Version 113.3 by Xiaoling on 2022/06/10 15:04

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220610095606-1.png]]
3
4
5 **Contents:**
6
7 {{toc/}}
8
9
10
11
12
13
14
15 = 1.  Introduction =
16
17 == 1.1 ​ What is LoRaWAN LiDAR ToF Distance Sensor ==
18
19 (((
20
21
22 (((
23 The Dragino LLDS12 is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
24 )))
25
26 (((
27 The LLDS12 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
28 )))
29
30 (((
31 It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
32 )))
33
34 (((
35 The LoRa wireless technology used in LLDS12 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
36 )))
37
38 (((
39 LLDS12 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
40 )))
41
42 (((
43 Each LLDS12 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
44 )))
45 )))
46
47
48 [[image:1654826306458-414.png]]
49
50
51
52 == ​1.2  Features ==
53
54 * LoRaWAN 1.0.3 Class A
55 * Ultra-low power consumption
56 * Laser technology for distance detection
57 * Operating Range - 0.1m~~12m①
58 * Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
59 * Monitor Battery Level
60 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
61 * AT Commands to change parameters
62 * Uplink on periodically
63 * Downlink to change configure
64 * 8500mAh Battery for long term use
65
66
67
68
69 == 1.3  Probe Specification ==
70
71 * Storage temperature :-20℃~~75℃
72 * Operating temperature - -20℃~~60℃
73 * Operating Range - 0.1m~~12m①
74 * Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
75 * Distance resolution - 5mm
76 * Ambient light immunity - 70klux
77 * Enclosure rating - IP65
78 * Light source - LED
79 * Central wavelength - 850nm
80 * FOV - 3.6°
81 * Material of enclosure - ABS+PC
82 * Wire length - 25cm
83
84
85
86
87 == 1.4  Probe Dimension ==
88
89
90 [[image:1654827224480-952.png]]
91
92
93 == 1.5 ​ Applications ==
94
95 * Horizontal distance measurement
96 * Parking management system
97 * Object proximity and presence detection
98 * Intelligent trash can management system
99 * Robot obstacle avoidance
100 * Automatic control
101 * Sewer
102
103 == 1.6  Pin mapping and power on ==
104
105
106 [[image:1654827332142-133.png]]
107
108
109 = 2.  Configure LLDS12 to connect to LoRaWAN network =
110
111 == 2.1  How it works ==
112
113 (((
114 The LLDS12 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
115 )))
116
117 (((
118 In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.A0UseATCommand"]]to set the keys in the LLDS12.
119 )))
120
121
122 == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
123
124 (((
125 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
126 )))
127
128 (((
129 [[image:1654827857527-556.png]]
130 )))
131
132 (((
133 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
134 )))
135
136 (((
137 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSPH01.
138 )))
139
140 (((
141 Each LSPH01 is shipped with a sticker with the default device EUI as below:
142 )))
143
144 [[image:image-20220607170145-1.jpeg]]
145
146
147
148 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
149
150
151 **Register the device**
152
153
154 [[image:1654592600093-601.png]]
155
156
157
158 **Add APP EUI and DEV EUI**
159
160 [[image:1654592619856-881.png]]
161
162
163
164 **Add APP EUI in the application**
165
166 [[image:1654592632656-512.png]]
167
168
169
170 **Add APP KEY**
171
172 [[image:1654592653453-934.png]]
173
174
175 (% style="color:blue" %)**Step 2**(%%): Power on LLDS12
176
177
178 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
179
180 [[image:image-20220607170442-2.png]]
181
182
183 (((
184 (% style="color:blue" %)**Step 3**(%%)**:** The LLDS12 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
185 )))
186
187 [[image:1654833501679-968.png]]
188
189
190
191 == 2.3  ​Uplink Payload ==
192
193 (((
194 LLDS12 will uplink payload via LoRaWAN with below payload format: 
195 )))
