Version 109.7 by Xiaoling on 2022/06/10 13:54

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220610095606-1.png]]
3
4
5 **Contents:**
6
7
8
9
10
11
12
13 = 1.  Introduction =
14
15 == 1.1 ​ What is LoRaWAN LiDAR ToF Distance Sensor ==
16
17 (((
18
19
20 The Dragino LLDS12 is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
21
22 The LLDS12 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
23
24 It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
25
26 The LoRa wireless technology used in LLDS12 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
27
28 LLDS12 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
29
30 Each LLDS12 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
31 )))
32
33
34 [[image:1654826306458-414.png]]
35
36
37
38 == ​1.2  Features ==
39
40 * LoRaWAN 1.0.3 Class A
41 * Ultra-low power consumption
42 * Laser technology for distance detection
43 * Operating Range - 0.1m~~12m①
44 * Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
45 * Monitor Battery Level
46 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
47 * AT Commands to change parameters
48 * Uplink on periodically
49 * Downlink to change configure
50 * 8500mAh Battery for long term use
51
52 == 1.3  Probe Specification ==
53
54 * Storage temperature :-20℃~~75℃
55 * Operating temperature - -20℃~~60℃
56 * Operating Range - 0.1m~~12m①
57 * Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
58 * Distance resolution - 5mm
59 * Ambient light immunity - 70klux
60 * Enclosure rating - IP65
61 * Light source - LED
62 * Central wavelength - 850nm
63 * FOV - 3.6°
64 * Material of enclosure - ABS+PC
65 * Wire length - 25cm
66
67 == 1.4  Probe Dimension ==
68
69
70 [[image:1654827224480-952.png]]
71
72
73
74 == 1.5 ​ Applications ==
75
76 * Horizontal distance measurement
77 * Parking management system
78 * Object proximity and presence detection
79 * Intelligent trash can management system
80 * Robot obstacle avoidance
81 * Automatic control
82 * Sewer
83
84 == 1.6  Pin mapping and power on ==
85
86
87 [[image:1654827332142-133.png]]
88
89
90
91
92 = 2.  Configure LLDS12 to connect to LoRaWAN network =
93
94 == 2.1  How it works ==
95
96 (((
97 The LLDS12 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
98 )))
99
100 (((
101 In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.UseATCommand"]]to set the keys in the LLDS12.
102 )))
103
104
105 == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
106
107 (((
108 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
109 )))
110
111 (((
112 [[image:1654827857527-556.png]]
113 )))
114
115 (((
116 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
117 )))
118
119 (((
120 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSPH01.
121 )))
122
123 (((
124 Each LSPH01 is shipped with a sticker with the default device EUI as below:
125 )))
126
127 [[image:image-20220607170145-1.jpeg]]
128
129
130
131 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
132
133
134 **Register the device**
135
136
137 [[image:1654592600093-601.png]]
138
139
140
141 **Add APP EUI and DEV EUI**
142
143 [[image:1654592619856-881.png]]
144
145
146
147 **Add APP EUI in the application**
148
149 [[image:1654592632656-512.png]]
150
151
152
153 **Add APP KEY**
154
155 [[image:1654592653453-934.png]]
156
157
158 (% style="color:blue" %)**Step 2**(%%): Power on LLDS12
159
160
161 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
162
163 [[image:image-20220607170442-2.png]]
164
165
166 (((
167 (% style="color:blue" %)**Step 3**(%%)**:** The LLDS12 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
168 )))
169
170 [[image:1654833501679-968.png]]
171
172
173
174 == 2.3  ​Uplink Payload ==
175
176 (((
177 LLDS12 will uplink payload via LoRaWAN with below payload format: 
178 )))
