Version 109.9 by Xiaoling on 2022/06/10 13:57

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220610095606-1.png]]
3
4
5 **Contents:**
6
7 {{toc/}}
8
9
10
11
12
13
14
15 = 1.  Introduction =
16
17 == 1.1 ​ What is LoRaWAN LiDAR ToF Distance Sensor ==
18
19 (((
20
21
22 The Dragino LLDS12 is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
23
24 The LLDS12 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
25
26 It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
27
28 The LoRa wireless technology used in LLDS12 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29
30 LLDS12 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
31
32 Each LLDS12 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
33 )))
34
35
36 [[image:1654826306458-414.png]]
37
38
39
40 == ​1.2  Features ==
41
42 * LoRaWAN 1.0.3 Class A
43 * Ultra-low power consumption
44 * Laser technology for distance detection
45 * Operating Range - 0.1m~~12m①
46 * Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
47 * Monitor Battery Level
48 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
49 * AT Commands to change parameters
50 * Uplink on periodically
51 * Downlink to change configure
52 * 8500mAh Battery for long term use
53
54 == 1.3  Probe Specification ==
55
56 * Storage temperature :-20℃~~75℃
57 * Operating temperature - -20℃~~60℃
58 * Operating Range - 0.1m~~12m①
59 * Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
60 * Distance resolution - 5mm
61 * Ambient light immunity - 70klux
62 * Enclosure rating - IP65
63 * Light source - LED
64 * Central wavelength - 850nm
65 * FOV - 3.6°
66 * Material of enclosure - ABS+PC
67 * Wire length - 25cm
68
69 == 1.4  Probe Dimension ==
70
71
72 [[image:1654827224480-952.png]]
73
74
75
76 == 1.5 ​ Applications ==
77
78 * Horizontal distance measurement
79 * Parking management system
80 * Object proximity and presence detection
81 * Intelligent trash can management system
82 * Robot obstacle avoidance
83 * Automatic control
84 * Sewer
85
86 == 1.6  Pin mapping and power on ==
87
88
89 [[image:1654827332142-133.png]]
90
91
92
93
94 = 2.  Configure LLDS12 to connect to LoRaWAN network =
95
96 == 2.1  How it works ==
97
98 (((
99 The LLDS12 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
100 )))
101
102 (((
103 In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.UseATCommand"]]to set the keys in the LLDS12.
104 )))
105
106
107 == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
108
109 (((
110 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
111 )))
112
113 (((
114 [[image:1654827857527-556.png]]
115 )))
116
117 (((
118 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
119 )))
120
121 (((
122 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSPH01.
123 )))
124
125 (((
126 Each LSPH01 is shipped with a sticker with the default device EUI as below:
127 )))
128
129 [[image:image-20220607170145-1.jpeg]]
130
131
132
133 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
134
135
136 **Register the device**
137
138
139 [[image:1654592600093-601.png]]
140
141
142
143 **Add APP EUI and DEV EUI**
144
145 [[image:1654592619856-881.png]]
146
147
148
149 **Add APP EUI in the application**
150
151 [[image:1654592632656-512.png]]
152
153
154
155 **Add APP KEY**
156
157 [[image:1654592653453-934.png]]
158
159
160 (% style="color:blue" %)**Step 2**(%%): Power on LLDS12
161
162
163 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
164
165 [[image:image-20220607170442-2.png]]
166
167
168 (((
169 (% style="color:blue" %)**Step 3**(%%)**:** The LLDS12 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
170 )))
171
172 [[image:1654833501679-968.png]]
173
174
175
176 == 2.3  ​Uplink Payload ==
177
178 (((
179 LLDS12 will uplink payload via LoRaWAN with below payload format: 
180 )))
