Version 111.18 by Xiaoling on 2022/06/10 14:29

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220610095606-1.png]]
3
4
5 **Contents:**
6
7 {{toc/}}
8
9
10
11
12
13
14
15 = 1.  Introduction =
16
17 == 1.1 ​ What is LoRaWAN LiDAR ToF Distance Sensor ==
18
19 (((
20
21
22 (((
23 The Dragino LLDS12 is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
24 )))
25
26 (((
27 The LLDS12 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
28 )))
29
30 (((
31 It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
32 )))
33
34 (((
35 The LoRa wireless technology used in LLDS12 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
36 )))
37
38 (((
39 LLDS12 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
40 )))
41
42 (((
43 Each LLDS12 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
44 )))
45 )))
46
47
48 [[image:1654826306458-414.png]]
49
50
51
52 == ​1.2  Features ==
53
54 * LoRaWAN 1.0.3 Class A
55 * Ultra-low power consumption
56 * Laser technology for distance detection
57 * Operating Range - 0.1m~~12m①
58 * Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
59 * Monitor Battery Level
60 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
61 * AT Commands to change parameters
62 * Uplink on periodically
63 * Downlink to change configure
64 * 8500mAh Battery for long term use
65
66 == 1.3  Probe Specification ==
67
68 * Storage temperature :-20℃~~75℃
69 * Operating temperature - -20℃~~60℃
70 * Operating Range - 0.1m~~12m①
71 * Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
72 * Distance resolution - 5mm
73 * Ambient light immunity - 70klux
74 * Enclosure rating - IP65
75 * Light source - LED
76 * Central wavelength - 850nm
77 * FOV - 3.6°
78 * Material of enclosure - ABS+PC
79 * Wire length - 25cm
80
81 == 1.4  Probe Dimension ==
82
83
84 [[image:1654827224480-952.png]]
85
86
87 == 1.5 ​ Applications ==
88
89 * Horizontal distance measurement
90 * Parking management system
91 * Object proximity and presence detection
92 * Intelligent trash can management system
93 * Robot obstacle avoidance
94 * Automatic control
95 * Sewer
96
97 == 1.6  Pin mapping and power on ==
98
99
100 [[image:1654827332142-133.png]]
101
102
103 = 2.  Configure LLDS12 to connect to LoRaWAN network =
104
105 == 2.1  How it works ==
106
107 (((
108 The LLDS12 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
109 )))
110
111 (((
112 In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.A0UseATCommand"]]to set the keys in the LLDS12.
113 )))
114
115
116 == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
117
118 (((
119 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
120 )))
121
122 (((
123 [[image:1654827857527-556.png]]
124 )))
125
126 (((
127 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
128 )))
129
130 (((
131 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSPH01.
132 )))
133
134 (((
135 Each LSPH01 is shipped with a sticker with the default device EUI as below:
136 )))
137
138 [[image:image-20220607170145-1.jpeg]]
139
140
141
142 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
143
144
145 **Register the device**
146
147
148 [[image:1654592600093-601.png]]
149
150
151
152 **Add APP EUI and DEV EUI**
153
154 [[image:1654592619856-881.png]]
155
156
157
158 **Add APP EUI in the application**
159
160 [[image:1654592632656-512.png]]
161
162
163
164 **Add APP KEY**
165
166 [[image:1654592653453-934.png]]
167
168
169 (% style="color:blue" %)**Step 2**(%%): Power on LLDS12
170
171
172 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
173
174 [[image:image-20220607170442-2.png]]
175
176
177 (((
178 (% style="color:blue" %)**Step 3**(%%)**:** The LLDS12 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
179 )))
180
181 [[image:1654833501679-968.png]]
182
183
184
185 == 2.3  ​Uplink Payload ==
186
187 (((
188 LLDS12 will uplink payload via LoRaWAN with below payload format: 
189 )))
