Last modified by Mengting Qiu on 2025/08/06 17:02

From version 175.3
edited by Xiaoling
on 2022/06/15 10:47
Change comment: There is no comment for this version
To version 150.42
edited by Xiaoling
on 2022/06/11 09:14
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LDDS20 - LoRaWAN Ultrasonic Liquid Level Sensor User Manual
1 +LDDS75 - LoRaWAN Distance Detection Sensor User Manual
Content
... ... @@ -1,10 +1,11 @@
1 1  (% style="text-align:center" %)
2 -[[image:1655254599445-662.png]]
2 +[[image:1654846127817-788.png]]
3 3  
4 +**Contents:**
4 4  
6 +{{toc/}}
5 5  
6 6  
7 -**Table of Contents:**
8 8  
9 9  
10 10  
... ... @@ -11,11 +11,9 @@
11 11  
12 12  
13 13  
14 -
15 -
16 16  = 1.  Introduction =
17 17  
18 -== 1.1 ​ What is LoRaWAN Ultrasonic liquid leveSensor ==
17 +== 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
19 19  
20 20  (((
21 21  
... ... @@ -22,8 +22,7 @@
22 22  
23 23  (((
24 24  (((
25 -(((
26 -The Dragino LDDS20 is a (% style="color:#4472c4" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:#4472c4" %)**none-contact method **(%%)to measure the height of liquid in a container without opening the container, and send the value via LoRaWAN network to IoT Server
24 +The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
27 27  )))
28 28  
29 29  (((
... ... @@ -31,7 +31,7 @@
31 31  )))
32 32  
33 33  (((
34 -The LDDS20 sensor is installed directly below the container to detect the height of the liquid level. User doesn’t need to open a hole on the container to be tested. The (% style="color:#4472c4" %)**none-contact measurement makes the measurement safety, easier and possible for some strict situation**. 
32 +It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
35 35  )))
36 36  
37 37  (((
... ... @@ -39,7 +39,7 @@
39 39  )))
40 40  
41 41  (((
42 -LDDS20 uses ultrasonic sensing technology for distance measurement. LDDS20 is of high accuracy to measure various liquid such as: (% style="color:#4472c4" %)**toxic substances**(%%), (% style="color:#4472c4" %)**strong acids**(%%), (% style="color:#4472c4" %)**strong alkalis**(%%) and (% style="color:#4472c4" %)**various pure liquids**(%%) in high-temperature and high-pressure airtight containers.
40 +The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
43 43  )))
44 44  
45 45  (((
... ... @@ -47,7 +47,7 @@
47 47  )))
48 48  
49 49  (((
50 -The LoRa wireless technology used in LDDS20 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
48 +LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
51 51  )))
52 52  
53 53  (((
... ... @@ -55,7 +55,7 @@
55 55  )))
56 56  
57 57  (((
58 -LDDS20 is powered by (% style="color:#4472c4" %)**8500mA Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
56 +Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
59 59  )))
60 60  
61 61  (((
... ... @@ -63,24 +63,13 @@
63 63  )))
64 64  
65 65  (((
66 -Each LDDS20 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
67 -)))
68 -
69 -(((
70 -
71 -)))
72 -)))
73 -
74 -(((
75 -(((
76 76  (% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors.
77 77  )))
78 78  )))
79 79  )))
80 -)))
81 81  
82 82  
83 -[[image:1655255122126-327.png]]
70 +[[image:1654847051249-359.png]]
84 84  
85 85  
86 86  
... ... @@ -88,10 +88,9 @@
88 88  
89 89  * LoRaWAN 1.0.3 Class A
90 90  * Ultra low power consumption
91 -* Liquid Level Measurement by Ultrasonic technology
92 -* Measure through container, No need to contact Liquid.
93 -* Valid level range 20mm - 2000mm
94 -* Accuracy: ±(5mm+S*0.5%) (S: Measure Value)
78 +* Distance Detection by Ultrasonic technology
79 +* Flat object range 280mm - 7500mm
80 +* Accuracy: ±(1cm+S*0.3%) (S: Distance)
95 95  * Cable Length : 25cm
96 96  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
97 97  * AT Commands to change parameters
... ... @@ -98,130 +98,69 @@
98 98  * Uplink on periodically
99 99  * Downlink to change configure
100 100  * IP66 Waterproof Enclosure
101 -* 8500mAh Battery for long term use
87 +* 4000mAh or 8500mAh Battery for long term use
102 102  
103 -== 1.3  Suitable Container & Liquid ==
104 104  
105 -* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc.
106 -* Container shape is regular, and surface is smooth.
107 -* Container Thickness:
108 -** Pure metal material.  2~~8mm, best is 3~~5mm
109 -** Pure non metal material: <10 mm
110 -* Pure liquid without irregular deposition.
