Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220610095606-1.png]]
3
4
5 **Contents:**
6
7 {{toc/}}
8
9
10
11
12
13
14
15 = 1.  Introduction =
16
17 == 1.1 ​ What is LoRaWAN LiDAR ToF Distance Sensor ==
18
19 (((
20
21
22 (((
23 The Dragino LLDS12 is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
24 )))
25
26 (((
27 The LLDS12 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
28 )))
29
30 (((
31 It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
32 )))
33
34 (((
35 The LoRa wireless technology used in LLDS12 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
36 )))
37
38 (((
39 LLDS12 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
40 )))
41
42 (((
43 Each LLDS12 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
44 )))
45 )))
46
47
48 [[image:1654826306458-414.png]]
49
50
51
52 == ​1.2  Features ==
53
54 * LoRaWAN 1.0.3 Class A
55 * Ultra-low power consumption
56 * Laser technology for distance detection
57 * Operating Range - 0.1m~~12m①
58 * Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
59 * Monitor Battery Level
60 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
61 * AT Commands to change parameters
62 * Uplink on periodically
63 * Downlink to change configure
64 * 8500mAh Battery for long term use
65
66 == 1.3  Probe Specification ==
67
68 * Storage temperature :-20℃~~75℃
69 * Operating temperature - -20℃~~60℃
70 * Operating Range - 0.1m~~12m①
71 * Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
72 * Distance resolution - 5mm
73 * Ambient light immunity - 70klux
74 * Enclosure rating - IP65
75 * Light source - LED
76 * Central wavelength - 850nm
77 * FOV - 3.6°
78 * Material of enclosure - ABS+PC
79 * Wire length - 25cm
80
81 == 1.4  Probe Dimension ==
82
83
84 [[image:1654827224480-952.png]]
85
86
87
88 == 1.5 ​ Applications ==
89
90 * Horizontal distance measurement
91 * Parking management system
92 * Object proximity and presence detection
93 * Intelligent trash can management system
94 * Robot obstacle avoidance
95 * Automatic control
96 * Sewer
97
98 == 1.6  Pin mapping and power on ==
99
100
101 [[image:1654827332142-133.png]]
102
103
104
105
106 = 2.  Configure LLDS12 to connect to LoRaWAN network =
107
108 == 2.1  How it works ==
109
110 (((
111 The LLDS12 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
112 )))
113
114 (((
115 In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.UseATCommand"]]to set the keys in the LLDS12.
116 )))
117
118
119 == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
120
121 (((
122 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
123 )))
124
125 (((
126 [[image:1654827857527-556.png]]
127 )))
128
129 (((
130 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
131 )))
132
133 (((
134 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSPH01.
135 )))
136
137 (((
138 Each LSPH01 is shipped with a sticker with the default device EUI as below:
139 )))
140
141 [[image:image-20220607170145-1.jpeg]]
142
143
144
145 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
146
147
148 **Register the device**
149
150
151 [[image:1654592600093-601.png]]
152
153
154
155 **Add APP EUI and DEV EUI**
156
157 [[image:1654592619856-881.png]]
158
159
160
161 **Add APP EUI in the application**
162
163 [[image:1654592632656-512.png]]
164
165
166
167 **Add APP KEY**
168
169 [[image:1654592653453-934.png]]
170
171
172 (% style="color:blue" %)**Step 2**(%%): Power on LLDS12
173
174
175 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
176
177 [[image:image-20220607170442-2.png]]
178
179
180 (((
181 (% style="color:blue" %)**Step 3**(%%)**:** The LLDS12 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
182 )))
183
184 [[image:1654833501679-968.png]]
185
186
187
188 == 2.3  ​Uplink Payload ==
189
190 (((
191 LLDS12 will uplink payload via LoRaWAN with below payload format: 
192 )))