190
191 (((
192 Uplink payload includes in total 11 bytes.
193 )))
194
195 (((
196
197 )))
198
199 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
200 |=(% style="width: 62.5px;" %)(((
201 **Size (bytes)**
202 )))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1**
203 |(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)(((
204 [[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]]
205 )))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
206 [[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]]
207 )))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|(((
208 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
209 )))
210
211 [[image:1654833689380-972.png]]
212
213
214
215 === 2.3.1  Battery Info ===
216
217
218 Check the battery voltage for LLDS12.
219
220 Ex1: 0x0B45 = 2885mV
221
222 Ex2: 0x0B49 = 2889mV
223
224
225
226 === 2.3.2  DS18B20 Temperature sensor ===
227
228 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
229
230
231 **Example**:
232
233 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
234
235 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
236
237
238
239 === 2.3.3  Distance ===
240
241 Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
242
243
244 **Example**:
245
246 If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
247
248
249
250 === 2.3.4  Distance signal strength ===
251
252 Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
253
254
255 **Example**:
256
257 If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
258
259 Customers can judge whether they need to adjust the environment based on the signal strength.
260
261
262
263 === 2.3.5  Interrupt Pin ===
264
265 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
266
267 Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]].
268
269 **Example:**
270
271 0x00: Normal uplink packet.
272
273 0x01: Interrupt Uplink Packet.
274
275
276
277 === 2.3.6  LiDAR temp ===
278
279 Characterize the internal temperature value of the sensor.
280
281 **Example: **
282 If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
283 If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
284
285
286
287 === 2.3.7  Message Type ===
288
289 (((
290 For a normal uplink payload, the message type is always 0x01.
291 )))
292
293 (((
294 Valid Message Type:
295 )))
296
297
298 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %)
299 |=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload**
300 |(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]]
301 |(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]]
302
303
304 === 2.3.8  Decode payload in The Things Network ===
305
306 While using TTN network, you can add the payload format to decode the payload.
307
308
309 [[image:1654592762713-715.png]]
310
311 (((
312 The payload decoder function for TTN is here:
313 )))
314
315 (((
316 LLDS12 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/]]
317 )))
318
319
320
321 == 2.4  Uplink Interval ==
322
323 The LLDS12 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
324
325
326
327 == 2.5  ​Show Data in DataCake IoT Server ==
328
329 (((
330 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
331 )))
332
333 (((
334
335 )))
336
337 (((
338 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
339 )))
340
341 (((
342 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
343 )))
344
345
346 [[image:1654592790040-760.png]]
347
348
349 [[image:1654592800389-571.png]]
350
351
352 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
353
354 (% style="color:blue" %)**Step 4**(%%)**: Create LLDS12 product.**
355
356 [[image:1654832691989-514.png]]
357
358
359 [[image:1654592833877-762.png]]
360
361
362 [[image:1654832740634-933.png]]
363
364
365
366 (((
367 (% style="color:blue" %)**Step 5**(%%)**: add payload decode**
368 )))
369
370 (((
371
372 )))
373
374 [[image:1654833065139-942.png]]
375
376
377
378 [[image:1654833092678-390.png]]
379
380
381
382 After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