181
182 (((
183 Uplink payload includes in total 11 bytes.
184 )))
185
186 (((
187
188 )))
189
190 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
191 |=(% style="width: 62.5px;" %)(((
192 **Size (bytes)**
193 )))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1**
194 |(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1BatteryInfo"]]|(% style="width:62.5px" %)(((
195 [[Temperature>>||anchor="H2.3.2DS18B20Temperaturesensor"]]
196
197 [[DS18B20>>||anchor="H2.3.2DS18B20Temperaturesensor"]]
198 )))|[[Distance>>||anchor="H"]]|[[Distance signal strength>>||anchor="H2.3.4SoilTemperature"]]|(((
199 [[Interrupt flag>>||anchor="H2.3.5InterruptPin"]]
200 )))|[[LiDAR temp>>||anchor="H"]]|(((
201 [[Message Type>>||anchor="H2.3.6MessageType"]]
202 )))
203
204 [[image:1654833689380-972.png]]
205
206
207
208 === 2.3.1  Battery Info ===
209
210
211 Check the battery voltage for LLDS12.
212
213 Ex1: 0x0B45 = 2885mV
214
215 Ex2: 0x0B49 = 2889mV
216
217
218
219 === 2.3.2  DS18B20 Temperature sensor ===
220
221 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
222
223
224 **Example**:
225
226 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
227
228 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
229
230
231
232 === 2.3.3  Distance ===
233
234 Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
235
236
237 **Example**:
238
239 If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
240
241
242
243 === 2.3.4  Distance signal strength ===
244
245 Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
246
247
248 **Example**:
249
250 If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
251
252 Customers can judge whether they need to adjust the environment based on the signal strength.
253
254
255
256 === 2.3.5  Interrupt Pin ===
257
258 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up.
259
260 Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>path:#pins]].
261
262 **Example:**
263
264 0x00: Normal uplink packet.
265
266 0x01: Interrupt Uplink Packet.
267
268
269
270 === 2.3.6  LiDAR temp ===
271
272 Characterize the internal temperature value of the sensor.
273
274 **Example: **
275 If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
276 If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
277
278
279
280 === 2.3.7  Message Type ===
281
282 (((
283 For a normal uplink payload, the message type is always 0x01.
284 )))
285
286 (((
287 Valid Message Type:
288 )))
289
290
291 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %)
292 |=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload**
293 |(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]
294 |(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.4GetFirmwareVersionInfo"]]
295
296
297
298 === 2.3.8  Decode payload in The Things Network ===
299
300 While using TTN network, you can add the payload format to decode the payload.
301
302
303 [[image:1654592762713-715.png]]
304
305 (((
306 The payload decoder function for TTN is here:
307 )))
308
309 (((
310 LSPH01 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/LSPH01/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSNPK01/Decoder/]]
311 )))
312
313
314
315 == 2.4  Uplink Interval ==
316
317 The LLDS12 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
318
319
320
321 == 2.5  ​Show Data in DataCake IoT Server ==
322
323 (((
324 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
325 )))
326
327 (((
328
329 )))
330
331 (((