90 +== 1.3  Specification ==
111 111  
112 -== 1.4  Mechanical ==
92 +=== 1.3.1  Rated environmental conditions ===
113 113  
114 -[[image:image-20220615090910-1.png]]
94 +[[image:image-20220610154839-1.png]]
115 115  
96 +(((
97 +**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);  b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
98 +)))
116 116  
117 -[[image:image-20220615090910-2.png]]
118 118  
119 119  
102 +=== 1.3.2  Effective measurement range Reference beam pattern ===
120 120  
121 -== 1.5  Install LDDS20 ==
104 +**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**
122 122  
123 123  
124 -(% style="color:blue" %)**Step 1**(%%):  Choose the installation point.
125 125  
126 -LDDS20 (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.
108 +[[image:1654852253176-749.png]]
127 127  
128 -[[image:image-20220615091045-3.png]]
129 129  
130 130  
112 +**(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.**
131 131  
132 -(% style="color:blue" %)**Step 2**(%%):  Polish the installation point.
133 133  
134 -For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth.
115 +[[image:1654852175653-550.png]](% style="display:none" %) ** **
135 135  
136 -[[image:image-20220615092010-11.png]]
137 137  
138 138  
139 -No polish needed if the container is shine metal surface without paint or non-metal container.
119 +== 1.5 ​ Applications ==
140 140  
141 -[[image:image-20220615092044-12.png]]
121 +* Horizontal distance measurement
122 +* Liquid level measurement
123 +* Parking management system
124 +* Object proximity and presence detection
125 +* Intelligent trash can management system
126 +* Robot obstacle avoidance
127 +* Automatic control
128 +* Sewer
129 +* Bottom water level monitoring
142 142  
143 143  
144 144  
145 -(% style="color:blue" %)**Step3:   **(%%)Test the installation point.
133 +== 1.6  Pin mapping and power on ==
146 146  
147 -Power on LDDS75, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.
148 148  
136 +[[image:1654847583902-256.png]]
149 149  
150 -It is necessary to put the coupling paste between the sensor and the container, otherwise LDDS20 won’t detect the liquid level.
151 151  
152 -[[image:1655256160324-178.png]][[image:image-20220615092327-13.png]]
153 153  
140 += 2.  Configure LDDS75 to connect to LoRaWAN network =
154 154  
155 -After paste the LDDS20 well, power on LDDS20. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.
156 -
157 -
158 -(% style="color:red" %)**LED Status:**
159 -
160 -* Onboard LED: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well.
161 -
162 -* (% style="color:blue" %)BLUE LED(% style="color:red" %) always ON(%%): Sensor is power on but doesn’t detect liquid. There is problem in installation point.
163 -* (% style="color:blue" %)BLUE LED(% style="color:red" %) slowly blinking(%%): Sensor detects Liquid Level, The installation point is good.
164 -
165 -LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.
166 -
167 -
168 -(% style="color:red" %)**Note 2:**
169 -
170 -(% style="color:red" %)Ultrasonic coupling paste (%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally.
171 -
172 -
173 -
174 -(% style="color:blue" %)**Step4:   **(%%)Install use Epoxy ab glue.
175 -
176 -Prepare Eproxy AB glue.
177 -
178 -Put Eproxy AB glue in the sensor and press it hard on the container installation point.
179 -
180 -Reset LDDS20 and see if the BLUE LED is slowly blinking.
181 -
182 -[[image:image-20220615091045-8.png||height="226" width="380"]] [[image:image-20220615091045-9.png||height="239" width="339"]]
183 -
184 -
185 -(% style="color:red" %)**Note 1:**
186 -
187 -Eproxy AB glue needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position.
188 -
189 -
190 -(% style="color:red" %)**Note 2:**
191 -
192 -(% style="color:red" %)Eproxy AB glue(%%) is subjected in most shipping way. So the default package doesn’t include it and user needs to purchase locally.
193 -
194 -
195 -
196 -== 1.6 ​ Applications ==
197 -
198 -* Smart liquid control solution.
199 -* Smart liquefied gas solution.
200 -
201 -== 1.7  Precautions ==
202 -
203 -* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights.
204 -* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container.
205 -* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable.
206 -
207 -== 1.8  Pin mapping and power on ==
208 -
209 -
210 -[[image:1655257026882-201.png]]
211 -
212 -
213 -
214 -= 2.  Configure LDDS20 to connect to LoRaWAN network =
215 -
216 -
217 217  == 2.1  How it works ==
218 218  
219 219  (((
220 -The LDDS20 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS20. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value.
145 +The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
221 221  )))
222 222  
223 223  (((
224 -In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0UsingtheATCommands"]]to set the keys in the LDDS20.