196
197 (((
198 Uplink payload includes in total 11 bytes.
199 )))
200
201 (((
202
203 )))
204
205 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
206 |=(% style="width: 62.5px;" %)(((
207 **Size (bytes)**
208 )))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1**
209 |(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)(((
210 [[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]]
211 )))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
212 [[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]]
213 )))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|(((
214 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
215 )))
216
217 [[image:1654833689380-972.png]]
218
219
220
221 === 2.3.1  Battery Info ===
222
223
224 Check the battery voltage for LLDS12.
225
226 Ex1: 0x0B45 = 2885mV
227
228 Ex2: 0x0B49 = 2889mV
229
230
231
232 === 2.3.2  DS18B20 Temperature sensor ===
233
234 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
235
236
237 **Example**:
238
239 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
240
241 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
242
243
244
245 === 2.3.3  Distance ===
246
247 Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
248
249
250 **Example**:
251
252 If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
253
254
255
256 === 2.3.4  Distance signal strength ===
257
258 Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
259
260
261 **Example**:
262
263 If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
264
265 Customers can judge whether they need to adjust the environment based on the signal strength.
266
267
268
269 === 2.3.5  Interrupt Pin ===
270
271 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
272
273 Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]].
274
275 **Example:**
276
277 0x00: Normal uplink packet.
278
279 0x01: Interrupt Uplink Packet.
280
281
282
283 === 2.3.6  LiDAR temp ===
284
285 Characterize the internal temperature value of the sensor.
286
287 **Example: **
288 If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
289 If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
290
291
292
293 === 2.3.7  Message Type ===
294
295 (((
296 For a normal uplink payload, the message type is always 0x01.
297 )))
298
299 (((
300 Valid Message Type:
301 )))
302
303
304 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %)
305 |=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload**
306 |(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]]
307 |(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]]
308
309 === 2.3.8  Decode payload in The Things Network ===
310
311 While using TTN network, you can add the payload format to decode the payload.
312
313
314 [[image:1654592762713-715.png]]
315
316 (((
317 The payload decoder function for TTN is here:
318 )))
319
320 (((
321 LLDS12 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/]]
322 )))
323
324
325
326 == 2.4  Uplink Interval ==
327
328 The LLDS12 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
329
330
331
332 == 2.5  ​Show Data in DataCake IoT Server ==
333
334 (((
335 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
336 )))
337
338 (((
339
340 )))
341
342 (((
343 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
344 )))
345
346 (((
347 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
348 )))
349
350
351 [[image:1654592790040-760.png]]
352
353
354 [[image:1654592800389-571.png]]
355
356
357 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
358
359 (% style="color:blue" %)**Step 4**(%%)**: Create LLDS12 product.**
360
361 [[image:1654832691989-514.png]]
362
363
364 [[image:1654592833877-762.png]]
365
366
367 [[image:1654832740634-933.png]]
368
369
370
371 (((
372 (% style="color:blue" %)**Step 5**(%%)**: add payload decode**
373 )))
374
375 (((
376
377 )))
378
379 [[image:1654833065139-942.png]]
380
381
382
383 [[image:1654833092678-390.png]]
384
385
386
387 After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
388
389 [[image:1654833163048-332.png]]
390
391
392