193
194 (((
195 Uplink payload includes in total 11 bytes.
196 )))
197
198 (((
199
200 )))
201
202 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
203 |=(% style="width: 62.5px;" %)(((
204 **Size (bytes)**
205 )))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1**
206 |(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1BatteryInfo"]]|(% style="width:62.5px" %)(((
207 [[Temperature>>||anchor="H2.3.2DS18B20Temperaturesensor"]]
208
209 [[DS18B20>>||anchor="H2.3.2DS18B20Temperaturesensor"]]
210 )))|[[Distance>>||anchor="H"]]|[[Distance signal strength>>||anchor="H2.3.4SoilTemperature"]]|(((
211 [[Interrupt flag>>||anchor="H2.3.5InterruptPin"]]
212 )))|[[LiDAR temp>>||anchor="H"]]|(((
213 [[Message Type>>||anchor="H2.3.6MessageType"]]
214 )))
215
216 [[image:1654833689380-972.png]]
217
218
219
220 === 2.3.1  Battery Info ===
221
222
223 Check the battery voltage for LLDS12.
224
225 Ex1: 0x0B45 = 2885mV
226
227 Ex2: 0x0B49 = 2889mV
228
229
230
231 === 2.3.2  DS18B20 Temperature sensor ===
232
233 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
234
235
236 **Example**:
237
238 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
239
240 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
241
242
243
244 === 2.3.3  Distance ===
245
246 Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
247
248
249 **Example**:
250
251 If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
252
253
254
255 === 2.3.4  Distance signal strength ===
256
257 Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
258
259
260 **Example**:
261
262 If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
263
264 Customers can judge whether they need to adjust the environment based on the signal strength.
265
266
267
268 === 2.3.5  Interrupt Pin ===
269
270 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up.
271
272 Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>path:#pins]].
273
274 **Example:**
275
276 0x00: Normal uplink packet.
277
278 0x01: Interrupt Uplink Packet.
279
280
281
282 === 2.3.6  LiDAR temp ===
283
284 Characterize the internal temperature value of the sensor.
285
286 **Example: **
287 If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
288 If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
289
290
291
292 === 2.3.7  Message Type ===
293
294 (((
295 For a normal uplink payload, the message type is always 0x01.
296 )))
297
298 (((
299 Valid Message Type:
300 )))
301
302
303 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %)
304 |=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload**
305 |(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]
306 |(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.4GetFirmwareVersionInfo"]]
307
308
309
310 === 2.3.8  Decode payload in The Things Network ===
311
312 While using TTN network, you can add the payload format to decode the payload.
313
314
315 [[image:1654592762713-715.png]]
316
317 (((
318 The payload decoder function for TTN is here:
319 )))
320
321 (((
322 LSPH01 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/LSPH01/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSNPK01/Decoder/]]
323 )))
324
325
326
327 == 2.4  Uplink Interval ==
328
329 The LLDS12 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
330
331
332
333 == 2.5  ​Show Data in DataCake IoT Server ==
334
335 (((
336 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
337 )))
338
339 (((
340
341 )))
342
343 (((