179
180 (((
181 Uplink payload includes in total 11 bytes.
182 )))
183
184 (((
185
186 )))
187
188 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
189 |=(% style="width: 62.5px;" %)(((
190 **Size (bytes)**
191 )))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1**
192 |(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1BatteryInfo"]]|(% style="width:62.5px" %)(((
193 [[Temperature>>||anchor="H2.3.2DS18B20Temperaturesensor"]]
194
195 [[DS18B20>>||anchor="H2.3.2DS18B20Temperaturesensor"]]
196 )))|[[Distance>>||anchor="H"]]|[[Distance signal strength>>||anchor="H2.3.4SoilTemperature"]]|(((
197 [[Interrupt flag>>||anchor="H2.3.5InterruptPin"]]
198 )))|[[LiDAR temp>>||anchor="H"]]|(((
199 [[Message Type>>||anchor="H2.3.6MessageType"]]
200 )))
201
202 [[image:1654833689380-972.png]]
203
204
205
206 === 2.3.1  Battery Info ===
207
208
209 Check the battery voltage for LLDS12.
210
211 Ex1: 0x0B45 = 2885mV
212
213 Ex2: 0x0B49 = 2889mV
214
215
216
217 === 2.3.2  DS18B20 Temperature sensor ===
218
219 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
220
221
222 **Example**:
223
224 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
225
226 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
227
228
229
230 === 2.3.3  Distance ===
231
232 Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
233
234
235 **Example**:
236
237 If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
238
239
240
241 === 2.3.4  Distance signal strength ===
242
243 Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
244
245
246 **Example**:
247
248 If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
249
250 Customers can judge whether they need to adjust the environment based on the signal strength.
251
252
253
254 === 2.3.5  Interrupt Pin ===
255
256 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up.
257
258 Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>path:#pins]].
259
260 **Example:**
261
262 0x00: Normal uplink packet.
263
264 0x01: Interrupt Uplink Packet.
265
266
267
268 === 2.3.6  LiDAR temp ===
269
270 Characterize the internal temperature value of the sensor.
271
272 **Example: **
273 If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
274 If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
275
276
277
278 === 2.3.7  Message Type ===
279
280 (((
281 For a normal uplink payload, the message type is always 0x01.
282 )))
283
284 (((
285 Valid Message Type:
286 )))
287
288
289 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %)
290 |=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload**
291 |(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]
292 |(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.4GetFirmwareVersionInfo"]]
293
294 === 2.3.8  Decode payload in The Things Network ===
295
296 While using TTN network, you can add the payload format to decode the payload.
297
298
299 [[image:1654592762713-715.png]]
300
301 (((
302 The payload decoder function for TTN is here:
303 )))
304
305 (((
306 LSPH01 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/LSPH01/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSNPK01/Decoder/]]
307 )))
308
309
310
311 == 2.4  Uplink Interval ==
312
313 The LLDS12 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
314
315
316
317 == 2.5  ​Show Data in DataCake IoT Server ==
318
319 (((
320 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
321 )))
322
323 (((
324
325 )))
326
327 (((