393 == 2.6  Frequency Plans ==
394
395 (((
396 The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
397 )))
398
399
400 === 2.6.1  EU863-870 (EU868) ===
401
402 (((
403 (% style="color:blue" %)**Uplink:**
404 )))
405
406 (((
407 868.1 - SF7BW125 to SF12BW125
408 )))
409
410 (((
411 868.3 - SF7BW125 to SF12BW125 and SF7BW250
412 )))
413
414 (((
415 868.5 - SF7BW125 to SF12BW125
416 )))
417
418 (((
419 867.1 - SF7BW125 to SF12BW125
420 )))
421
422 (((
423 867.3 - SF7BW125 to SF12BW125
424 )))
425
426 (((
427 867.5 - SF7BW125 to SF12BW125
428 )))
429
430 (((
431 867.7 - SF7BW125 to SF12BW125
432 )))
433
434 (((
435 867.9 - SF7BW125 to SF12BW125
436 )))
437
438 (((
439 868.8 - FSK
440 )))
441
442 (((
443
444 )))
445
446 (((
447 (% style="color:blue" %)**Downlink:**
448 )))
449
450 (((
451 Uplink channels 1-9 (RX1)
452 )))
453
454 (((
455 869.525 - SF9BW125 (RX2 downlink only)
456 )))
457
458
459
460 === 2.6.2  US902-928(US915) ===
461
462 (((
463 Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
464 )))
465
466 (((
467 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
468 )))
469
470 (((
471 After Join success, the end node will switch to the correct sub band by:
472 )))
473
474 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
475 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
476
477 === 2.6.3  CN470-510 (CN470) ===
478
479 (((
480 Used in China, Default use CHE=1
481 )))
482
483 (((
484 (% style="color:blue" %)**Uplink:**
485 )))
486
487 (((
488 486.3 - SF7BW125 to SF12BW125
489 )))
490
491 (((
492 486.5 - SF7BW125 to SF12BW125
493 )))
494
495 (((
496 486.7 - SF7BW125 to SF12BW125
497 )))
498
499 (((
500 486.9 - SF7BW125 to SF12BW125
501 )))
502
503 (((
504 487.1 - SF7BW125 to SF12BW125
505 )))
506
507 (((
508 487.3 - SF7BW125 to SF12BW125
509 )))
510
511 (((
512 487.5 - SF7BW125 to SF12BW125
513 )))
514
515 (((
516 487.7 - SF7BW125 to SF12BW125
517 )))
518
519 (((
520
521 )))
522
523 (((
524 (% style="color:blue" %)**Downlink:**
525 )))
526
527 (((
528 506.7 - SF7BW125 to SF12BW125
529 )))
530
531 (((
532 506.9 - SF7BW125 to SF12BW125
533 )))
534
535 (((
536 507.1 - SF7BW125 to SF12BW125
537 )))
538
539 (((
540 507.3 - SF7BW125 to SF12BW125
541 )))
542
543 (((
544 507.5 - SF7BW125 to SF12BW125
545 )))
546
547 (((
548 507.7 - SF7BW125 to SF12BW125
549 )))
550
551 (((
552 507.9 - SF7BW125 to SF12BW125
553 )))
554
555 (((
556 508.1 - SF7BW125 to SF12BW125
557 )))
558
559 (((
560 505.3 - SF12BW125 (RX2 downlink only)
561 )))
562
563
564
565
566 === 2.6.4  AU915-928(AU915) ===
567
568 (((
569 Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
570 )))
571
572 (((
573 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
574 )))
575
576 (((
577
578 )))
579
580 (((
581 After Join success, the end node will switch to the correct sub band by:
582 )))
583
584 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
585 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
586
587 === 2.6.5  AS920-923 & AS923-925 (AS923) ===
588
589 (((
590 (% style="color:blue" %)**Default Uplink channel:**
591 )))
592
593 (((
594 923.2 - SF7BW125 to SF10BW125
595 )))
596
597 (((
598 923.4 - SF7BW125 to SF10BW125
599 )))
600
601 (((
602
603 )))
604
605 (((
606 (% style="color:blue" %)**Additional Uplink Channel**:
607 )))
608
609 (((
610 (OTAA mode, channel added by JoinAccept message)
611 )))
612
613 (((
614
615 )))
616
617 (((
618 (% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
619 )))
620
621 (((
622 922.2 - SF7BW125 to SF10BW125
623 )))
624
625 (((
626 922.4 - SF7BW125 to SF10BW125
627 )))
628
629 (((
630 922.6 - SF7BW125 to SF10BW125
631 )))
632
633 (((
634 922.8 - SF7BW125 to SF10BW125
635 )))
636
637 (((
638 923.0 - SF7BW125 to SF10BW125
639 )))
640
641 (((
642 922.0 - SF7BW125 to SF10BW125
643 )))
644
645 (((
646
647 )))
648
649 (((
650 (% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
651 )))
652
653 (((
654 923.6 - SF7BW125 to SF10BW125
655 )))
656
657 (((
658 923.8 - SF7BW125 to SF10BW125
659 )))
660
661 (((
662 924.0 - SF7BW125 to SF10BW125
663 )))
664