149 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
225 225  )))
226 226  
227 227  
... ... @@ -233,7 +233,7 @@
233 233  )))
234 234  
235 235  (((
236 -[[image:1655257698953-697.png]]
161 +[[image:1654848616367-242.png]]
237 237  )))
238 238  
239 239  (((
... ... @@ -241,31 +241,21 @@
241 241  )))
242 242  
243 243  (((
244 -
245 -
246 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS20.
169 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
247 247  )))
248 248  
249 249  (((
250 -Each LDDS20 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
173 +Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
251 251  )))
252 252  
253 253  [[image:image-20220607170145-1.jpeg]]
254 254  
255 255  
256 -(((
257 257  For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
258 -)))
259 259  
260 -(((
261 261  Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
262 -)))
263 263  
264 -(((
265 -
266 -
267 267  **Add APP EUI in the application**
268 -)))
269 269  
270 270  [[image:image-20220610161353-4.png]]
271 271  
... ... @@ -277,7 +277,6 @@
277 277  [[image:image-20220610161353-7.png]]
278 278  
279 279  
280 -
281 281  You can also choose to create the device manually.
282 282  
283 283   [[image:image-20220610161538-8.png]]
... ... @@ -290,17 +290,16 @@
290 290  
291 291  
292 292  
293 -(% style="color:blue" %)**Step 2**(%%):  Power on LDDS20
207 +(% style="color:blue" %)**Step 2**(%%): Power on LDDS75
294 294  
295 295  
296 296  Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
297 297  
298 -[[image:image-20220615095102-14.png]]
212 +[[image:image-20220610161724-10.png]]
299 299  
300 300  
301 -
302 302  (((
303 -(% style="color:blue" %)**Step 3**(%%)**:**  The LDDS20 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
216 +(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
304 304  )))
305 305  
306 306  [[image:1654849068701-275.png]]
... ... @@ -310,13 +310,11 @@
310 310  == 2.3  ​Uplink Payload ==
311 311  
312 312  (((
313 -(((
314 -LDDS20 will uplink payload via LoRaWAN with below payload format: 
226 +LDDS75 will uplink payload via LoRaWAN with below payload format: 
315 315  
316 -Uplink payload includes in total 8 bytes.
317 -Payload for firmware version v1.1.4. . Before v1.1.3, there is only 5 bytes: BAT and Distance(Please check manual v1.2.0 if you have 5 bytes payload).
228 +Uplink payload includes in total 4 bytes.
229 +Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
318 318  )))
319 -)))
320 320  
321 321  (((
322 322  
... ... @@ -341,7 +341,7 @@
341 341  === 2.3.1  Battery Info ===
342 342  
343 343  
344 -Check the battery voltage for LDDS20.
255 +Check the battery voltage for LDDS75.
345 345  
346 346  Ex1: 0x0B45 = 2885mV
347 347  
... ... @@ -351,21 +351,17 @@
351 351  
352 352  === 2.3.2  Distance ===
353 353  
354 -(((
355 -Get the distance. Flat object range 20mm - 2000mm.
356 -)))
265 +Get the distance. Flat object range 280mm - 7500mm.
357 357  
358 -(((
359 -For example, if the data you get from the register is __0x06 0x05__, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0605(H) = 1541 (D) = 1541 mm.**
360 -)))
267 +For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
361 361  
362 -* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor.
363 -* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid.
364 364  
270 +* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
271 +* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
365 365  
366 366  === 2.3.3  Interrupt Pin ===
367 367  
368 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.2A0SetInterruptMode"]] for the hardware and software set up.
275 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3A0SetInterruptMode"]] for the hardware and software set up.
369 369  
370 370  **Example:**
371 371  
... ... @@ -391,13 +391,9 @@
391 391  
392 392  === 2.3.5  Sensor Flag ===
393 393  
394 -(((
395 395  0x01: Detect Ultrasonic Sensor
396 -)))
397 397  
398 -(((
399 399  0x00: No Ultrasonic Sensor
400 -)))
401 401  
402 402  
403 403  
... ... @@ -406,304 +406,693 @@
406 406  While using TTN network, you can add the payload format to decode the payload.
407 407  
408 408  
409 -[[image:1655261164557-670.png]]
312 +[[image:1654850829385-439.png]]
410 410  
411 411  The payload decoder function for TTN V3 is here:
412 412  
316 +LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
317 +
318 +
319 +
320 +== 2.4  Uplink Interval ==
321 +
322 +The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
323 +
324 +
325 +
326 +== 2.5  ​Show Data in DataCake IoT Server ==
327 +
413 413  (((
414 -LDDS20 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS20/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
329 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
415 415  )))
416 416  
332 +(((
333 +
334 +)))
417 417  
336 +(((
337 +(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
338 +)))
418 418  
419 -== 2.4  Downlink Payload ==
340 +(((
341 +(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
342 +)))
420 420  
421 -By default, LDDS20 prints the downlink payload to console port.
