00: Normal uplink packet.
281
282 0x01: Interrupt Uplink Packet.
283
284
285
286 === 2.3.6  LiDAR temp ===
287
288 Characterize the internal temperature value of the sensor.
289
290 **Example: **
291 If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
292 If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
293
294
295
296 === 2.3.7  Message Type ===
297
298 (((
299 For a normal uplink payload, the message type is always 0x01.
300 )))
301
302 (((
303 Valid Message Type:
304 )))
305
306
307 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %)
308 |=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload**
309 |(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]]
310 |(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]]
311
312 === 2.3.8  Decode payload in The Things Network ===
313
314 While using TTN network, you can add the payload format to decode the payload.
315
316
317 [[image:1654592762713-715.png]]
318
319 (((
320 The payload decoder function for TTN is here:
321 )))
322
323 (((
324 LLDS12 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/]]
325 )))
326
327
328
329 == 2.4  Uplink Interval ==
330
331 The LLDS12 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
332
333
334
335 == 2.5  ​Show Data in DataCake IoT Server ==
336
337 (((
338 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
339 )))
340
341 (((
342
343 )))
344
345 (((
346 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
347 )))
348
349 (((
350 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
351 )))
352
353
354 [[image:1654592790040-760.png]]
355
356
357 [[image:1654592800389-571.png]]
358
359
360 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
361
362 (% style="color:blue" %)**Step 4**(%%)**: Create LLDS12 product.**
363
364 [[image:1654832691989-514.png]]
365
366
367 [[image:1654592833877-762.png]]
368
369
370 [[image:1654832740634-933.png]]
371
372
373
374 (((
375 (% style="color:blue" %)**Step 5**(%%)**: add payload decode**
376 )))
377
378 (((
379
380 )))
381
382 [[image:1654833065139-942.png]]
383
384
385
386 [[image:1654833092678-390.png]]
387
388
389
390 After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
391
392 [[image:1654833163048-332.png]]
393
394
395
396 == 2.6  Frequency Plans ==
397
398 (((
399 The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
400 )))
401
402
403 === 2.6.1  EU863-870 (EU868) ===
404
405 (((
406 (% style="color:blue" %)**Uplink:**
407 )))
408
409 (((
410 868.1 - SF7BW125 to SF12BW125
411 )))
412
413 (((
414 868.3 - SF7BW125 to SF12BW125 and SF7BW250
415 )))
416
417 (((
418 868.5 - SF7BW125 to SF12BW125
419 )))
420
421 (((
422 867.1 - SF7BW125 to SF12BW125
423 )))
424
425 (((
426 867.3 - SF7BW125 to SF12BW125
427 )))
428
429 (((
430 867.5 - SF7BW125 to SF12BW125
431 )))
432
433 (((
434 867.7 - SF7BW125 to SF12BW125
435 )))
436
437 (((
438 867.9 - SF7BW125 to SF12BW125
439 )))
440
441 (((
442 868.8 - FSK
443 )))
444
445 (((
446
447 )))
448
449 (((
450 (% style="color:blue" %)**Downlink:**
451 )))
452
453 (((
454 Uplink channels 1-9 (RX1)
455 )))
456
457 (((
458 869.525 - SF9BW125 (RX2 downlink only)
459 )))
460
461
462
463 === 2.6.2  US902-928(US915) ===
464
465 (((
466 Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
467 )))
468
469 (((
470 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
471 )))
472
473 (((
474 After Join success, the end node will switch to the correct sub band by:
475 )))
476
477 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
478 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
479
480 === 2.6.3  CN470-510 (CN470) ===
481
482 (((
483 Used in China, Default use CHE=1
484 )))
485
486 (((
487 (% style="color:blue" %)**Uplink:**
488 )))
489
490 (((
491 486.3 - SF7BW125 to SF12BW125
492 )))
493
494 (((
495 486.5 - SF7BW125 to SF12BW125
496 )))
497
498 (((
499 486.7 - SF7BW125 to SF12BW125
500 )))
501
502 (((
503 486.9 - SF7BW125 to SF12BW125
504 )))
505
506 (((
507 487.1 - SF7BW125 to SF12BW125
508 )))
509
510 (((
511 487.3 - SF7BW125 to SF12BW125
512 )))
513
514 (((
515 487.5 - SF7BW125 to SF12BW125
516 )))
517
518 (((
519 487.7 - SF7BW125 to SF12BW125
520 )))
521
522 (((
523
524 )))