665 (((
666 924.2 - SF7BW125 to SF10BW125
667 )))
668
669 (((
670 924.4 - SF7BW125 to SF10BW125
671 )))
672
673 (((
674 924.6 - SF7BW125 to SF10BW125
675 )))
676
677 (((
678
679 )))
680
681 (((
682 (% style="color:blue" %)**Downlink:**
683 )))
684
685 (((
686 Uplink channels 1-8 (RX1)
687 )))
688
689 (((
690 923.2 - SF10BW125 (RX2)
691 )))
692
693
694
695
696 === 2.6.6  KR920-923 (KR920) ===
697
698 (((
699 (% style="color:blue" %)**Default channel:**
700 )))
701
702 (((
703 922.1 - SF7BW125 to SF12BW125
704 )))
705
706 (((
707 922.3 - SF7BW125 to SF12BW125
708 )))
709
710 (((
711 922.5 - SF7BW125 to SF12BW125
712 )))
713
714 (((
715
716 )))
717
718 (((
719 (% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
720 )))
721
722 (((
723 922.1 - SF7BW125 to SF12BW125
724 )))
725
726 (((
727 922.3 - SF7BW125 to SF12BW125
728 )))
729
730 (((
731 922.5 - SF7BW125 to SF12BW125
732 )))
733
734 (((
735 922.7 - SF7BW125 to SF12BW125
736 )))
737
738 (((
739 922.9 - SF7BW125 to SF12BW125
740 )))
741
742 (((
743 923.1 - SF7BW125 to SF12BW125
744 )))
745
746 (((
747 923.3 - SF7BW125 to SF12BW125
748 )))
749
750 (((
751
752 )))
753
754 (((
755 (% style="color:blue" %)**Downlink:**
756 )))
757
758 (((
759 Uplink channels 1-7(RX1)
760 )))
761
762 (((
763 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
764 )))
765
766
767
768
769 === 2.6.7  IN865-867 (IN865) ===
770
771 (((
772 (% style="color:blue" %)**Uplink:**
773 )))
774
775 (((
776 865.0625 - SF7BW125 to SF12BW125
777 )))
778
779 (((
780 865.4025 - SF7BW125 to SF12BW125
781 )))
782
783 (((
784 865.9850 - SF7BW125 to SF12BW125
785 )))
786
787 (((
788
789 )))
790
791 (((
792 (% style="color:blue" %)**Downlink:**
793 )))
794
795 (((
796 Uplink channels 1-3 (RX1)
797 )))
798
799 (((
800 866.550 - SF10BW125 (RX2)
801 )))
802
803
804
805
806 == 2.7  LED Indicator ==
807
808 The LLDS12 has an internal LED which is to show the status of different state.
809
810 * The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
811 * Blink once when device transmit a packet.
812
813 == 2.8  ​Firmware Change Log ==
814
815
816 **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
817
818
819 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
820
821
822
823 = 3.  LiDAR ToF Measurement =
824
825 == 3.1 Principle of Distance Measurement ==
826
827 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
828
829 [[image:1654831757579-263.png]]
830
831
832
833 == 3.2 Distance Measurement Characteristics ==
834
835 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
836
837 [[image:1654831774373-275.png]]
838
839
840 (((
841 (% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
842 )))
843
844 (((
845 (% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
846 )))
847
848 (((
849 (% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
850 )))
851
852
853 (((
854 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
855 )))
856
857
858 [[image:1654831797521-720.png]]
859
860
861 (((
862 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
863 )))
864
865 [[image:1654831810009-716.png]]
866
867
868 (((
869 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
870 )))
871
872
873
874 == 3.3 Notice of usage: ==
875
876 Possible invalid /wrong reading for LiDAR ToF tech:
877
878 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
879 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
880 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
881 * The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
882
883 = 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
884
885 (((
886 (((
887 Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
888 )))
889 )))
890
891 * (((
892 (((
893 AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]].
894 )))
895 )))
896 * (((
897 (((
898 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
899 )))
900 )))
901
902 (((
903 (((
904
905 )))
906
907 (((
908 There are two kinds of commands to configure LLDS12, they are:
909 )))
910 )))
911
912 * (((
913 (((
914 (% style="color:#4f81bd" %)** General Commands**.