422 422  
423 -[[image:image-20220615100930-15.png]]
345 +[[image:1654592790040-760.png]]
424 424  
425 425  
426 -**Examples:**
348 +[[image:1654592800389-571.png]]
427 427  
428 428  
429 -* (% style="color:blue" %)**Set TDC**
351 +(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
430 430  
431 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
353 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.**
432 432  
433 -Payload:    01 00 00 1E    TDC=30S
355 +[[image:1654851029373-510.png]]
434 434  
435 -Payload:    01 00 00 3C    TDC=60S
436 436  
358 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
437 437  
438 -* (% style="color:blue" %)**Reset**
360 +[[image:image-20220610165129-11.png||height="595" width="1088"]]
439 439  
440 -If payload = 0x04FF, it will reset the LDDS20
441 441  
442 442  
443 -* (% style="color:blue" %)**CFM**
364 +== 2.6  Frequency Plans ==
444 444  
445 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
366 +(((
367 +The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
368 +)))
446 446  
447 447  
448 448  
449 -== 2.5  ​Show Data in DataCake IoT Server ==
372 +=== 2.6.1  EU863-870 (EU868) ===
450 450  
451 451  (((
452 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
375 +(% style="color:blue" %)**Uplink:**
453 453  )))
454 454  
455 455  (((
379 +868.1 - SF7BW125 to SF12BW125
380 +)))
381 +
382 +(((
383 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
384 +)))
385 +
386 +(((
387 +868.5 - SF7BW125 to SF12BW125
388 +)))
389 +
390 +(((
391 +867.1 - SF7BW125 to SF12BW125
392 +)))
393 +
394 +(((
395 +867.3 - SF7BW125 to SF12BW125
396 +)))
397 +
398 +(((
399 +867.5 - SF7BW125 to SF12BW125
400 +)))
401 +
402 +(((
403 +867.7 - SF7BW125 to SF12BW125
404 +)))
405 +
406 +(((
407 +867.9 - SF7BW125 to SF12BW125
408 +)))
409 +
410 +(((
411 +868.8 - FSK
412 +)))
413 +
414 +(((
456 456  
457 457  )))
458 458  
459 459  (((
460 -(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
419 +(% style="color:blue" %)**Downlink:**
461 461  )))
462 462  
463 463  (((
464 -(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
423 +Uplink channels 1-9 (RX1)
465 465  )))
466 466  
426 +(((
427 +869.525 - SF9BW125 (RX2 downlink only)
428 +)))
467 467  
468 -[[image:1654592790040-760.png]]
469 469  
470 470  
471 -[[image:1654592800389-571.png]]
432 +=== 2.6.2  US902-928(US915) ===
472 472  
434 +(((
435 +Used in USA, Canada and South America. Default use CHE=2
473 473  
474 -(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
437 +(% style="color:blue" %)**Uplink:**
475 475  
476 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.(% style="color:red" %)(Note: LDDS20 use same payload as LDDS75)(%%)**
439 +903.9 - SF7BW125 to SF10BW125
477 477  
478 -[[image:1654851029373-510.png]]
441 +904.1 - SF7BW125 to SF10BW125
479 479  
443 +904.3 - SF7BW125 to SF10BW125
480 480  
481 -After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
445 +904.5 - SF7BW125 to SF10BW125
482 482  
483 -[[image:image-20220610165129-11.png||height="595" width="1088"]]
447 +904.7 - SF7BW125 to SF10BW125
484 484  
449 +904.9 - SF7BW125 to SF10BW125
485 485  
451 +905.1 - SF7BW125 to SF10BW125
486 486  
487 -== 2. LED Indicator ==
453 +905.3 - SF7BW125 to SF10BW125
488 488  
489 -The LDDS20 has an internal LED which is to show the status of different state.
490 490  
456 +(% style="color:blue" %)**Downlink:**
491 491  
492 -* Blink once when device power on.
493 -* The device detects the sensor and flashes 5 times.
494 -* Solid ON for 5 seconds once device successful Join the network.
495 -* Blink once when device transmit a packet.