344 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
345 )))
346
347 (((
348 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
349 )))
350
351
352 [[image:1654592790040-760.png]]
353
354
355 [[image:1654592800389-571.png]]
356
357
358 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
359
360 (% style="color:blue" %)**Step 4**(%%)**: Create LLDS12 product.**
361
362 [[image:1654832691989-514.png]]
363
364
365 [[image:1654592833877-762.png]]
366
367
368 [[image:1654832740634-933.png]]
369
370
371
372 (((
373 (% style="color:blue" %)**Step 5**(%%)**: add payload decode**
374 )))
375
376 (((
377
378 )))
379
380 [[image:1654833065139-942.png]]
381
382
383
384 [[image:1654833092678-390.png]]
385
386
387
388 After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
389
390 [[image:1654833163048-332.png]]
391
392
393
394 == 2.6  Frequency Plans ==
395
396 (((
397 The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
398 )))
399
400
401 === 2.6.1  EU863-870 (EU868) ===
402
403 (((
404 (% style="color:blue" %)**Uplink:**
405 )))
406
407 (((
408 868.1 - SF7BW125 to SF12BW125
409 )))
410
411 (((
412 868.3 - SF7BW125 to SF12BW125 and SF7BW250
413 )))
414
415 (((
416 868.5 - SF7BW125 to SF12BW125
417 )))
418
419 (((
420 867.1 - SF7BW125 to SF12BW125
421 )))
422
423 (((
424 867.3 - SF7BW125 to SF12BW125
425 )))
426
427 (((
428 867.5 - SF7BW125 to SF12BW125
429 )))
430
431 (((
432 867.7 - SF7BW125 to SF12BW125
433 )))
434
435 (((
436 867.9 - SF7BW125 to SF12BW125
437 )))
438
439 (((
440 868.8 - FSK
441 )))
442
443 (((
444
445 )))
446
447 (((
448 (% style="color:blue" %)**Downlink:**
449 )))
450
451 (((
452 Uplink channels 1-9 (RX1)
453 )))
454
455 (((
456 869.525 - SF9BW125 (RX2 downlink only)
457 )))
458
459
460
461 === 2.6.2  US902-928(US915) ===
462
463 (((
464 Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
465 )))
466
467 (((
468 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
469 )))
470
471 (((
472 After Join success, the end node will switch to the correct sub band by:
473 )))
474
475 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
476 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
477
478 === 2.6.3  CN470-510 (CN470) ===
479
480 (((
481 Used in China, Default use CHE=1
482 )))
483
484 (((
485 (% style="color:blue" %)**Uplink:**
486 )))
487
488 (((
489 486.3 - SF7BW125 to SF12BW125
490 )))
491
492 (((
493 486.5 - SF7BW125 to SF12BW125
494 )))
495
496 (((
497 486.7 - SF7BW125 to SF12BW125
498 )))
499
500 (((
501 486.9 - SF7BW125 to SF12BW125
502 )))
503
504 (((
505 487.1 - SF7BW125 to SF12BW125
506 )))
507
508 (((
509 487.3 - SF7BW125 to SF12BW125
510 )))
511
512 (((
513 487.5 - SF7BW125 to SF12BW125
514 )))
515
516 (((
517 487.7 - SF7BW125 to SF12BW125
518 )))
519
520 (((
521
522 )))
523
524 (((
525 (% style="color:blue" %)**Downlink:**
526 )))
527
528 (((
529 506.7 - SF7BW125 to SF12BW125
530 )))
531
532 (((
533 506.9 - SF7BW125 to SF12BW125
534 )))
535
536 (((
537 507.1 - SF7BW125 to SF12BW125
538 )))
539
540 (((
541 507.3 - SF7BW125 to SF12BW125
542 )))
543
544 (((
545 507.5 - SF7BW125 to SF12BW125
546 )))
547
548 (((
549 507.7 - SF7BW125 to SF12BW125
550 )))
551
552 (((
553 507.9 - SF7BW125 to SF12BW125
554 )))
555
556 (((
557 508.1 - SF7BW125 to SF12BW125
558 )))
559
560 (((
561 505.3 - SF12BW125 (RX2 downlink only)
562 )))
563
564
565
566
567 === 2.6.4  AU915-928(AU915) ===
568
569 (((
570 Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
571 )))
572
573 (((