328 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
329 )))
330
331 (((
332 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
333 )))
334
335
336 [[image:1654592790040-760.png]]
337
338
339 [[image:1654592800389-571.png]]
340
341
342 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
343
344 (% style="color:blue" %)**Step 4**(%%)**: Create LLDS12 product.**
345
346 [[image:1654832691989-514.png]]
347
348
349 [[image:1654592833877-762.png]]
350
351
352 [[image:1654832740634-933.png]]
353
354
355
356 (((
357 (% style="color:blue" %)**Step 5**(%%)**: add payload decode**
358 )))
359
360 (((
361
362 )))
363
364 [[image:1654833065139-942.png]]
365
366
367
368 [[image:1654833092678-390.png]]
369
370
371
372 After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
373
374 [[image:1654833163048-332.png]]
375
376
377
378 == 2.6  Frequency Plans ==
379
380 (((
381 The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
382 )))
383
384
385 === 2.6.1  EU863-870 (EU868) ===
386
387 (((
388 (% style="color:blue" %)**Uplink:**
389 )))
390
391 (((
392 868.1 - SF7BW125 to SF12BW125
393 )))
394
395 (((
396 868.3 - SF7BW125 to SF12BW125 and SF7BW250
397 )))
398
399 (((
400 868.5 - SF7BW125 to SF12BW125
401 )))
402
403 (((
404 867.1 - SF7BW125 to SF12BW125
405 )))
406
407 (((
408 867.3 - SF7BW125 to SF12BW125
409 )))
410
411 (((
412 867.5 - SF7BW125 to SF12BW125
413 )))
414
415 (((
416 867.7 - SF7BW125 to SF12BW125
417 )))
418
419 (((
420 867.9 - SF7BW125 to SF12BW125
421 )))
422
423 (((
424 868.8 - FSK
425 )))
426
427 (((
428
429 )))
430
431 (((
432 (% style="color:blue" %)**Downlink:**
433 )))
434
435 (((
436 Uplink channels 1-9 (RX1)
437 )))
438
439 (((
440 869.525 - SF9BW125 (RX2 downlink only)
441 )))
442
443
444
445 === 2.6.2  US902-928(US915) ===
446
447 (((
448 Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
449 )))
450
451 (((
452 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
453 )))
454
455 (((
456 After Join success, the end node will switch to the correct sub band by:
457 )))
458
459 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
460 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
461
462 === 2.6.3 CN470-510 (CN470) ===
463
464 (((
465 Used in China, Default use CHE=1
466 )))
467
468 (((
469 (% style="color:blue" %)**Uplink:**
470 )))
471
472 (((
473 486.3 - SF7BW125 to SF12BW125
474 )))
475
476 (((
477 486.5 - SF7BW125 to SF12BW125
478 )))
479
480 (((
481 486.7 - SF7BW125 to SF12BW125
482 )))
483
484 (((
485 486.9 - SF7BW125 to SF12BW125
486 )))
487
488 (((
489 487.1 - SF7BW125 to SF12BW125
490 )))
491
492 (((
493 487.3 - SF7BW125 to SF12BW125
494 )))
495
496 (((
497 487.5 - SF7BW125 to SF12BW125
498 )))
499
500 (((
501 487.7 - SF7BW125 to SF12BW125
502 )))
503
504 (((
505
506 )))
507
508 (((
509 (% style="color:blue" %)**Downlink:**
510 )))
511
512 (((
513 506.7 - SF7BW125 to SF12BW125
514 )))
515
516 (((
517 506.9 - SF7BW125 to SF12BW125
518 )))
519
520 (((
521 507.1 - SF7BW125 to SF12BW125
522 )))
523
524 (((
525 507.3 - SF7BW125 to SF12BW125
526 )))
527
528 (((
529 507.5 - SF7BW125 to SF12BW125
530 )))
531
532 (((
533 507.7 - SF7BW125 to SF12BW125
534 )))
535
536 (((
537 507.9 - SF7BW125 to SF12BW125
538 )))
539
540 (((
541 508.1 - SF7BW125 to SF12BW125
542 )))
543
544 (((
545 505.3 - SF12BW125 (RX2 downlink only)
546 )))
547
548
549
550
551 === 2.6.4 AU915-928(AU915) ===
552
553 (((
554 Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
555 )))
556
557 (((