458 +923.3 - SF7BW500 to SF12BW500
496 496  
460 +923.9 - SF7BW500 to SF12BW500
497 497  
498 -== 2. Firmware Change Log ==
462 +924.5 - SF7BW500 to SF12BW500
499 499  
464 +925.1 - SF7BW500 to SF12BW500
500 500  
466 +925.7 - SF7BW500 to SF12BW500
467 +
468 +926.3 - SF7BW500 to SF12BW500
469 +
470 +926.9 - SF7BW500 to SF12BW500
471 +
472 +927.5 - SF7BW500 to SF12BW500
473 +
474 +923.3 - SF12BW500(RX2 downlink only)
475 +
476 +
477 +
478 +)))
479 +
480 +=== 2.6.3  CN470-510 (CN470) ===
481 +
501 501  (((
502 -**Firmware download link:  **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
483 +Used in China, Default use CHE=1
503 503  )))
504 504  
505 505  (((
487 +(% style="color:blue" %)**Uplink:**
488 +)))
489 +
490 +(((
491 +486.3 - SF7BW125 to SF12BW125
492 +)))
493 +
494 +(((
495 +486.5 - SF7BW125 to SF12BW125
496 +)))
497 +
498 +(((
499 +486.7 - SF7BW125 to SF12BW125
500 +)))
501 +
502 +(((
503 +486.9 - SF7BW125 to SF12BW125
504 +)))
505 +
506 +(((
507 +487.1 - SF7BW125 to SF12BW125
508 +)))
509 +
510 +(((
511 +487.3 - SF7BW125 to SF12BW125
512 +)))
513 +
514 +(((
515 +487.5 - SF7BW125 to SF12BW125
516 +)))
517 +
518 +(((
519 +487.7 - SF7BW125 to SF12BW125
520 +)))
521 +
522 +(((
506 506  
507 507  )))
508 508  
509 509  (((
510 -**Firmware Upgrade Method:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]**
527 +(% style="color:blue" %)**Downlink:**
511 511  )))
512 512  
530 +(((
531 +506.7 - SF7BW125 to SF12BW125
532 +)))
513 513  
534 +(((
535 +506.9 - SF7BW125 to SF12BW125
536 +)))
514 514  
515 -== 2.8  Battery Analysis ==
538 +(((
539 +507.1 - SF7BW125 to SF12BW125
540 +)))
516 516  
542 +(((
543 +507.3 - SF7BW125 to SF12BW125
544 +)))
517 517  
546 +(((
547 +507.5 - SF7BW125 to SF12BW125
548 +)))
518 518  
550 +(((
551 +507.7 - SF7BW125 to SF12BW125
552 +)))
519 519  
520 -=== 2.8.1  Battery Type ===
554 +(((
555 +507.9 - SF7BW125 to SF12BW125
556 +)))
521 521  
522 -The LDDS20 battery is a combination of a 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
558 +(((
559 +508.1 - SF7BW125 to SF12BW125
560 +)))
523 523  
562 +(((
563 +505.3 - SF12BW125 (RX2 downlink only)
564 +)))
524 524  
525 -The battery related documents as below:
526 526  
527 -* (((
528 -[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]],
567 +
568 +=== 2.6.4  AU915-928(AU915) ===
569 +
570 +(((
571 +Default use CHE=2
572 +
573 +(% style="color:blue" %)**Uplink:**
574 +
575 +916.8 - SF7BW125 to SF12BW125
576 +
577 +917.0 - SF7BW125 to SF12BW125
578 +
579 +917.2 - SF7BW125 to SF12BW125
580 +
581 +917.4 - SF7BW125 to SF12BW125
582 +
583 +917.6 - SF7BW125 to SF12BW125
584 +
585 +917.8 - SF7BW125 to SF12BW125
586 +
587 +918.0 - SF7BW125 to SF12BW125
588 +
589 +918.2 - SF7BW125 to SF12BW125
590 +
591 +
592 +(% style="color:blue" %)**Downlink:**
593 +
594 +923.3 - SF7BW500 to SF12BW500
595 +
596 +923.9 - SF7BW500 to SF12BW500
597 +
598 +924.5 - SF7BW500 to SF12BW500
599 +
600 +925.1 - SF7BW500 to SF12BW500
601 +
602 +925.7 - SF7BW500 to SF12BW500
603 +
604 +926.3 - SF7BW500 to SF12BW500
605 +
606 +926.9 - SF7BW500 to SF12BW500
607 +
608 +927.5 - SF7BW500 to SF12BW500
609 +
610 +923.3 - SF12BW500(RX2 downlink only)
611 +
612 +
613 +
529 529  )))
530 -* (((
531 -[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]],
615 +
616 +=== 2.6.5  AS920-923 & AS923-925 (AS923) ===
617 +
618 +(((
619 +(% style="color:blue" %)**Default Uplink channel:**
532 532  )))
533 -* (((
534 -[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
621 +
622 +(((
623 +923.2 - SF7BW125 to SF10BW125
535 535  )))
536 536  
537 - [[image:image-20220615102527-16.png]]
626 +(((
627 +923.4 - SF7BW125 to SF10BW125
628 +)))
538 538  
630 +(((
631 +
632 +)))
539 539  
634 +(((
635 +(% style="color:blue" %)**Additional Uplink Channel**:
636 +)))
540 540  
541 -== 2.8.2  Battery Note ==
638 +(((
639 +(OTAA mode, channel added by JoinAccept message)
640 +)))
542 542  
543 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to uplink data, then the battery life may be decreased.