383
384 [[image:1654833163048-332.png]]
385
386
387
388 == 2.6  Frequency Plans ==
389
390 (((
391 The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
392 )))
393
394
395 === 2.6.1  EU863-870 (EU868) ===
396
397 (((
398 (% style="color:blue" %)**Uplink:**
399 )))
400
401 (((
402 868.1 - SF7BW125 to SF12BW125
403 )))
404
405 (((
406 868.3 - SF7BW125 to SF12BW125 and SF7BW250
407 )))
408
409 (((
410 868.5 - SF7BW125 to SF12BW125
411 )))
412
413 (((
414 867.1 - SF7BW125 to SF12BW125
415 )))
416
417 (((
418 867.3 - SF7BW125 to SF12BW125
419 )))
420
421 (((
422 867.5 - SF7BW125 to SF12BW125
423 )))
424
425 (((
426 867.7 - SF7BW125 to SF12BW125
427 )))
428
429 (((
430 867.9 - SF7BW125 to SF12BW125
431 )))
432
433 (((
434 868.8 - FSK
435 )))
436
437 (((
438
439 )))
440
441 (((
442 (% style="color:blue" %)**Downlink:**
443 )))
444
445 (((
446 Uplink channels 1-9 (RX1)
447 )))
448
449 (((
450 869.525 - SF9BW125 (RX2 downlink only)
451 )))
452
453
454
455 === 2.6.2  US902-928(US915) ===
456
457 (((
458 Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
459 )))
460
461 (((
462 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
463 )))
464
465 (((
466 After Join success, the end node will switch to the correct sub band by:
467 )))
468
469 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
470 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
471
472
473
474 === 2.6.3  CN470-510 (CN470) ===
475
476 (((
477 Used in China, Default use CHE=1
478 )))
479
480 (((
481 (% style="color:blue" %)**Uplink:**
482 )))
483
484 (((
485 486.3 - SF7BW125 to SF12BW125
486 )))
487
488 (((
489 486.5 - SF7BW125 to SF12BW125
490 )))
491
492 (((
493 486.7 - SF7BW125 to SF12BW125
494 )))
495
496 (((
497 486.9 - SF7BW125 to SF12BW125
498 )))
499
500 (((
501 487.1 - SF7BW125 to SF12BW125
502 )))
503
504 (((
505 487.3 - SF7BW125 to SF12BW125
506 )))
507
508 (((
509 487.5 - SF7BW125 to SF12BW125
510 )))
511
512 (((
513 487.7 - SF7BW125 to SF12BW125
514 )))
515
516 (((
517
518 )))
519
520 (((
521 (% style="color:blue" %)**Downlink:**
522 )))
523
524 (((
525 506.7 - SF7BW125 to SF12BW125
526 )))
527
528 (((
529 506.9 - SF7BW125 to SF12BW125
530 )))
531
532 (((
533 507.1 - SF7BW125 to SF12BW125
534 )))
535
536 (((
537 507.3 - SF7BW125 to SF12BW125
538 )))
539
540 (((
541 507.5 - SF7BW125 to SF12BW125
542 )))
543
544 (((
545 507.7 - SF7BW125 to SF12BW125
546 )))
547
548 (((
549 507.9 - SF7BW125 to SF12BW125
550 )))
551
552 (((
553 508.1 - SF7BW125 to SF12BW125
554 )))
555
556 (((
557 505.3 - SF12BW125 (RX2 downlink only)
558 )))
559
560
561
562
563 === 2.6.4  AU915-928(AU915) ===
564
565 (((
566 Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
567 )))
568
569 (((
570 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
571 )))
572
573 (((
574
575 )))
576
577 (((
578 After Join success, the end node will switch to the correct sub band by:
579 )))
580
581 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
582 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
583
584
585
586 === 2.6.5  AS920-923 & AS923-925 (AS923) ===
587
588 (((
589 (% style="color:blue" %)**Default Uplink channel:**
590 )))
591
592 (((
593 923.2 - SF7BW125 to SF10BW125
594 )))
595
596 (((
597 923.4 - SF7BW125 to SF10BW125
598 )))
599
600 (((
601
602 )))
603
604 (((
605 (% style="color:blue" %)**Additional Uplink Channel**:
606 )))
607
608 (((
609 (OTAA mode, channel added by JoinAccept message)
610 )))
611
612 (((
613
614 )))
615
616 (((
617 (% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
618 )))
619
620 (((
621 922.2 - SF7BW125 to SF10BW125
622 )))
623
624 (((
625 922.4 - SF7BW125 to SF10BW125
626 )))
627
628 (((
629 922.6 - SF7BW125 to SF10BW125
630 )))
631
632 (((
633 922.8 - SF7BW125 to SF10BW125
634 )))
635
636 (((
637 923.0 - SF7BW125 to SF10BW125
638 )))
639
640 (((
641 922.0 - SF7BW125 to SF10BW125
642 )))
643
644 (((
645
646 )))
647
648 (((
649 (% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
650 )))
651
652 (((
653 923.6 - SF7BW125 to SF10BW125