558 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
559 )))
560
561 (((
562
563 )))
564
565 (((
566 After Join success, the end node will switch to the correct sub band by:
567 )))
568
569 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
570 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
571
572 === 2.6.5 AS920-923 & AS923-925 (AS923) ===
573
574 (((
575 (% style="color:blue" %)**Default Uplink channel:**
576 )))
577
578 (((
579 923.2 - SF7BW125 to SF10BW125
580 )))
581
582 (((
583 923.4 - SF7BW125 to SF10BW125
584 )))
585
586 (((
587
588 )))
589
590 (((
591 (% style="color:blue" %)**Additional Uplink Channel**:
592 )))
593
594 (((
595 (OTAA mode, channel added by JoinAccept message)
596 )))
597
598 (((
599
600 )))
601
602 (((
603 (% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
604 )))
605
606 (((
607 922.2 - SF7BW125 to SF10BW125
608 )))
609
610 (((
611 922.4 - SF7BW125 to SF10BW125
612 )))
613
614 (((
615 922.6 - SF7BW125 to SF10BW125
616 )))
617
618 (((
619 922.8 - SF7BW125 to SF10BW125
620 )))
621
622 (((
623 923.0 - SF7BW125 to SF10BW125
624 )))
625
626 (((
627 922.0 - SF7BW125 to SF10BW125
628 )))
629
630 (((
631
632 )))
633
634 (((
635 (% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
636 )))
637
638 (((
639 923.6 - SF7BW125 to SF10BW125
640 )))
641
642 (((
643 923.8 - SF7BW125 to SF10BW125
644 )))
645
646 (((
647 924.0 - SF7BW125 to SF10BW125
648 )))
649
650 (((
651 924.2 - SF7BW125 to SF10BW125
652 )))
653
654 (((
655 924.4 - SF7BW125 to SF10BW125
656 )))
657
658 (((
659 924.6 - SF7BW125 to SF10BW125
660 )))
661
662 (((
663
664 )))
665
666 (((
667 (% style="color:blue" %)**Downlink:**
668 )))
669
670 (((
671 Uplink channels 1-8 (RX1)
672 )))
673
674 (((
675 923.2 - SF10BW125 (RX2)
676 )))
677
678
679
680
681 === 2.6.6 KR920-923 (KR920) ===
682
683 (((
684 (% style="color:blue" %)**Default channel:**
685 )))
686
687 (((
688 922.1 - SF7BW125 to SF12BW125
689 )))
690
691 (((
692 922.3 - SF7BW125 to SF12BW125
693 )))
694
695 (((
696 922.5 - SF7BW125 to SF12BW125
697 )))
698
699 (((
700
701 )))
702
703 (((
704 (% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
705 )))
706
707 (((
708 922.1 - SF7BW125 to SF12BW125
709 )))
710
711 (((
712 922.3 - SF7BW125 to SF12BW125
713 )))
714
715 (((
716 922.5 - SF7BW125 to SF12BW125
717 )))
718
719 (((
720 922.7 - SF7BW125 to SF12BW125
721 )))
722
723 (((
724 922.9 - SF7BW125 to SF12BW125
725 )))
726
727 (((
728 923.1 - SF7BW125 to SF12BW125
729 )))
730
731 (((
732 923.3 - SF7BW125 to SF12BW125
733 )))
734
735 (((
736
737 )))
738
739 (((
740 (% style="color:blue" %)**Downlink:**
741 )))
742
743 (((
744 Uplink channels 1-7(RX1)
745 )))
746
747 (((
748 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
749 )))
750
751
752
753
754 === 2.6.7 IN865-867 (IN865) ===
755
756 (((
757 (% style="color:blue" %)**Uplink:**
758 )))
759
760 (((
761 865.0625 - SF7BW125 to SF12BW125
762 )))
763
764 (((
765 865.4025 - SF7BW125 to SF12BW125
766 )))
767
768 (((
769 865.9850 - SF7BW125 to SF12BW125
770 )))
771
772 (((
773
774 )))
775
776 (((
777 (% style="color:blue" %)**Downlink:**
778 )))
779
780 (((
781 Uplink channels 1-3 (RX1)
782 )))
783
784 (((
785 866.550 - SF10BW125 (RX2)
786 )))
787
788
789
790
791 == 2.7  LED Indicator ==
792
793 The LLDS12 has an internal LED which is to show the status of different state.
794
795 * The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
796 * Blink once when device transmit a packet.