525
526 (((
527 (% style="color:blue" %)**Downlink:**
528 )))
529
530 (((
531 506.7 - SF7BW125 to SF12BW125
532 )))
533
534 (((
535 506.9 - SF7BW125 to SF12BW125
536 )))
537
538 (((
539 507.1 - SF7BW125 to SF12BW125
540 )))
541
542 (((
543 507.3 - SF7BW125 to SF12BW125
544 )))
545
546 (((
547 507.5 - SF7BW125 to SF12BW125
548 )))
549
550 (((
551 507.7 - SF7BW125 to SF12BW125
552 )))
553
554 (((
555 507.9 - SF7BW125 to SF12BW125
556 )))
557
558 (((
559 508.1 - SF7BW125 to SF12BW125
560 )))
561
562 (((
563 505.3 - SF12BW125 (RX2 downlink only)
564 )))
565
566
567
568
569 === 2.6.4  AU915-928(AU915) ===
570
571 (((
572 Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
573 )))
574
575 (((
576 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
577 )))
578
579 (((
580
581 )))
582
583 (((
584 After Join success, the end node will switch to the correct sub band by:
585 )))
586
587 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
588 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
589
590 === 2.6.5  AS920-923 & AS923-925 (AS923) ===
591
592 (((
593 (% style="color:blue" %)**Default Uplink channel:**
594 )))
595
596 (((
597 923.2 - SF7BW125 to SF10BW125
598 )))
599
600 (((
601 923.4 - SF7BW125 to SF10BW125
602 )))
603
604 (((
605
606 )))
607
608 (((
609 (% style="color:blue" %)**Additional Uplink Channel**:
610 )))
611
612 (((
613 (OTAA mode, channel added by JoinAccept message)
614 )))
615
616 (((
617
618 )))
619
620 (((
621 (% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
622 )))
623
624 (((
625 922.2 - SF7BW125 to SF10BW125
626 )))
627
628 (((
629 922.4 - SF7BW125 to SF10BW125
630 )))
631
632 (((
633 922.6 - SF7BW125 to SF10BW125
634 )))
635
636 (((
637 922.8 - SF7BW125 to SF10BW125
638 )))
639
640 (((
641 923.0 - SF7BW125 to SF10BW125
642 )))
643
644 (((
645 922.0 - SF7BW125 to SF10BW125
646 )))
647
648 (((
649
650 )))
651
652 (((
653 (% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
654 )))
655
656 (((
657 923.6 - SF7BW125 to SF10BW125
658 )))
659
660 (((
661 923.8 - SF7BW125 to SF10BW125
662 )))
663
664 (((
665 924.0 - SF7BW125 to SF10BW125
666 )))
667
668 (((
669 924.2 - SF7BW125 to SF10BW125
670 )))
671
672 (((
673 924.4 - SF7BW125 to SF10BW125
674 )))
675
676 (((
677 924.6 - SF7BW125 to SF10BW125
678 )))
679
680 (((
681
682 )))
683
684 (((
685 (% style="color:blue" %)**Downlink:**
686 )))
687
688 (((
689 Uplink channels 1-8 (RX1)
690 )))
691
692 (((
693 923.2 - SF10BW125 (RX2)
694 )))
695
696
697
698
699 === 2.6.6  KR920-923 (KR920) ===
700
701 (((
702 (% style="color:blue" %)**Default channel:**
703 )))
704
705 (((
706 922.1 - SF7BW125 to SF12BW125
707 )))
708
709 (((
710 922.3 - SF7BW125 to SF12BW125
711 )))
712
713 (((
714 922.5 - SF7BW125 to SF12BW125
715 )))
716
717 (((
718
719 )))
720
721 (((
722 (% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
723 )))
724
725 (((
726 922.1 - SF7BW125 to SF12BW125
727 )))
728
729 (((
730 922.3 - SF7BW125 to SF12BW125
731 )))
732
733 (((
734 922.5 - SF7BW125 to SF12BW125
735 )))
736
737 (((
738 922.7 - SF7BW125 to SF12BW125
739 )))
740
741 (((
742 922.9 - SF7BW125 to SF12BW125
743 )))
744
745 (((
746 923.1 - SF7BW125 to SF12BW125
747 )))
748
749 (((
750 923.3 - SF7BW125 to SF12BW125
751 )))
752
753 (((
754
755 )))
756
757 (((
758 (% style="color:blue" %)**Downlink:**
759 )))
760
761 (((
762 Uplink channels 1-7(RX1)
763 )))
764
765 (((
766 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
767 )))
768
769
770
771
772 === 2.6.7  IN865-867 (IN865) ===
773
774 (((
775 (% style="color:blue" %)**Uplink:**
776 )))
777
778 (((
779 865.0625 - SF7BW125 to SF12BW125
780 )))
781
782 (((
783 865.4025 - SF7BW125 to SF12BW125
784 )))
785
786 (((
787 865.9850 - SF7BW125 to SF12BW125
788 )))
789
790 (((
791
792 )))
793
794 (((
795 (% style="color:blue" %)**Downlink:**
796 )))
797
798 (((
799 Uplink channels 1-3 (RX1)
800 )))
801
802 (((
803 866.550 - SF10BW125 (RX2)
804 )))
805
806
807
808
809 == 2.7  LED Indicator ==
810
811 The LLDS12 has an internal LED which is to show the status of different state.
812
813 * The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
814 * Blink once when device transmit a packet.