332 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
333 )))
334
335 (((
336 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
337 )))
338
339
340 [[image:1654592790040-760.png]]
341
342
343 [[image:1654592800389-571.png]]
344
345
346 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
347
348 (% style="color:blue" %)**Step 4**(%%)**: Create LLDS12 product.**
349
350 [[image:1654832691989-514.png]]
351
352
353 [[image:1654592833877-762.png]]
354
355
356 [[image:1654832740634-933.png]]
357
358
359
360 (((
361 (% style="color:blue" %)**Step 5**(%%)**: add payload decode**
362 )))
363
364 (((
365
366 )))
367
368 [[image:1654833065139-942.png]]
369
370
371
372 [[image:1654833092678-390.png]]
373
374
375
376 After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
377
378 [[image:1654833163048-332.png]]
379
380
381
382 == 2.6  Frequency Plans ==
383
384 (((
385 The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
386 )))
387
388
389 === 2.6.1  EU863-870 (EU868) ===
390
391 (((
392 (% style="color:blue" %)**Uplink:**
393 )))
394
395 (((
396 868.1 - SF7BW125 to SF12BW125
397 )))
398
399 (((
400 868.3 - SF7BW125 to SF12BW125 and SF7BW250
401 )))
402
403 (((
404 868.5 - SF7BW125 to SF12BW125
405 )))
406
407 (((
408 867.1 - SF7BW125 to SF12BW125
409 )))
410
411 (((
412 867.3 - SF7BW125 to SF12BW125
413 )))
414
415 (((
416 867.5 - SF7BW125 to SF12BW125
417 )))
418
419 (((
420 867.7 - SF7BW125 to SF12BW125
421 )))
422
423 (((
424 867.9 - SF7BW125 to SF12BW125
425 )))
426
427 (((
428 868.8 - FSK
429 )))
430
431 (((
432
433 )))
434
435 (((
436 (% style="color:blue" %)**Downlink:**
437 )))
438
439 (((
440 Uplink channels 1-9 (RX1)
441 )))
442
443 (((
444 869.525 - SF9BW125 (RX2 downlink only)
445 )))
446
447
448
449 === 2.6.2  US902-928(US915) ===
450
451 (((
452 Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
453 )))
454
455 (((
456 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
457 )))
458
459 (((
460 After Join success, the end node will switch to the correct sub band by:
461 )))
462
463 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
464 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
465
466 === 2.6.3  CN470-510 (CN470) ===
467
468 (((
469 Used in China, Default use CHE=1
470 )))
471
472 (((
473 (% style="color:blue" %)**Uplink:**
474 )))
475
476 (((
477 486.3 - SF7BW125 to SF12BW125
478 )))
479
480 (((
481 486.5 - SF7BW125 to SF12BW125
482 )))
483
484 (((
485 486.7 - SF7BW125 to SF12BW125
486 )))
487
488 (((
489 486.9 - SF7BW125 to SF12BW125
490 )))
491
492 (((
493 487.1 - SF7BW125 to SF12BW125
494 )))
495
496 (((
497 487.3 - SF7BW125 to SF12BW125
498 )))
499
500 (((
501 487.5 - SF7BW125 to SF12BW125
502 )))
503
504 (((
505 487.7 - SF7BW125 to SF12BW125
506 )))
507
508 (((
509
510 )))
511
512 (((
513 (% style="color:blue" %)**Downlink:**
514 )))
515
516 (((
517 506.7 - SF7BW125 to SF12BW125
518 )))
519
520 (((
521 506.9 - SF7BW125 to SF12BW125
522 )))
523
524 (((
525 507.1 - SF7BW125 to SF12BW125
526 )))
527
528 (((
529 507.3 - SF7BW125 to SF12BW125
530 )))
531
532 (((
533 507.5 - SF7BW125 to SF12BW125
534 )))
535
536 (((
537 507.7 - SF7BW125 to SF12BW125
538 )))
539
540 (((
541 507.9 - SF7BW125 to SF12BW125
542 )))
543
544 (((
545 508.1 - SF7BW125 to SF12BW125
546 )))
547
548 (((
549 505.3 - SF12BW125 (RX2 downlink only)
550 )))
551
552
553
554
555 === 2.6.4  AU915-928(AU915) ===
556
557 (((
558 Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
559 )))
560
561 (((