574 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
575 )))
576
577 (((
578
579 )))
580
581 (((
582 After Join success, the end node will switch to the correct sub band by:
583 )))
584
585 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
586 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
587
588 === 2.6.5  AS920-923 & AS923-925 (AS923) ===
589
590 (((
591 (% style="color:blue" %)**Default Uplink channel:**
592 )))
593
594 (((
595 923.2 - SF7BW125 to SF10BW125
596 )))
597
598 (((
599 923.4 - SF7BW125 to SF10BW125
600 )))
601
602 (((
603
604 )))
605
606 (((
607 (% style="color:blue" %)**Additional Uplink Channel**:
608 )))
609
610 (((
611 (OTAA mode, channel added by JoinAccept message)
612 )))
613
614 (((
615
616 )))
617
618 (((
619 (% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
620 )))
621
622 (((
623 922.2 - SF7BW125 to SF10BW125
624 )))
625
626 (((
627 922.4 - SF7BW125 to SF10BW125
628 )))
629
630 (((
631 922.6 - SF7BW125 to SF10BW125
632 )))
633
634 (((
635 922.8 - SF7BW125 to SF10BW125
636 )))
637
638 (((
639 923.0 - SF7BW125 to SF10BW125
640 )))
641
642 (((
643 922.0 - SF7BW125 to SF10BW125
644 )))
645
646 (((
647
648 )))
649
650 (((
651 (% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
652 )))
653
654 (((
655 923.6 - SF7BW125 to SF10BW125
656 )))
657
658 (((
659 923.8 - SF7BW125 to SF10BW125
660 )))
661
662 (((
663 924.0 - SF7BW125 to SF10BW125
664 )))
665
666 (((
667 924.2 - SF7BW125 to SF10BW125
668 )))
669
670 (((
671 924.4 - SF7BW125 to SF10BW125
672 )))
673
674 (((
675 924.6 - SF7BW125 to SF10BW125
676 )))
677
678 (((
679
680 )))
681
682 (((
683 (% style="color:blue" %)**Downlink:**
684 )))
685
686 (((
687 Uplink channels 1-8 (RX1)
688 )))
689
690 (((
691 923.2 - SF10BW125 (RX2)
692 )))
693
694
695
696
697 === 2.6.6  KR920-923 (KR920) ===
698
699 (((
700 (% style="color:blue" %)**Default channel:**
701 )))
702
703 (((
704 922.1 - SF7BW125 to SF12BW125
705 )))
706
707 (((
708 922.3 - SF7BW125 to SF12BW125
709 )))
710
711 (((
712 922.5 - SF7BW125 to SF12BW125
713 )))
714
715 (((
716
717 )))
718
719 (((
720 (% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
721 )))
722
723 (((
724 922.1 - SF7BW125 to SF12BW125
725 )))
726
727 (((
728 922.3 - SF7BW125 to SF12BW125
729 )))
730
731 (((
732 922.5 - SF7BW125 to SF12BW125
733 )))
734
735 (((
736 922.7 - SF7BW125 to SF12BW125
737 )))
738
739 (((
740 922.9 - SF7BW125 to SF12BW125
741 )))
742
743 (((
744 923.1 - SF7BW125 to SF12BW125
745 )))
746
747 (((
748 923.3 - SF7BW125 to SF12BW125
749 )))
750
751 (((
752
753 )))
754
755 (((
756 (% style="color:blue" %)**Downlink:**
757 )))
758
759 (((
760 Uplink channels 1-7(RX1)
761 )))
762
763 (((
764 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
765 )))
766
767
768
769
770 === 2.6.7  IN865-867 (IN865) ===
771
772 (((
773 (% style="color:blue" %)**Uplink:**
774 )))
775
776 (((
777 865.0625 - SF7BW125 to SF12BW125
778 )))
779
780 (((
781 865.4025 - SF7BW125 to SF12BW125
782 )))
783
784 (((
785 865.9850 - SF7BW125 to SF12BW125
786 )))
787
788 (((
789
790 )))
791
792 (((
793 (% style="color:blue" %)**Downlink:**
794 )))
795
796 (((
797 Uplink channels 1-3 (RX1)
798 )))
799
800 (((
801 866.550 - SF10BW125 (RX2)
802 )))
803
804
805
806
807 == 2.7  LED Indicator ==
808
809 The LLDS12 has an internal LED which is to show the status of different state.
810
811 * The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
812 * Blink once when device transmit a packet.