915 )))
916 )))
917
918 (((
919 (((
920 These commands are to configure:
921 )))
922 )))
923
924 * (((
925 (((
926 General system settings like: uplink interval.
927 )))
928 )))
929 * (((
930 (((
931 LoRaWAN protocol & radio related command.
932 )))
933 )))
934
935 (((
936 (((
937 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
938 )))
939 )))
940
941 (((
942 (((
943
944 )))
945 )))
946
947 * (((
948 (((
949 (% style="color:#4f81bd" %)** Commands special design for LLDS12**
950 )))
951 )))
952
953 (((
954 (((
955 These commands only valid for LLDS12, as below:
956 )))
957 )))
958
959
960
961 == 4.1  Set Transmit Interval Time ==
962
963 Feature: Change LoRaWAN End Node Transmit Interval.
964
965 (% style="color:#037691" %)**AT Command: AT+TDC**
966
967 [[image:image-20220607171554-8.png]]
968
969
970 (((
971 (% style="color:#037691" %)**Downlink Command: 0x01**
972 )))
973
974 (((
975 Format: Command Code (0x01) followed by 3 bytes time value.
976 )))
977
978 (((
979 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
980 )))
981
982 * (((
983 Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
984 )))
985 * (((
986 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
987
988
989
990 )))
991
992
993 == 4.2  Set Interrupt Mode ==
994
995 Feature, Set Interrupt mode for GPIO_EXIT.
996
997 (% style="color:#037691" %)**AT Command: AT+INTMOD**
998
999 [[image:image-20220610105806-2.png]]
1000
1001
1002 (((
1003 (% style="color:#037691" %)**Downlink Command: 0x06**
1004 )))
1005
1006 (((
1007 Format: Command Code (0x06) followed by 3 bytes.
1008 )))
1009
1010 (((
1011 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1012 )))
1013
1014 * (((
1015 Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1016 )))
1017 * (((
1018 Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1019 )))
1020
1021
1022 == 4.3  Get Firmware Version Info ==
1023
1024 Feature: use downlink to get firmware version.
1025
1026 (% style="color:#037691" %)**Downlink Command: 0x26**
1027
1028 [[image:image-20220607171917-10.png]]
1029
1030 * Reply to the confirmation package: 26 01
1031 * Reply to non-confirmed packet: 26 00
1032
1033 Device will send an uplink after got this downlink command. With below payload:
1034
1035 Configures info payload:
1036
1037 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1038 |=(((
1039 **Size(bytes)**
1040 )))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1041 |**Value**|Software Type|(((
1042 Frequency
1043
1044 Band
1045 )))|Sub-band|(((
1046 Firmware
1047
1048 Version
1049 )))|Sensor Type|Reserve|(((
1050 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
1051 Always 0x02
1052 )))
1053
1054 **Software Type**: Always 0x03 for LLDS12
1055
1056
1057 **Frequency Band**:
1058
1059 *0x01: EU868
1060
1061 *0x02: US915
1062
1063 *0x03: IN865
1064
1065 *0x04: AU915
1066
1067 *0x05: KZ865
1068
1069 *0x06: RU864
1070
1071 *0x07: AS923
1072
1073 *0x08: AS923-1
1074
1075 *0x09: AS923-2
1076
1077 *0xa0: AS923-3
1078
1079
1080 **Sub-Band**: value 0x00 ~~ 0x08
1081
1082
1083 **Firmware Version**: 0x0100, Means: v1.0.0 version
1084
1085
1086 **Sensor Type**:
1087
1088 0x01: LSE01
1089
1090 0x02: LDDS75
1091
1092 0x03: LDDS20
1093
1094 0x04: LLMS01
1095
1096 0x05: LSPH01
1097
1098 0x06: LSNPK01
1099
1100 0x07: LLDS12
1101
1102
1103
1104 = 5.  Battery & How to replace =
1105
1106 == 5.1  Battery Type ==
1107
1108 (((
1109 LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1110 )))
1111
1112 (((
1113 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1114 )))
1115
1116 [[image:1654593587246-335.png]]
1117
1118
1119 Minimum Working Voltage for the LLDS12:
1120
1121 LLDS12:  2.45v ~~ 3.6v
1122
1123
1124
1125 == 5.2  Replace Battery ==
1126
1127 (((
1128 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1129 )))