797
798 == 2.8  ​Firmware Change Log ==
799
800
801 **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
802
803
804 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>path:/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/]]
805
806
807
808 = 3.  LiDAR ToF Measurement =
809
810 == 3.1 Principle of Distance Measurement ==
811
812 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
813
814 [[image:1654831757579-263.png]]
815
816
817
818 == 3.2 Distance Measurement Characteristics ==
819
820 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
821
822 [[image:1654831774373-275.png]]
823
824
825 ①Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
826
827 ②Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
828
829 ③Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
830
831
832 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
833
834
835 [[image:1654831797521-720.png]]
836
837
838 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
839
840 [[image:1654831810009-716.png]]
841
842
843 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
844
845
846
847 == 3.3 Notice of usage: ==
848
849 Possible invalid /wrong reading for LiDAR ToF tech:
850
851 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
852 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
853 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
854 * The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
855
856 = 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
857
858 (((
859 Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
860 )))
861
862 * (((
863 AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
864 )))
865 * (((
866 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>path:/xwiki/bin/view/Main/]]
867 )))
868
869 (((
870
871
872 There are two kinds of commands to configure LLDS12, they are:
873 )))
874
875 * (((
876 (% style="color:#4f81bd" %)** General Commands**.
877 )))
878
879 (((
880 These commands are to configure:
881 )))
882
883 * (((
884 General system settings like: uplink interval.
885 )))
886 * (((
887 LoRaWAN protocol & radio related command.
888 )))
889
890 (((
891 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>path:/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
892 )))
893
894 (((
895
896 )))
897
898 * (((
899 (% style="color:#4f81bd" %)** Commands special design for LLDS12**
900 )))
901
902 (((
903 These commands only valid for LLDS12, as below:
904 )))
905
906
907
908 == 4.1  Set Transmit Interval Time ==
909
910 Feature: Change LoRaWAN End Node Transmit Interval.
911
912 (% style="color:#037691" %)**AT Command: AT+TDC**
913
914 [[image:image-20220607171554-8.png]]
915
916
917
918 (((
919 (% style="color:#037691" %)**Downlink Command: 0x01**
920 )))
921
922 (((
923 Format: Command Code (0x01) followed by 3 bytes time value.
924 )))
925
926 (((
927 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
928 )))
929
930 * (((
931 Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
932 )))
933 * (((
934 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
935
936
937
938 )))
939
940 == 4.2  Set Interrupt Mode ==
941
942 Feature, Set Interrupt mode for GPIO_EXIT.
943
944 (% style="color:#037691" %)**AT Command: AT+INTMOD**
945
946 [[image:image-20220610105806-2.png]]
947
948
949
950
951 (((
952 (% style="color:#037691" %)**Downlink Command: 0x06**
953 )))
954
955 (((
956 Format: Command Code (0x06) followed by 3 bytes.
957 )))
958
959 (((
960 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
961 )))
962
963 * (((
964 Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
965 )))
966 * (((
967 Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
968 )))
969
970 == 4.3  Get Firmware Version Info ==
971
972 Feature: use downlink to get firmware version.
973
974 (% style="color:#037691" %)**Downlink Command: 0x26**
975
976 [[image:image-20220607171917-10.png]]
977
978 * Reply to the confirmation package: 26 01
979 * Reply to non-confirmed packet: 26 00
980
981 Device will send an uplink after got this downlink command. With below payload:
982
983 Configures info payload:
984
985 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
986 |=(((
987 **Size(bytes)**
988 )))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
989 |**Value**|Software Type|(((
990 Frequency
991
992 Band
993 )))|Sub-band|(((
994 Firmware
995
996 Version
997 )))|Sensor Type|Reserve|(((
998 [[Message Type>>||anchor="H2.3.6MessageType"]]
999 Always 0x02
1000 )))
1001
1002 **Software Type**: Always 0x03 for LLDS12
1003
1004
1005 **Frequency Band**:
1006
1007 *0x01: EU868
1008
1009 *0x02: US915
1010
1011 *0x03: IN865
1012
1013 *0x04: AU915
1014
1015 *0x05: KZ865
1016
1017 *0x06: RU864
1018
1019 *0x07: AS923
1020
1021 *0x08: AS923-1
1022
1023 *0x09: AS923-2
1024
1025 *0xa0: AS923-3
1026
1027
1028 **Sub-Band**: value 0x00 ~~ 0x08
1029
1030
1031 **Firmware Version**: 0x0100, Means: v1.0.0 version
1032
1033
1034 **Sensor Type**:
1035
1036 0x01: LSE01
1037
1038 0x02: LDDS75
1039
1040 0x03: LDDS20
1041
1042 0x04: LLMS01
1043
1044 0x05: LSPH01
1045
1046 0x06: LSNPK01
1047
1048 0x07: LLDS12
1049
1050
1051
1052 = 5.  Battery & How to replace =
1053
1054 == 5.1  Battery Type ==
1055
1056 (((
1057 LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1058 )))
1059
1060 (((
1061 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1062 )))
1063
1064 [[image:1654593587246-335.png]]
1065
1066
1067 Minimum Working Voltage for the LLDS12:
1068
1069 LLDS12:  2.45v ~~ 3.6v
1070
1071
1072
1073 == 5.2  Replace Battery ==
1074
1075 (((
1076 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1077 )))