654 )))
655
656 (((
657 923.8 - SF7BW125 to SF10BW125
658 )))
659
660 (((
661 924.0 - SF7BW125 to SF10BW125
662 )))
663
664 (((
665 924.2 - SF7BW125 to SF10BW125
666 )))
667
668 (((
669 924.4 - SF7BW125 to SF10BW125
670 )))
671
672 (((
673 924.6 - SF7BW125 to SF10BW125
674 )))
675
676 (((
677
678 )))
679
680 (((
681 (% style="color:blue" %)**Downlink:**
682 )))
683
684 (((
685 Uplink channels 1-8 (RX1)
686 )))
687
688 (((
689 923.2 - SF10BW125 (RX2)
690 )))
691
692
693
694
695 === 2.6.6  KR920-923 (KR920) ===
696
697 (((
698 (% style="color:blue" %)**Default channel:**
699 )))
700
701 (((
702 922.1 - SF7BW125 to SF12BW125
703 )))
704
705 (((
706 922.3 - SF7BW125 to SF12BW125
707 )))
708
709 (((
710 922.5 - SF7BW125 to SF12BW125
711 )))
712
713 (((
714
715 )))
716
717 (((
718 (% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
719 )))
720
721 (((
722 922.1 - SF7BW125 to SF12BW125
723 )))
724
725 (((
726 922.3 - SF7BW125 to SF12BW125
727 )))
728
729 (((
730 922.5 - SF7BW125 to SF12BW125
731 )))
732
733 (((
734 922.7 - SF7BW125 to SF12BW125
735 )))
736
737 (((
738 922.9 - SF7BW125 to SF12BW125
739 )))
740
741 (((
742 923.1 - SF7BW125 to SF12BW125
743 )))
744
745 (((
746 923.3 - SF7BW125 to SF12BW125
747 )))
748
749 (((
750
751 )))
752
753 (((
754 (% style="color:blue" %)**Downlink:**
755 )))
756
757 (((
758 Uplink channels 1-7(RX1)
759 )))
760
761 (((
762 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
763 )))
764
765
766
767
768 === 2.6.7  IN865-867 (IN865) ===
769
770 (((
771 (% style="color:blue" %)**Uplink:**
772 )))
773
774 (((
775 865.0625 - SF7BW125 to SF12BW125
776 )))
777
778 (((
779 865.4025 - SF7BW125 to SF12BW125
780 )))
781
782 (((
783 865.9850 - SF7BW125 to SF12BW125
784 )))
785
786 (((
787
788 )))
789
790 (((
791 (% style="color:blue" %)**Downlink:**
792 )))
793
794 (((
795 Uplink channels 1-3 (RX1)
796 )))
797
798 (((
799 866.550 - SF10BW125 (RX2)
800 )))
801
802
803
804
805 == 2.7  LED Indicator ==
806
807 The LLDS12 has an internal LED which is to show the status of different state.
808
809 * The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
810 * Blink once when device transmit a packet.
811
812
813 == 2.8  ​Firmware Change Log ==
814
815
816 **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
817
818
819 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
820
821
822
823 = 3.  LiDAR ToF Measurement =
824
825 == 3.1 Principle of Distance Measurement ==
826
827 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
828
829 [[image:1654831757579-263.png]]
830
831
832
833 == 3.2 Distance Measurement Characteristics ==
834
835 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
836
837 [[image:1654831774373-275.png]]
838
839
840 ①Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
841
842 ②Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
843
844 ③Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
845
846
847 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
848
849
850 [[image:1654831797521-720.png]]
851
852
853 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
854
855 [[image:1654831810009-716.png]]
856
857
858 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
859
860
861
862 == 3.3 Notice of usage: ==
863
864 Possible invalid /wrong reading for LiDAR ToF tech:
865
866 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
867 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
868 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
869 * The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
870
871
872 = 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
873
874 (((
875 Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
876 )))
877
878 * (((
879 AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]].
880 )))
881 * (((
882 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
883 )))
884
885 (((
886
887
888 There are two kinds of commands to configure LLDS12, they are:
889 )))
890
891 * (((
892 (% style="color:#4f81bd" %)** General Commands**.
