Changes for page LMDS200 -- LoRaWAN Microwave Radar Distance Sensor User Manual
Last modified by Mengting Qiu on 2024/03/07 08:41
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -12,30 +12,26 @@ 12 12 13 13 = 1. Introduction = 14 14 15 -== 1.1 What is LoRaWAN SoilpHSensor ==15 +== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor == 16 16 17 17 ((( 18 -The Dragino LSPH01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil pH Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil PH and soil temperature, so to send to the platform to analyze the soil acid or alkali level. The probe is IP68 waterproof. 19 -))) 18 + 20 20 21 -((( 22 -LSPH01 probe is made by Solid AgCl reference electrode and Pure metal pH sensitive electrode. It can detect soil's** (% style="color:#4f81bd" %)pH (%%)**with high accuracy and stable value. The LSPH01 probe can be buried into soil for long time use. 23 -))) 20 +The Dragino LLDS12 is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement. 24 24 25 -((( 26 -The LoRa wireless technology used in LSPH01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 27 -))) 22 +The LLDS12 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc. 28 28 29 -((( 30 -LSPH01 is powered by (% style="color:#4f81bd" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 31 -))) 24 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server. 32 32 33 -((( 34 -Each LSPH01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 26 +The LoRa wireless technology used in LLDS12 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 27 + 28 +LLDS12 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 29 + 30 +Each LLDS12 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 35 35 ))) 36 36 37 37 38 -[[image:1654 592435432-887.png]]34 +[[image:1654826306458-414.png]] 39 39 40 40 41 41 ... ... @@ -56,7 +56,6 @@ 56 56 * IP68 rate for the Sensor Probe 57 57 * 8500mAh Battery for long term use 58 58 59 - 60 60 == 1.3 Probe Specification == 61 61 62 62 ... ... @@ -77,12 +77,10 @@ 77 77 * IP68 Protection 78 78 * Length: 3.5 meters 79 79 80 - 81 81 == 1.4 Applications == 82 82 83 83 * Smart Agriculture 84 84 85 - 86 86 == 1.5 Pin mapping and power on == 87 87 88 88 [[image:1654592472094-134.png]] ... ... @@ -278,7 +278,6 @@ 278 278 |(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.4GetFirmwareVersionInfo"]] 279 279 |(% style="width:160px" %)0x03|(% style="width:163px" %)Reply Calibration Info|(% style="width:173px" %)[[Calibration Payload>>||anchor="H2.7Calibration"]] 280 280 281 - 282 282 === 2.3.7 Decode payload in The Things Network === 283 283 284 284 While using TTN network, you can add the payload format to decode the payload. ... ... @@ -488,7 +488,6 @@ 488 488 * Reply to non-confirmed packet: 14 00 489 489 490 490 491 - 492 492 == 2.8 Frequency Plans == 493 493 494 494 ((( ... ... @@ -574,7 +574,6 @@ 574 574 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include) 575 575 576 576 577 - 578 578 === 2.8.3 CN470-510 (CN470) === 579 579 580 580 ((( ... ... @@ -684,7 +684,6 @@ 684 684 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band 685 685 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include) 686 686 687 - 688 688 === 2.8.5 AS920-923 & AS923-925 (AS923) === 689 689 690 690 ((( ... ... @@ -908,7 +908,6 @@ 908 908 * The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected. 909 909 * Blink once when device transmit a packet. 910 910 911 - 912 912 == 2.10 Firmware Change Log == 913 913 914 914