1078
1079 (((
1080 And make sure the positive and negative pins match.
1081 )))
1082
1083
1084
1085 == 5.3  Power Consumption Analyze ==
1086
1087 (((
1088 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1089 )))
1090
1091 (((
1092 Instruction to use as below:
1093 )))
1094
1095
1096 **Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1097
1098 [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1099
1100
1101 **Step 2**: Open it and choose
1102
1103 * Product Model
1104 * Uplink Interval
1105 * Working Mode
1106
1107 And the Life expectation in difference case will be shown on the right.
1108
1109 [[image:1654593605679-189.png]]
1110
1111
1112 The battery related documents as below:
1113
1114 * (((
1115 [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
1116 )))
1117 * (((
1118 [[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1119 )))
1120 * (((
1121 [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1122 )))
1123
1124 [[image:image-20220607172042-11.png]]
1125
1126
1127
1128 === 5.3.1  ​Battery Note ===
1129
1130 (((
1131 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1132 )))
1133
1134
1135
1136 === ​5.3.2  Replace the battery ===
1137
1138 (((
1139 You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1140 )))
1141
1142 (((
1143 The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1144 )))
1145
1146
1147
1148 = 6.  Use AT Command =
1149
1150 == 6.1  Access AT Commands ==
1151
1152 LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1153
1154 [[image:1654593668970-604.png]]
1155
1156 **Connection:**
1157
1158 (% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1159
1160 (% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1161
1162 (% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1163
1164
1165 (((
1166 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSPH01. LSPH01 will output system info once power on as below:
1167 )))
1168
1169
1170 [[image:1654593712276-618.png]]
1171
1172 Valid AT Command please check [[Configure Device>>||anchor="H3.ConfigureLSPH01viaATCommandorLoRaWANDownlink"]].
1173
1174
1175 = 7.  FAQ =
1176
1177 == 7.1  How to change the LoRa Frequency Bands/Region ==
1178
1179 You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
1180 When downloading the images, choose the required image file for download. ​
1181
1182
1183 = 8.  Trouble Shooting =
1184
1185 == 8.1  AT Commands input doesn’t work ==
1186
1187
1188 In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1189
1190
1191 == 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1192
1193
1194 (((
1195 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1196 )))
1197
1198 (((
1199 Troubleshooting: Please avoid use of this product under such circumstance in practice.
1200 )))
1201
1202 (((
1203
1204 )))
1205
1206 (((
1207 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1208 )))
1209
1210 (((
1211 Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1212 )))
1213
1214
1215
1216 = 9.  Order Info =
1217
1218
1219 Part Number: (% style="color:blue" %)**LLDS12-XX**
1220
1221
1222 (% style="color:blue" %)**XX**(%%): The default frequency band
1223
1224 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1225 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1226 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1227 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1228 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1229 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1230 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1231 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1232
1233 = 10. ​ Packing Info =
1234
1235
1236 **Package Includes**:
1237
1238 * LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1239
1240 **Dimension and weight**:
1241
1242 * Device Size: cm
1243 * Device Weight: g
1244 * Package Size / pcs : cm
1245 * Weight / pcs : g
1246
1247 = 11.  ​Support =
1248
1249 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1250 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].