815
816 == 2.8  ​Firmware Change Log ==
817
818
819 **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
820
821
822 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
823
824
825
826 = 3.  LiDAR ToF Measurement =
827
828 == 3.1 Principle of Distance Measurement ==
829
830 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
831
832 [[image:1654831757579-263.png]]
833
834
835
836 == 3.2 Distance Measurement Characteristics ==
837
838 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
839
840 [[image:1654831774373-275.png]]
841
842
843 (((
844 (% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
845 )))
846
847 (((
848 (% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
849 )))
850
851 (((
852 (% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
853 )))
854
855
856 (((
857 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
858 )))
859
860
861 [[image:1654831797521-720.png]]
862
863
864 (((
865 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
866 )))
867
868 [[image:1654831810009-716.png]]
869
870
871 (((
872 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
873 )))
874
875
876
877 == 3.3 Notice of usage: ==
878
879 Possible invalid /wrong reading for LiDAR ToF tech:
880
881 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
882 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
883 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
884 * The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
885
886 = 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
887
888 (((
889 (((
890 Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
891 )))
892 )))
893
894 * (((
895 (((
896 AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]].
897 )))
898 )))
899 * (((
900 (((
901 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
902 )))
903 )))
904
905 (((
906 (((
907
908 )))
909
910 (((
911 There are two kinds of commands to configure LLDS12, they are:
912 )))
913 )))
914
915 * (((
916 (((
917 (% style="color:#4f81bd" %)** General Commands**.
918 )))
919 )))
920
921 (((
922 (((
923 These commands are to configure:
924 )))
925 )))
926
927 * (((
928 (((
929 General system settings like: uplink interval.
930 )))
931 )))
932 * (((
933 (((
934 LoRaWAN protocol & radio related command.
935 )))
936 )))
937
938 (((
939 (((
940 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
941 )))
942 )))
943
944 (((
945 (((
946
947 )))
948 )))
949
950 * (((
951 (((
952 (% style="color:#4f81bd" %)** Commands special design for LLDS12**
953 )))
954 )))
955
956 (((
957 (((
958 These commands only valid for LLDS12, as below:
959 )))
960 )))
961
962
963
964 == 4.1  Set Transmit Interval Time ==
965
966 Feature: Change LoRaWAN End Node Transmit Interval.
967
968 (% style="color:#037691" %)**AT Command: AT+TDC**
969
970 [[image:image-20220607171554-8.png]]
971
972
973 (((
974 (% style="color:#037691" %)**Downlink Command: 0x01**
975 )))
976
977 (((
978 Format: Command Code (0x01) followed by 3 bytes time value.
979 )))
980
981 (((
982 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
983 )))
984
985 * (((
986 Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
987 )))
988 * (((
989 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
990
991
992
993 )))
994
995
996 == 4.2  Set Interrupt Mode ==
997
998 Feature, Set Interrupt mode for GPIO_EXIT.
999
1000 (% style="color:#037691" %)**AT Command: AT+INTMOD**
1001
1002 [[image:image-20220610105806-2.png]]
1003
1004
1005 (((
1006 (% style="color:#037691" %)**Downlink Command: 0x06**
1007 )))
1008
1009 (((
1010 Format: Command Code (0x06) followed by 3 bytes.
1011 )))
1012
1013 (((
1014 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1015 )))
1016
1017 * (((
1018 Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1019 )))
1020 * (((
1021 Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1022 )))