642 +(((
643 +
644 +)))
544 544  
646 +(((
647 +(% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
648 +)))
545 545  
650 +(((
651 +922.2 - SF7BW125 to SF10BW125
652 +)))
546 546  
547 -=== 2.8.3  Replace the battery ===
654 +(((
655 +922.4 - SF7BW125 to SF10BW125
656 +)))
548 548  
549 549  (((
550 -You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
659 +922.6 - SF7BW125 to SF10BW125
551 551  )))
552 552  
553 553  (((
663 +922.8 - SF7BW125 to SF10BW125
664 +)))
665 +
666 +(((
667 +923.0 - SF7BW125 to SF10BW125
668 +)))
669 +
670 +(((
671 +922.0 - SF7BW125 to SF10BW125
672 +)))
673 +
674 +(((
554 554  
555 555  )))
556 556  
557 557  (((
558 -The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user can't find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
679 +(% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
559 559  )))
560 560  
682 +(((
683 +923.6 - SF7BW125 to SF10BW125
684 +)))
561 561  
686 +(((
687 +923.8 - SF7BW125 to SF10BW125
688 +)))
562 562  
563 -== 2.8.4  Battery Life Analyze ==
690 +(((
691 +924.0 - SF7BW125 to SF10BW125
692 +)))
564 564  
565 -Dragino battery powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimate battery life:
694 +(((
695 +924.2 - SF7BW125 to SF10BW125
696 +)))
566 566  
567 -[[https:~~/~~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf>>url:https://www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf]]
698 +(((
699 +924.4 - SF7BW125 to SF10BW125
700 +)))
568 568  
702 +(((
703 +924.6 - SF7BW125 to SF10BW125
704 +)))
569 569  
706 +(((
707 +
708 +)))
570 570  
571 -= 3.  Using the AT Commands =
710 +(((
711 +(% style="color:blue" %)**Downlink:**
712 +)))
572 572  
573 573  (((
715 +Uplink channels 1-8 (RX1)
716 +)))
717 +
574 574  (((
719 +923.2 - SF10BW125 (RX2)
720 +)))
721 +
722 +
723 +
724 +=== 2.6.6  KR920-923 (KR920) ===
725 +
726 +(((
727 +(% style="color:blue" %)**Default channel:**
728 +)))
729 +
730 +(((
731 +922.1 - SF7BW125 to SF12BW125
732 +)))
733 +
734 +(((
735 +922.3 - SF7BW125 to SF12BW125
736 +)))
737 +
738 +(((
739 +922.5 - SF7BW125 to SF12BW125
740 +)))
741 +
742 +(((
575 575  
576 576  )))
745 +
746 +(((
747 +(% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
577 577  )))
578 578  
579 -== 3.1  Access AT Commands ==
750 +(((
751 +922.1 - SF7BW125 to SF12BW125
752 +)))
580 580  
581 -LDDS20 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LDDS20 for using AT command, as below.
754 +(((
755 +922.3 - SF7BW125 to SF12BW125
756 +)))
582 582  
758 +(((
759 +922.5 - SF7BW125 to SF12BW125
760 +)))
583 583  
584 -[[image:image-20220610172924-4.png||height="483" width="988"]]
762 +(((
763 +922.7 - SF7BW125 to SF12BW125
764 +)))
585 585  
766 +(((
767 +922.9 - SF7BW125 to SF12BW125
768 +)))
586 586  
587 -Or if you have below board, use below connection:
770 +(((
771 +923.1 - SF7BW125 to SF12BW125
772 +)))
588 588  
774 +(((
775 +923.3 - SF7BW125 to SF12BW125
776 +)))
589 589  
590 -[[image:image-20220610172924-5.png]]
778 +(((
779 +
780 +)))
591 591  
782 +(((
783 +(% style="color:blue" %)**Downlink:**
784 +)))
592 592  
593 593  (((
594 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS20. LDDS20 will output system info once power on as below:
787 +Uplink channels 1-7(RX1)
595 595  )))
596 596  
790 +(((
791 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
792 +)))
597 597  
598 - [[image:image-20220610172924-6.png||height="601" width="860"]]
599 599  
600 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]].