813
814 == 2.8  ​Firmware Change Log ==
815
816
817 **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
818
819
820 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>path:/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/]]
821
822
823
824 = 3.  LiDAR ToF Measurement =
825
826 == 3.1 Principle of Distance Measurement ==
827
828 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
829
830 [[image:1654831757579-263.png]]
831
832
833
834 == 3.2 Distance Measurement Characteristics ==
835
836 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
837
838 [[image:1654831774373-275.png]]
839
840
841 ①Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
842
843 ②Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
844
845 ③Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
846
847
848 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
849
850
851 [[image:1654831797521-720.png]]
852
853
854 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
855
856 [[image:1654831810009-716.png]]
857
858
859 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
860
861
862
863 == 3.3 Notice of usage: ==
864
865 Possible invalid /wrong reading for LiDAR ToF tech:
866
867 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
868 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
869 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
870 * The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
871
872 = 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
873
874 (((
875 Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
876 )))
877
878 * (((
879 AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
880 )))
881 * (((
882 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>path:/xwiki/bin/view/Main/]]
883 )))
884
885 (((
886
887
888 There are two kinds of commands to configure LLDS12, they are:
889 )))
890
891 * (((
892 (% style="color:#4f81bd" %)** General Commands**.
893 )))
894
895 (((
896 These commands are to configure:
897 )))
898
899 * (((
900 General system settings like: uplink interval.
901 )))
902 * (((
903 LoRaWAN protocol & radio related command.
904 )))
905
906 (((
907 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>path:/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
908 )))
909
910 (((
911
912 )))
913
914 * (((
915 (% style="color:#4f81bd" %)** Commands special design for LLDS12**
916 )))
917
918 (((
919 These commands only valid for LLDS12, as below:
920 )))
921
922
923
924 == 4.1  Set Transmit Interval Time ==
925
926 Feature: Change LoRaWAN End Node Transmit Interval.
927
928 (% style="color:#037691" %)**AT Command: AT+TDC**
929
930 [[image:image-20220607171554-8.png]]
931
932
933
934 (((
935 (% style="color:#037691" %)**Downlink Command: 0x01**
936 )))
937
938 (((
939 Format: Command Code (0x01) followed by 3 bytes time value.
940 )))
941
942 (((
943 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
944 )))
945
946 * (((
947 Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
948 )))
949 * (((
950 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
951
952
953
954 )))
955
956 == 4.2  Set Interrupt Mode ==
957
958 Feature, Set Interrupt mode for GPIO_EXIT.
959
960 (% style="color:#037691" %)**AT Command: AT+INTMOD**
961
962 [[image:image-20220610105806-2.png]]
963
964
965
966
967 (((
968 (% style="color:#037691" %)**Downlink Command: 0x06**
969 )))
970
971 (((
972 Format: Command Code (0x06) followed by 3 bytes.
973 )))
974
975 (((
976 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
977 )))
978
979 * (((
980 Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
981 )))
982 * (((
983 Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
984 )))
985
986 == 4.3  Get Firmware Version Info ==
987
988 Feature: use downlink to get firmware version.
989
990 (% style="color:#037691" %)**Downlink Command: 0x26**
991
992 [[image:image-20220607171917-10.png]]
993
994 * Reply to the confirmation package: 26 01
995 * Reply to non-confirmed packet: 26 00
996
997 Device will send an uplink after got this downlink command. With below payload:
998
999 Configures info payload:
1000
1001 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1002 |=(((
1003 **Size(bytes)**
1004 )))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1005 |**Value**|Software Type|(((
1006 Frequency
1007
1008 Band
1009 )))|Sub-band|(((
1010 Firmware
1011
1012 Version
1013 )))|Sensor Type|Reserve|(((
1014 [[Message Type>>||anchor="H2.3.6MessageType"]]
1015 Always 0x02
1016 )))
1017
1018 **Software Type**: Always 0x03 for LLDS12
1019
1020
1021 **Frequency Band**:
1022
1023 *0x01: EU868
1024
1025 *0x02: US915
1026
1027 *0x03: IN865
1028
1029 *0x04: AU915
1030
1031 *0x05: KZ865
1032
1033 *0x06: RU864
1034
1035 *0x07: AS923
1036
1037 *0x08: AS923-1
1038
1039 *0x09: AS923-2
1040
1041 *0xa0: AS923-3
1042
1043
1044 **Sub-Band**: value 0x00 ~~ 0x08
1045
1046
1047 **Firmware Version**: 0x0100, Means: v1.0.0 version
1048
1049
1050 **Sensor Type**:
1051
1052 0x01: LSE01
1053
1054 0x02: LDDS75
1055
1056 0x03: LDDS20
1057
1058 0x04: LLMS01
1059
1060 0x05: LSPH01
1061
1062 0x06: LSNPK01
1063
1064 0x07: LLDS12
1065
1066
1067
1068 = 5.  Battery & How to replace =
1069
1070 == 5.1  Battery Type ==
1071
1072 (((
1073 LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1074 )))
1075
1076 (((
1077 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1078 )))
1079
1080 [[image:1654593587246-335.png]]
1081
1082
1083 Minimum Working Voltage for the LLDS12:
1084
1085 LLDS12:  2.45v ~~ 3.6v
1086
1087
1088
1089 == 5.2  Replace Battery ==
1090
1091 (((
1092 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1093 )))