1023
1024
1025 == 4.3  Get Firmware Version Info ==
1026
1027 Feature: use downlink to get firmware version.
1028
1029 (% style="color:#037691" %)**Downlink Command: 0x26**
1030
1031 [[image:image-20220607171917-10.png]]
1032
1033 * Reply to the confirmation package: 26 01
1034 * Reply to non-confirmed packet: 26 00
1035
1036 Device will send an uplink after got this downlink command. With below payload:
1037
1038 Configures info payload:
1039
1040 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1041 |=(((
1042 **Size(bytes)**
1043 )))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1044 |**Value**|Software Type|(((
1045 Frequency
1046
1047 Band
1048 )))|Sub-band|(((
1049 Firmware
1050
1051 Version
1052 )))|Sensor Type|Reserve|(((
1053 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
1054 Always 0x02
1055 )))
1056
1057 **Software Type**: Always 0x03 for LLDS12
1058
1059
1060 **Frequency Band**:
1061
1062 *0x01: EU868
1063
1064 *0x02: US915
1065
1066 *0x03: IN865
1067
1068 *0x04: AU915
1069
1070 *0x05: KZ865
1071
1072 *0x06: RU864
1073
1074 *0x07: AS923
1075
1076 *0x08: AS923-1
1077
1078 *0x09: AS923-2
1079
1080 *0xa0: AS923-3
1081
1082
1083 **Sub-Band**: value 0x00 ~~ 0x08
1084
1085
1086 **Firmware Version**: 0x0100, Means: v1.0.0 version
1087
1088
1089 **Sensor Type**:
1090
1091 0x01: LSE01
1092
1093 0x02: LDDS75
1094
1095 0x03: LDDS20
1096
1097 0x04: LLMS01
1098
1099 0x05: LSPH01
1100
1101 0x06: LSNPK01
1102
1103 0x07: LLDS12
1104
1105
1106
1107 = 5.  Battery & How to replace =
1108
1109 == 5.1  Battery Type ==
1110
1111 (((
1112 LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1113 )))
1114
1115 (((
1116 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1117 )))
1118
1119 [[image:1654593587246-335.png]]
1120
1121
1122 Minimum Working Voltage for the LLDS12:
1123
1124 LLDS12:  2.45v ~~ 3.6v
1125
1126
1127
1128 == 5.2  Replace Battery ==
1129
1130 (((
1131 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1132 )))
1133
1134 (((
1135 And make sure the positive and negative pins match.
1136 )))
1137
1138
1139
1140 == 5.3  Power Consumption Analyze ==
1141
1142 (((
1143 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1144 )))
1145
1146 (((
1147 Instruction to use as below:
1148 )))
1149
1150
1151 **Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1152
1153 [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1154
1155
1156 **Step 2**: Open it and choose
1157
1158 * Product Model
1159 * Uplink Interval
1160 * Working Mode
1161
1162 And the Life expectation in difference case will be shown on the right.
1163
1164 [[image:1654593605679-189.png]]
1165
1166
1167 The battery related documents as below:
1168
1169 * (((
1170 [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
1171 )))
1172 * (((
1173 [[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1174 )))
1175 * (((
1176 [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1177 )))
1178
1179 [[image:image-20220607172042-11.png]]
1180
1181
1182
1183 === 5.3.1  ​Battery Note ===
1184
1185 (((
1186 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1187 )))
1188
1189
1190
1191 === ​5.3.2  Replace the battery ===
1192
1193 (((
1194 You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1195 )))
1196
1197 (((
1198 The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1199 )))
1200
1201
1202
1203 = 6.  Use AT Command =
1204
1205 == 6.1  Access AT Commands ==
1206
1207 LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1208
1209 [[image:1654593668970-604.png]]
1210
1211 **Connection:**
1212
1213 (% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1214
1215 (% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1216
1217 (% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1218
1219
1220 (((
1221 (((
1222 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1223 )))
1224
1225 (((
1226 LLDS12 will output system info once power on as below:
1227 )))
1228 )))
1229
1230
1231 [[image:1654593712276-618.png]]
1232
1233 Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
1234
1235
1236 = 7.  FAQ =
1237
1238 == 7.1  How to change the LoRa Frequency Bands/Region ==
1239
1240 You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1241 When downloading the images, choose the required image file for download. ​
1242
1243
1244 = 8.  Trouble Shooting =
1245
1246 == 8.1  AT Commands input doesn’t work ==
1247
1248
1249 (((
1250 In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1251 )))
1252
1253
1254 == 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1255
1256
1257 (((
1258 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1259 )))
1260
1261 (((
1262 Troubleshooting: Please avoid use of this product under such circumstance in practice.
1263 )))
1264
1265 (((
1266
1267 )))
1268
1269 (((
1270 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1271 )))
1272
1273 (((
1274 Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1275 )))
1276
1277
1278
1279 = 9.  Order Info =
1280
1281
1282 Part Number: (% style="color:blue" %)**LLDS12-XX**
1283
1284
1285 (% style="color:blue" %)**XX**(%%): The default frequency band
1286
1287 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1288 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1289 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1290 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1291 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1292 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1293 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1294 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1295
1296 = 10. ​ Packing Info =
1297
1298
1299 **Package Includes**:
1300
1301 * LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1302
1303 **Dimension and weight**:
1304
1305 * Device Size: cm
1306 * Device Weight: g
1307 * Package Size / pcs : cm
1308 * Weight / pcs : g
1309
1310 = 11.  ​Support =
1311
1312 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1313 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].