601 601  
796 +=== 2.6.7  IN865-867 (IN865) ===
602 602  
603 -AT+<CMD>?  :  Help on <CMD>
798 +(((
799 +(% style="color:blue" %)**Uplink:**
800 +)))
604 604  
605 -AT+<CMD>  :  Run <CMD>
802 +(((
803 +865.0625 - SF7BW125 to SF12BW125
804 +)))
606 606  
607 -AT+<CMD>=<value>  :  Set the value
806 +(((
807 +865.4025 - SF7BW125 to SF12BW125
808 +)))
608 608  
609 -AT+<CMD>=?  :  Get the value
810 +(((
811 +865.9850 - SF7BW125 to SF12BW125
812 +)))
610 610  
814 +(((
815 +
816 +)))
611 611  
612 -(% style="color:#037691" %)** General Commands :**     
818 +(((
819 +(% style="color:blue" %)**Downlink:**
820 +)))
613 613  
614 -AT  :  Attention       
822 +(((
823 +Uplink channels 1-3 (RX1)
824 +)))
615 615  
616 -AT?  :  Short Help     
826 +(((
827 +866.550 - SF10BW125 (RX2)
828 +)))
617 617  
618 -ATZ :  MCU Reset    
619 619  
620 -AT+TDC :  Application Data Transmission Interval 
621 621  
832 +== 2.7  LED Indicator ==
622 622  
623 -(% style="color:#037691" %)** Keys, IDs and EUIs management :**
834 +The LDDS75 has an internal LED which is to show the status of different state.
624 624  
625 -AT+APPEUI              : Application EUI      
626 626  
627 -AT+APPKEY              : Application Key     
837 +* Blink once when device power on.
838 +* The device detects the sensor and flashes 5 times.
839 +* Solid ON for 5 seconds once device successful Join the network.
840 +* Blink once when device transmit a packet.
628 628  
629 -AT+APPSKEY            : Application Session Key
842 +== 2.8  ​Firmware Change Log ==
630 630  
631 -AT+DADDR              : Device Address     
632 632  
633 -AT+DEUI                   : Device EUI     
845 +**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
634 634  
635 -AT+NWKID               : Network ID (You can enter this command change only after successful network connection) 
636 636  
637 -AT+NWKSKEY          : Network Session Key Joining and sending date on LoRa network  
848 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
638 638  
639 -AT+CFM          : Confirm Mode       
640 640  
641 -AT+CFS                     : Confirm Status       
642 642  
643 -AT+JOIN          : Join LoRa? Network       
852 +== 2.9  Mechanical ==
644 644  
645 -AT+NJM          : LoRa? Network Join Mode    
646 646  
647 -AT+NJS                     : LoRa? Network Join Status    
855 +[[image:image-20220610172003-1.png]]
648 648  
649 -AT+RECV                  : Print Last Received Data in Raw Format
650 650  
651 -AT+RECVB                : Print Last Received Data in Binary Format      
858 +[[image:image-20220610172003-2.png]]
652 652  
653 -AT+SEND                  : Send Text Data      
654 654  
655 -AT+SENB                  : Send Hexadecimal Data
656 656  
862 +== 2.10  Battery Analysis ==
657 657  
658 -(% style="color:#037691" %)** LoRa Network Management :**
864 +=== 2.10.1  Battery Type ===
659 659  
660 -AT+ADR          : Adaptive Rate
866 +The LDDS75 battery is a combination of a 4000mAh or 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
661 661  
662 -AT+CLASS                : LoRa Class(Currently only support class A
663 663  
664 -AT+DCS           : Duty Cycle Settin
869 +The battery related documents as below:
665 665  
666 -AT+DR                      : Data Rate (Can Only be Modified after ADR=0)     
871 +* (((
872 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
873 +)))
874 +* (((
875 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
876 +)))
877 +* (((
878 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
879 +)))
667 667  
668 -AT+FCD           : Frame Counter Downlink       
881 + [[image:image-20220610172400-3.png]]
669 669  
670 -AT+FCU           : Frame Counter Uplink   
671 671  
672 -AT+JN1DL                : Join Accept Delay1
673 673  
674 -AT+JN2DL                : Join Accept Delay2
885 +=== 2.10.2  Replace the battery ===
675 675  
676 -AT+PNM                   : Public Network Mode   
887 +(((
888 +You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
889 +)))
677 677  
678 -AT+RX1DL                : Receive Delay1      
891 +(((
892 +
893 +)))
679 679  
680 -AT+RX2DL                : Receive Delay2      
895 +(((
896 +The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user can't find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
897 +)))
681 681  
682 -AT+RX2DR               : Rx2 Window Data Rate 
683 683  
684 -AT+RX2FQ               : Rx2 Window Frequency
685 685  
686 -AT+TXP           : Transmit Power
901 += 3.  Configure LDDS75 via AT Command or LoRaWAN Downlink =
687 687  
903 +(((
904 +(((
905 +Use can configure LDDS75 via AT Command or LoRaWAN Downlink.