562 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
563 )))
564
565 (((
566
567 )))
568
569 (((
570 After Join success, the end node will switch to the correct sub band by:
571 )))
572
573 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
574 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
575
576 === 2.6.5  AS920-923 & AS923-925 (AS923) ===
577
578 (((
579 (% style="color:blue" %)**Default Uplink channel:**
580 )))
581
582 (((
583 923.2 - SF7BW125 to SF10BW125
584 )))
585
586 (((
587 923.4 - SF7BW125 to SF10BW125
588 )))
589
590 (((
591
592 )))
593
594 (((
595 (% style="color:blue" %)**Additional Uplink Channel**:
596 )))
597
598 (((
599 (OTAA mode, channel added by JoinAccept message)
600 )))
601
602 (((
603
604 )))
605
606 (((
607 (% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
608 )))
609
610 (((
611 922.2 - SF7BW125 to SF10BW125
612 )))
613
614 (((
615 922.4 - SF7BW125 to SF10BW125
616 )))
617
618 (((
619 922.6 - SF7BW125 to SF10BW125
620 )))
621
622 (((
623 922.8 - SF7BW125 to SF10BW125
624 )))
625
626 (((
627 923.0 - SF7BW125 to SF10BW125
628 )))
629
630 (((
631 922.0 - SF7BW125 to SF10BW125
632 )))
633
634 (((
635
636 )))
637
638 (((
639 (% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
640 )))
641
642 (((
643 923.6 - SF7BW125 to SF10BW125
644 )))
645
646 (((
647 923.8 - SF7BW125 to SF10BW125
648 )))
649
650 (((
651 924.0 - SF7BW125 to SF10BW125
652 )))
653
654 (((
655 924.2 - SF7BW125 to SF10BW125
656 )))
657
658 (((
659 924.4 - SF7BW125 to SF10BW125
660 )))
661
662 (((
663 924.6 - SF7BW125 to SF10BW125
664 )))
665
666 (((
667
668 )))
669
670 (((
671 (% style="color:blue" %)**Downlink:**
672 )))
673
674 (((
675 Uplink channels 1-8 (RX1)
676 )))
677
678 (((
679 923.2 - SF10BW125 (RX2)
680 )))
681
682
683
684
685 === 2.6.6  KR920-923 (KR920) ===
686
687 (((
688 (% style="color:blue" %)**Default channel:**
689 )))
690
691 (((
692 922.1 - SF7BW125 to SF12BW125
693 )))
694
695 (((
696 922.3 - SF7BW125 to SF12BW125
697 )))
698
699 (((
700 922.5 - SF7BW125 to SF12BW125
701 )))
702
703 (((
704
705 )))
706
707 (((
708 (% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
709 )))
710
711 (((
712 922.1 - SF7BW125 to SF12BW125
713 )))
714
715 (((
716 922.3 - SF7BW125 to SF12BW125
717 )))
718
719 (((
720 922.5 - SF7BW125 to SF12BW125
721 )))
722
723 (((
724 922.7 - SF7BW125 to SF12BW125
725 )))
726
727 (((
728 922.9 - SF7BW125 to SF12BW125
729 )))
730
731 (((
732 923.1 - SF7BW125 to SF12BW125
733 )))
734
735 (((
736 923.3 - SF7BW125 to SF12BW125
737 )))
738
739 (((
740
741 )))
742
743 (((
744 (% style="color:blue" %)**Downlink:**
745 )))
746
747 (((
748 Uplink channels 1-7(RX1)
749 )))
750
751 (((
752 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
753 )))
754
755
756
757
758 === 2.6.7  IN865-867 (IN865) ===
759
760 (((
761 (% style="color:blue" %)**Uplink:**
762 )))
763
764 (((
765 865.0625 - SF7BW125 to SF12BW125
766 )))
767
768 (((
769 865.4025 - SF7BW125 to SF12BW125
770 )))
771
772 (((
773 865.9850 - SF7BW125 to SF12BW125
774 )))
775
776 (((
777
778 )))
779
780 (((
781 (% style="color:blue" %)**Downlink:**
782 )))
783
784 (((
785 Uplink channels 1-3 (RX1)
786 )))
787
788 (((
789 866.550 - SF10BW125 (RX2)
790 )))
791
792
793
794
795 == 2.7  LED Indicator ==
796
797 The LLDS12 has an internal LED which is to show the status of different state.
798
799 * The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
800 * Blink once when device transmit a packet.