893 )))
894
895 (((
896 These commands are to configure:
897 )))
898
899 * (((
900 General system settings like: uplink interval.
901 )))
902 * (((
903 LoRaWAN protocol & radio related command.
904 )))
905
906 (((
907 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
908 )))
909
910 (((
911
912 )))
913
914 * (((
915 (% style="color:#4f81bd" %)** Commands special design for LLDS12**
916 )))
917
918 (((
919 These commands only valid for LLDS12, as below:
920 )))
921
922
923
924 == 4.1  Set Transmit Interval Time ==
925
926 Feature: Change LoRaWAN End Node Transmit Interval.
927
928 (% style="color:#037691" %)**AT Command: AT+TDC**
929
930 [[image:image-20220607171554-8.png]]
931
932
933
934 (((
935 (% style="color:#037691" %)**Downlink Command: 0x01**
936 )))
937
938 (((
939 Format: Command Code (0x01) followed by 3 bytes time value.
940 )))
941
942 (((
943 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
944 )))
945
946 * (((
947 Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
948 )))
949 * (((
950 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
951
952
953
954 )))
955
956 == 4.2  Set Interrupt Mode ==
957
958 Feature, Set Interrupt mode for GPIO_EXIT.
959
960 (% style="color:#037691" %)**AT Command: AT+INTMOD**
961
962 [[image:image-20220610105806-2.png]]
963
964
965
966
967 (((
968 (% style="color:#037691" %)**Downlink Command: 0x06**
969 )))
970
971 (((
972 Format: Command Code (0x06) followed by 3 bytes.
973 )))
974
975 (((
976 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
977 )))
978
979 * (((
980 Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
981 )))
982 * (((
983 Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
984 )))
985
986 == 4.3  Get Firmware Version Info ==
987
988 Feature: use downlink to get firmware version.
989
990 (% style="color:#037691" %)**Downlink Command: 0x26**
991
992 [[image:image-20220607171917-10.png]]
993
994 * Reply to the confirmation package: 26 01
995 * Reply to non-confirmed packet: 26 00
996
997 Device will send an uplink after got this downlink command. With below payload:
998
999 Configures info payload:
1000
1001 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1002 |=(((
1003 **Size(bytes)**
1004 )))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1005 |**Value**|Software Type|(((
1006 Frequency
1007
1008 Band
1009 )))|Sub-band|(((
1010 Firmware
1011
1012 Version
1013 )))|Sensor Type|Reserve|(((
1014 [[Message Type>>||anchor="H2.3.6MessageType"]]
1015 Always 0x02
1016 )))
1017
1018 **Software Type**: Always 0x03 for LLDS12
1019
1020
1021 **Frequency Band**:
1022
1023 *0x01: EU868
1024
1025 *0x02: US915
1026
1027 *0x03: IN865
1028
1029 *0x04: AU915
1030
1031 *0x05: KZ865
1032
1033 *0x06: RU864
1034
1035 *0x07: AS923
1036
1037 *0x08: AS923-1
1038
1039 *0x09: AS923-2
1040
1041 *0xa0: AS923-3
1042
1043
1044 **Sub-Band**: value 0x00 ~~ 0x08
1045
1046
1047 **Firmware Version**: 0x0100, Means: v1.0.0 version
1048
1049
1050 **Sensor Type**:
1051
1052 0x01: LSE01
1053
1054 0x02: LDDS75
1055
1056 0x03: LDDS20
1057
1058 0x04: LLMS01
1059
1060 0x05: LSPH01
1061
1062 0x06: LSNPK01
1063
1064 0x07: LLDS12
1065
1066
1067
1068 = 5.  Battery & How to replace =
1069
1070 == 5.1  Battery Type ==
1071
1072 (((
1073 LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1074 )))
1075
1076 (((
1077 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1078 )))
1079
1080 [[image:1654593587246-335.png]]
1081
1082
1083 Minimum Working Voltage for the LLDS12:
1084
1085 LLDS12:  2.45v ~~ 3.6v
1086
1087
1088
1089 == 5.2  Replace Battery ==
1090
1091 (((
1092 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1093 )))