906 +)))
907 +)))
688 688  
689 -(% style="color:#037691" %)** Information :**
909 +* (((
910 +(((
911 +AT Command Connection: See [[FAQ>>||anchor="H4.A0FAQ"]].
912 +)))
913 +)))
914 +* (((
915 +(((
916 +LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
917 +)))
918 +)))
690 690  
691 -AT+RSSI           : RSSI of the Last Received Packet   
920 +(((
921 +(((
922 +
923 +)))
692 692  
693 -AT+SNR           : SNR of the Last Received Packet   
925 +(((
926 +There are two kinds of commands to configure LDDS75, they are:
927 +)))
928 +)))
694 694  
695 -AT+VER           : Image Version and Frequency Band       
930 +* (((
931 +(((
932 +(% style="color:#4f81bd" %)** General Commands**.
933 +)))
934 +)))
696 696  
697 -AT+FDR           : Factory Data Reset
936 +(((
937 +(((
938 +These commands are to configure:
939 +)))
940 +)))
698 698  
699 -AT+PORT                  : Application Port    
942 +* (((
943 +(((
944 +General system settings like: uplink interval.
945 +)))
946 +)))
947 +* (((
948 +(((
949 +LoRaWAN protocol & radio related command.
950 +)))
951 +)))
700 700  
701 -AT+CHS           : Get or Set Frequency (Unit: Hz) for Single Channel Mode
953 +(((
954 +(((
955 +They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
956 +)))
957 +)))
702 702  
703 - AT+CHE                   : Get or Set eight channels mode, Only for US915, AU915, CN470
959 +(((
960 +(((
961 +
962 +)))
963 +)))
704 704  
965 +* (((
966 +(((
967 +(% style="color:#4f81bd" %)** Commands special design for LDDS75**
968 +)))
969 +)))
705 705  
971 +(((
972 +(((
973 +These commands only valid for LDDS75, as below:
974 +)))
975 +)))
706 706  
977 +
978 +
979 +== 3.1  Access AT Commands ==
980 +
981 +LDDS75 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LDDS75 for using AT command, as below.
982 +
983 +[[image:image-20220610172924-4.png||height="483" width="988"]]
984 +
985 +
986 +Or if you have below board, use below connection:
987 +
988 +
989 +[[image:image-20220610172924-5.png]]
990 +
991 +
992 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS75. LDDS75 will output system info once power on as below:
993 +
994 +
995 + [[image:image-20220610172924-6.png||height="601" width="860"]]
996 +
997 +
998 +
707 707  == 3.2  Set Transmit Interval Time ==
708 708  
709 709  Feature: Change LoRaWAN End Node Transmit Interval.
... ... @@ -721,19 +721,16 @@
721 721  (((
722 722  Format: Command Code (0x01) followed by 3 bytes time value.
723 723  
724 -(((
725 725  If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
726 -)))
727 727  
728 728  * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
729 729  * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
730 730  )))
731 -)))
732 732  
733 733  
1023 +
1024 +)))
734 734  
735 -
736 -
737 737  == 3.3  Set Interrupt Mode ==
738 738  
739 739  Feature, Set Interrupt mode for GPIO_EXIT.
... ... @@ -747,9 +747,7 @@
747 747  
748 748  Format: Command Code (0x06) followed by 3 bytes.
749 749  
750 -(((
751 751  This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
752 -)))
753 753  
754 754  * Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
755 755  * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1655254599445-662.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -117.0 KB
Content
1655255122126-327.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -101.7 KB
Content
1655256160324-178.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -177.0 KB
Content
1655257026882-201.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1655257698953-697.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -101.7 KB
Content
1655261164557-670.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -59.2 KB
Content
image-20220615090910-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.3 KB
Content
image-20220615090910-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -5.7 KB
Content
image-20220615091045-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -209.8 KB
Content
image-20220615091045-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -76.9 KB
Content
image-20220615091045-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -111.5 KB
Content
image-20220615091045-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -196.0 KB
Content
image-20220615091045-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -371.1 KB
Content
image-20220615091045-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -206.3 KB
Content
image-20220615091045-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -115.0 KB
Content
image-20220615091929-10.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -37.7 KB
Content
image-20220615092010-11.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -37.3 KB
Content
image-20220615092044-12.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -63.5 KB
Content
image-20220615092327-13.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -66.3 KB
Content
image-20220615095102-14.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -179.0 KB
Content
image-20220615100930-15.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -10.5 KB
Content
image-20220615102527-16.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -182.9 KB
Content