801
802 == 2.8  ​Firmware Change Log ==
803
804
805 **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
806
807
808 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>path:/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/]]
809
810
811
812 = 3.  LiDAR ToF Measurement =
813
814 == 3.1 Principle of Distance Measurement ==
815
816 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
817
818 [[image:1654831757579-263.png]]
819
820
821
822 == 3.2 Distance Measurement Characteristics ==
823
824 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
825
826 [[image:1654831774373-275.png]]
827
828
829 ①Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
830
831 ②Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
832
833 ③Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
834
835
836 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
837
838
839 [[image:1654831797521-720.png]]
840
841
842 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
843
844 [[image:1654831810009-716.png]]
845
846
847 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
848
849
850
851 == 3.3 Notice of usage: ==
852
853 Possible invalid /wrong reading for LiDAR ToF tech:
854
855 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
856 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
857 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
858 * The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
859
860 = 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
861
862 (((
863 Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
864 )))
865
866 * (((
867 AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
868 )))
869 * (((
870 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>path:/xwiki/bin/view/Main/]]
871 )))
872
873 (((
874
875
876 There are two kinds of commands to configure LLDS12, they are:
877 )))
878
879 * (((
880 (% style="color:#4f81bd" %)** General Commands**.
881 )))
882
883 (((
884 These commands are to configure:
885 )))
886
887 * (((
888 General system settings like: uplink interval.
889 )))
890 * (((
891 LoRaWAN protocol & radio related command.
892 )))
893
894 (((
895 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>path:/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
896 )))
897
898 (((
899
900 )))
901
902 * (((
903 (% style="color:#4f81bd" %)** Commands special design for LLDS12**
904 )))
905
906 (((
907 These commands only valid for LLDS12, as below:
908 )))
909
910
911
912 == 4.1  Set Transmit Interval Time ==
913
914 Feature: Change LoRaWAN End Node Transmit Interval.
915
916 (% style="color:#037691" %)**AT Command: AT+TDC**
917
918 [[image:image-20220607171554-8.png]]
919
920
921
922 (((
923 (% style="color:#037691" %)**Downlink Command: 0x01**
924 )))
925
926 (((
927 Format: Command Code (0x01) followed by 3 bytes time value.
928 )))
929
930 (((
931 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
932 )))
933
934 * (((
935 Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
936 )))
937 * (((
938 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
939
940
941
942 )))
943
944 == 4.2  Set Interrupt Mode ==
945
946 Feature, Set Interrupt mode for GPIO_EXIT.
947
948 (% style="color:#037691" %)**AT Command: AT+INTMOD**
949
950 [[image:image-20220610105806-2.png]]
951
952
953
954
955 (((
956 (% style="color:#037691" %)**Downlink Command: 0x06**
957 )))
958
959 (((
960 Format: Command Code (0x06) followed by 3 bytes.
961 )))
962
963 (((
964 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
965 )))
966
967 * (((
968 Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
969 )))
970 * (((
971 Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
972 )))
973
974 == 4.3  Get Firmware Version Info ==
975
976 Feature: use downlink to get firmware version.
977
978 (% style="color:#037691" %)**Downlink Command: 0x26**
979
980 [[image:image-20220607171917-10.png]]
981
982 * Reply to the confirmation package: 26 01
983 * Reply to non-confirmed packet: 26 00
984
985 Device will send an uplink after got this downlink command. With below payload:
986
987 Configures info payload:
988
989 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
990 |=(((
991 **Size(bytes)**
992 )))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
993 |**Value**|Software Type|(((
994 Frequency
995
996 Band
997 )))|Sub-band|(((
998 Firmware
999
1000 Version
1001 )))|Sensor Type|Reserve|(((
1002 [[Message Type>>||anchor="H2.3.6MessageType"]]
1003 Always 0x02
1004 )))
1005
1006 **Software Type**: Always 0x03 for LLDS12
1007
1008
1009 **Frequency Band**:
1010
1011 *0x01: EU868
1012
1013 *0x02: US915
1014
1015 *0x03: IN865
1016
1017 *0x04: AU915
1018
1019 *0x05: KZ865
1020
1021 *0x06: RU864
1022
1023 *0x07: AS923
1024
1025 *0x08: AS923-1
1026
1027 *0x09: AS923-2
1028
1029 *0xa0: AS923-3
1030
1031
1032 **Sub-Band**: value 0x00 ~~ 0x08
1033
1034
1035 **Firmware Version**: 0x0100, Means: v1.0.0 version
1036
1037
1038 **Sensor Type**:
1039
1040 0x01: LSE01
1041
1042 0x02: LDDS75
1043
1044 0x03: LDDS20
1045
1046 0x04: LLMS01
1047
1048 0x05: LSPH01
1049
1050 0x06: LSNPK01
1051
1052 0x07: LLDS12
1053
1054
1055
1056 = 5.  Battery & How to replace =
1057
1058 == 5.1  Battery Type ==
1059
1060 (((
1061 LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1062 )))
1063
1064 (((
1065 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1066 )))
1067
1068 [[image:1654593587246-335.png]]
1069
1070
1071 Minimum Working Voltage for the LLDS12:
1072
1073 LLDS12:  2.45v ~~ 3.6v
1074
1075
1076
1077 == 5.2  Replace Battery ==
1078
1079 (((
1080 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1081 )))