1094
1095 (((
1096 And make sure the positive and negative pins match.
1097 )))
1098
1099
1100
1101 == 5.3  Power Consumption Analyze ==
1102
1103 (((
1104 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1105 )))
1106
1107 (((
1108 Instruction to use as below:
1109 )))
1110
1111
1112 **Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1113
1114 [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1115
1116
1117 **Step 2**: Open it and choose
1118
1119 * Product Model
1120 * Uplink Interval
1121 * Working Mode
1122
1123 And the Life expectation in difference case will be shown on the right.
1124
1125 [[image:1654593605679-189.png]]
1126
1127
1128 The battery related documents as below:
1129
1130 * (((
1131 [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
1132 )))
1133 * (((
1134 [[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1135 )))
1136 * (((
1137 [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1138 )))
1139
1140 [[image:image-20220607172042-11.png]]
1141
1142
1143
1144 === 5.3.1  ​Battery Note ===
1145
1146 (((
1147 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1148 )))
1149
1150
1151
1152 === ​5.3.2  Replace the battery ===
1153
1154 (((
1155 You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1156 )))
1157
1158 (((
1159 The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1160 )))
1161
1162
1163
1164 = 6.  Use AT Command =
1165
1166 == 6.1  Access AT Commands ==
1167
1168 LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1169
1170 [[image:1654593668970-604.png]]
1171
1172 **Connection:**
1173
1174 (% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1175
1176 (% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1177
1178 (% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1179
1180
1181 (((
1182 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSPH01. LSPH01 will output system info once power on as below:
1183 )))
1184
1185
1186 [[image:1654593712276-618.png]]
1187
1188 Valid AT Command please check [[Configure Device>>||anchor="H3.ConfigureLSPH01viaATCommandorLoRaWANDownlink"]].
1189
1190
1191 = 7.  FAQ =
1192
1193 == 7.1  How to change the LoRa Frequency Bands/Region ==
1194
1195 You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
1196 When downloading the images, choose the required image file for download. ​
1197
1198
1199 = 8.  Trouble Shooting =
1200
1201 == 8.1  AT Commands input doesn’t work ==
1202
1203
1204 In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1205
1206
1207 == 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1208
1209
1210 (((
1211 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1212 )))
1213
1214 (((
1215 Troubleshooting: Please avoid use of this product under such circumstance in practice.
1216 )))
1217
1218 (((
1219
1220 )))
1221
1222 (((
1223 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1224 )))
1225
1226 (((
1227 Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1228 )))
1229
1230
1231
1232 = 9.  Order Info =
1233
1234
1235 Part Number: (% style="color:blue" %)**LLDS12-XX**
1236
1237
1238 (% style="color:blue" %)**XX**(%%): The default frequency band
1239
1240 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1241 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1242 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1243 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1244 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1245 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1246 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1247 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1248
1249 = 10. ​ Packing Info =
1250
1251
1252 **Package Includes**:
1253
1254 * LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1255
1256 **Dimension and weight**:
1257
1258 * Device Size: cm
1259 * Device Weight: g
1260 * Package Size / pcs : cm
1261 * Weight / pcs : g
1262
1263 = 11.  ​Support =
1264
1265 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1266 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0