1094
1095 (((
1096 And make sure the positive and negative pins match.
1097 )))
1098
1099
1100
1101 == 5.3  Power Consumption Analyze ==
1102
1103 (((
1104 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1105 )))
1106
1107 (((
1108 Instruction to use as below:
1109 )))
1110
1111
1112 **Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1113
1114 [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1115
1116
1117 **Step 2**: Open it and choose
1118
1119 * Product Model
1120 * Uplink Interval
1121 * Working Mode
1122
1123 And the Life expectation in difference case will be shown on the right.
1124
1125 [[image:1654593605679-189.png]]
1126
1127
1128 The battery related documents as below:
1129
1130 * (((
1131 [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
1132 )))
1133 * (((
1134 [[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1135 )))
1136 * (((
1137 [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1138 )))
1139
1140 [[image:image-20220607172042-11.png]]
1141
1142
1143
1144 === 5.3.1  ​Battery Note ===
1145
1146 (((
1147 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1148 )))
1149
1150
1151
1152 === ​5.3.2  Replace the battery ===
1153
1154 (((
1155 You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1156 )))
1157
1158 (((
1159 The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1160 )))
1161
1162
1163
1164 = 6.  Use AT Command =
1165
1166 == 6.1  Access AT Commands ==
1167
1168 LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1169
1170 [[image:1654593668970-604.png]]
1171
1172 **Connection:**
1173
1174 (% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1175
1176 (% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1177
1178 (% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1179
1180
1181 (((
1182 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSPH01. LSPH01 will output system info once power on as below:
1183 )))
1184
1185
1186 [[image:1654593712276-618.png]]
1187
1188 Valid AT Command please check [[Configure Device>>||anchor="H3.ConfigureLSPH01viaATCommandorLoRaWANDownlink"]].
1189
1190
1191 = 7.  FAQ =
1192
1193 == 7.1  How to change the LoRa Frequency Bands/Region ==
1194
1195 You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
1196 When downloading the images, choose the required image file for download. ​
1197
1198
1199 = 8.  Trouble Shooting =
1200
1201 == 8.1  AT Commands input doesn’t work ==
1202
1203
1204 In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1205
1206
1207 == 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1208
1209
1210 (((
1211 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1212 )))
1213
1214 (((
1215 Troubleshooting: Please avoid use of this product under such circumstance in practice.
1216 )))
1217
1218 (((
1219
1220 )))
1221
1222 (((
1223 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1224 )))
1225
1226 (((
1227 Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1228 )))
1229
1230
1231
1232 = 9.  Order Info =
1233
1234
1235 Part Number: (% style="color:blue" %)**LLDS12-XX**
1236
1237
1238 (% style="color:blue" %)**XX**(%%): The default frequency band
1239
1240 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1241 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1242 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1243 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1244 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1245 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1246 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1247 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1248
1249 = 10. ​ Packing Info =
1250
1251
1252 **Package Includes**:
1253
1254 * LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1255
1256 **Dimension and weight**:
1257
1258 * Device Size: cm
1259 * Device Weight: g
1260 * Package Size / pcs : cm
1261 * Weight / pcs : g
1262
1263 = 11.  ​Support =
1264
1265 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1266 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0