1082
1083 (((
1084 And make sure the positive and negative pins match.
1085 )))
1086
1087
1088
1089 == 5.3  Power Consumption Analyze ==
1090
1091 (((
1092 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1093 )))
1094
1095 (((
1096 Instruction to use as below:
1097 )))
1098
1099
1100 **Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1101
1102 [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1103
1104
1105 **Step 2**: Open it and choose
1106
1107 * Product Model
1108 * Uplink Interval
1109 * Working Mode
1110
1111 And the Life expectation in difference case will be shown on the right.
1112
1113 [[image:1654593605679-189.png]]
1114
1115
1116 The battery related documents as below:
1117
1118 * (((
1119 [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
1120 )))
1121 * (((
1122 [[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1123 )))
1124 * (((
1125 [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1126 )))
1127
1128 [[image:image-20220607172042-11.png]]
1129
1130
1131
1132 === 5.3.1  ​Battery Note ===
1133
1134 (((
1135 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1136 )))
1137
1138
1139
1140 === ​5.3.2  Replace the battery ===
1141
1142 (((
1143 You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1144 )))
1145
1146 (((
1147 The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1148 )))
1149
1150
1151
1152 = 6.  Use AT Command =
1153
1154 == 6.1  Access AT Commands ==
1155
1156 LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1157
1158 [[image:1654593668970-604.png]]
1159
1160 **Connection:**
1161
1162 (% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1163
1164 (% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1165
1166 (% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1167
1168
1169 (((
1170 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSPH01. LSPH01 will output system info once power on as below:
1171 )))
1172
1173
1174 [[image:1654593712276-618.png]]
1175
1176 Valid AT Command please check [[Configure Device>>||anchor="H3.ConfigureLSPH01viaATCommandorLoRaWANDownlink"]].
1177
1178
1179 = 7.  FAQ =
1180
1181 == 7.1  How to change the LoRa Frequency Bands/Region ==
1182
1183 You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
1184 When downloading the images, choose the required image file for download. ​
1185
1186
1187 = 8.  Trouble Shooting =
1188
1189 == 8.1  AT Commands input doesn’t work ==
1190
1191
1192 In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1193
1194
1195 == 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1196
1197
1198 (((
1199 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1200 )))
1201
1202 (((
1203 Troubleshooting: Please avoid use of this product under such circumstance in practice.
1204 )))
1205
1206 (((
1207
1208 )))
1209
1210 (((
1211 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1212 )))
1213
1214 (((
1215 Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1216 )))
1217
1218
1219
1220 = 9.  Order Info =
1221
1222
1223 Part Number: (% style="color:blue" %)**LLDS12-XX**
1224
1225
1226 (% style="color:blue" %)**XX**(%%): The default frequency band
1227
1228 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1229 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1230 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1231 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1232 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1233 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1234 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1235 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1236
1237 = 10. ​ Packing Info =
1238
1239
1240 **Package Includes**:
1241
1242 * LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1243
1244 **Dimension and weight**:
1245
1246 * Device Size: cm
1247 * Device Weight: g
1248 * Package Size / pcs : cm
1249 * Weight / pcs : g
1250
1251 = 11.  ​Support =
1252
1253 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1254 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].