1130
1131 (((
1132 And make sure the positive and negative pins match.
1133 )))
1134
1135
1136
1137 == 5.3  Power Consumption Analyze ==
1138
1139 (((
1140 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1141 )))
1142
1143 (((
1144 Instruction to use as below:
1145 )))
1146
1147
1148 **Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1149
1150 [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1151
1152
1153 **Step 2**: Open it and choose
1154
1155 * Product Model
1156 * Uplink Interval
1157 * Working Mode
1158
1159 And the Life expectation in difference case will be shown on the right.
1160
1161 [[image:1654593605679-189.png]]
1162
1163
1164 The battery related documents as below:
1165
1166 * (((
1167 [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
1168 )))
1169 * (((
1170 [[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1171 )))
1172 * (((
1173 [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1174 )))
1175
1176 [[image:image-20220607172042-11.png]]
1177
1178
1179
1180 === 5.3.1  ​Battery Note ===
1181
1182 (((
1183 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1184 )))
1185
1186
1187
1188 === ​5.3.2  Replace the battery ===
1189
1190 (((
1191 You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1192 )))
1193
1194 (((
1195 The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1196 )))
1197
1198
1199
1200 = 6.  Use AT Command =
1201
1202 == 6.1  Access AT Commands ==
1203
1204 LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1205
1206 [[image:1654593668970-604.png]]
1207
1208 **Connection:**
1209
1210 (% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1211
1212 (% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1213
1214 (% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1215
1216
1217 (((
1218 (((
1219 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1220 )))
1221
1222 (((
1223 LLDS12 will output system info once power on as below:
1224 )))
1225 )))
1226
1227
1228 [[image:1654593712276-618.png]]
1229
1230 Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
1231
1232
1233 = 7.  FAQ =
1234
1235 == 7.1  How to change the LoRa Frequency Bands/Region ==
1236
1237 You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1238 When downloading the images, choose the required image file for download. ​
1239
1240
1241 = 8.  Trouble Shooting =
1242
1243 == 8.1  AT Commands input doesn’t work ==
1244
1245
1246 (((
1247 In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1248 )))
1249
1250
1251 == 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1252
1253
1254 (((
1255 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1256 )))
1257
1258 (((
1259 Troubleshooting: Please avoid use of this product under such circumstance in practice.
1260 )))
1261
1262 (((
1263
1264 )))
1265
1266 (((
1267 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1268 )))
1269
1270 (((
1271 Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1272 )))
1273
1274
1275
1276 = 9.  Order Info =
1277
1278
1279 Part Number: (% style="color:blue" %)**LLDS12-XX**
1280
1281
1282 (% style="color:blue" %)**XX**(%%): The default frequency band
1283
1284 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1285 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1286 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1287 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1288 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1289 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1290 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1291 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1292
1293 = 10. ​ Packing Info =
1294
1295
1296 **Package Includes**:
1297
1298 * LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1299
1300 **Dimension and weight**:
1301
1302 * Device Size: cm
1303 * Device Weight: g
1304 * Package Size / pcs : cm
1305 * Weight / pcs : g
1306
1307 = 11.  ​Support =
1308
1309 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1310 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0